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ABSTRACT

We describe a novel way of representing a symbolic knowledge base (KB) called
a sparse-matrix reified KB. This representation enables neural modules that are
fully differentiable, faithful to the original semantics of the KB, expressive enough
to model multi-hop inferences, and scalable enough to use with realistically large
KBs. The sparse-matrix reified KB can be distributed across multiple GPUs, can
scale to tens of millions of entities and facts, and is orders of magnitude faster
than naive sparse-matrix implementations. The reified KB enables very simple
end-to-end architectures to obtain competitive performance on several benchmarks
representing two families of tasks: KB completion, and learning semantic parsers
from denotations.

1 INTRODUCTION

There has been much prior work on using neural networks to generalize the contents of a KB
(e.g., (Xiong et al., 2017; Bordes et al., 2013; Dettmers et al., 2018)), typically by constructing
low-dimensional embeddings of the entities and relations in the KB, which are then used to score
potential triples as plausible or implausible elements of the KB. We consider here the related but
different problem of incorporating a symbolic KB into a neural system, so as to inject knowledge
from an existing KB directly into a neural model. More precisely, we consider the problem of
designing neural KB inference modules that are (1) fully differentiable, so that any loss based on their
outputs can be backpropagated to their inputs (2) accurate, in that they are faithful to the original
semantics of the KB; (3) expressive, so they can perform non-trivial inferences; and (4) scalable, so
that realistically large KBs can be incorporated into a neural model.

To motivate the goal of incorporating a symbolic KB into a neural network, consider the task of
learning neural semantic parsers from denotations. Many questions—e.g., what’s the most recent
movie that Quentin Tarentino directed? or which nearby restaurants have vegetarian entrees and
take reservations?—are best answered by knowledge-based question-answering (KBQA) methods,
where an answer is found by accessing a KB. Within KBQA, a common approach is neural semantic
parsing—i.e., using neural methods to translate a natural-language question into a structured query
against the KB (e.g., (Zhong et al., 2017; Finegan-Dollak et al., 2018; Shaw et al., 2019)), which is
subsequently executed with a symbolic KB query engine. While this approach can be effective, it
requires training data pairing natural-language questions with structured queries, which is difficult to
obtain. Hence researchers have also considered learning semantic parsers from denotations (e.g.,
(Berant et al., 2013; Yih et al., 2015)), where training data consists of pairs (q, A), where q is a
natural-language question andA is the desired answer, typically a set of KB entities—e.g., for the first
sample question above, A would be1 the singleton set containing Once Upon a Time in Hollywood.

Learning semantic parsers from denotations is difficult because the end-to-end process to be learned
includes a non-differentiable operation—i.e., reasoning on the symbolic KB that contains the answers.
To circumvent this difficulty, prior systems have used three different approaches. Some have used
heuristic search to infer structured queries from denotations (e.g., (Pasupat & Liang, 2016; Dasigi
et al., 2019)): this works in some cases but often an answer could be associated with many possible
structured queries, introducing noise. Others have supplemented gradient approaches with reinforce-
ment learning (e.g., (Misra et al., 2018)). Some systems have also “neuralized” KB reasoning, but
to date only over small KBs: this approach is natural when answers are naturally constrained to

1At the time of this writing.
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depend on a small set of facts (e.g., a single table (Zhong et al., 2017; Gupta & Lewis, 2018)), but
more generally requires coupling a learner with some (non-differentiable) mechanism to retrieve an
appropriate small question-dependent subset of the KB (e.g., (Sun et al., 2018; 2019)).

In this paper, we introduce a novel scheme for incorporating reasoning on a single, question-
independent large KB into a neural network, by representing a symbolic KB with an encoding
called a sparse-matrix reified KB. A sparse-matrix reified KB is very compact, can be distributed
across multiple GPUs if necessary, and is well-suited to modern GPU architecture. For KBs with
many relations, a reified KB can be up to four orders of magnitude faster than alternative imple-
mentations (even alternatives based on sparse-matrix representations), and in our experiments we
demonstrate scalability to a KB with over 13 million entities and nearly 44 million facts. This new
architectural component leads to radically simpler architectures for neural semantic parsing from
denotations—architectures based on a single end-to-end differentiable process, rather than cascades
of retrieval and neural processes.

We show that very simple instantiations of these architectures are still highly competitive with
the state of the art for several benchmark tasks. To our knowledge these models are the first fully
end-to-end neural parsers from denotations that have been applied to these benchmark tasks. We
also demonstrate that these architectures scale to long chains of reasoning on synthetic tasks, and
demonstrate similarly simple architectures for a second task, KB completion.

2 NEURAL REASONING WITH A SYMBOLIC KB
2.1 BACKGROUND

KBs, entities, and relations, and types. A KB consists of entities and relations. We use x to denote
an entity and r to denote a relation. A relation is a set of entity pairs, and represents a relationship
between entities: for instance, if x represents “Quentin Tarentino” and x′ represents “Pulp Fiction”
then (x, x′) would be an member of the relation director_of.

We assume each entity x has a type, written type(x), and let Nτ denote the number of entities of
type τ . Each entity x in type τ also has a unique index indexτ (x), which is an integer between 1
and Nτ . We write xτ,i for the entity that has index i in type τ , or xi if the type is clear from context.
Every relation r has a subject type τsubj and an object type τobj , which constrain the types of x and
x′ for any pair (x, x′) ∈ r. Hence r can be encoded as a subset of {1, . . . , Nτsubj } × {1, . . . , Nτobj }.
Relations with the same subject and object types are called type-compatible. Finally a KB consists of
a set of types, a set of typed relations, and a set of typed entities.

Representing weighted sets as vectors. Our differentiable operations are based on weighted sets,
where each element x of weighted set X is associated with a non-negative real number, written
ω|[x ∈ X]|. It is convenient to define ω|[x ∈ X]| ≡ 0 for all x 6∈ X . Conceptually, a weight less than
1 for element x is a confidence that the set contains x, and weights more than 1 make X a multiset.
If all elements of X have weights 1, we say x is a hard set. Weighted sets X are also typed, and if
type(X) = τ then X is constrained to contain only entities of type τ ; hence X can be encoded as a
subset of {1, . . . , Ntype(X)}.

Often we would like to reason about sets of relations2, so we also assume every relation r in a KB
is associated with an entity xr, and hence, an index and a type. Sets of relations R are allowed
if all members are type-compatible.3 For example R = {writer_of, director_of} might be a set of
type-compatible relations.

A weighted set X of type τ can be encoded as an entity-set vector vX ∈ RNτ , where the i-th
component of vX is the weight of the i-th entity of that type in the set X: e.g., vX [indexτ (x)] =
ω|[x ∈ X]|. Notice that if X is a hard entity set, then this will be a k-hot vector for k = |X|. The set
of indices of v with non-zero values is written support(v), and we also use type(v) to denote the type
τ of the set encoded by v.

Representing relations as sparse matrices. A relation r with subject type τ1 and object type τ2
can be encoded as a relation matrix Mr ∈ RNτ1×Nτ2 , where the value for Mr[i, j] is (in general)

2This is usually called second-order reasoning.
3To avoid complexity in notation we do not distinguish between sets of relations and sets of entities that are

associated relations.
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the weight of the assertion r(xi, xj) in the KB, i.e., Mr[indexτ1(x), indexτ2(x
′)] = ω|[(x, x′) ∈ r]|.

(However, in the experiments of this paper, all KB relations are hard sets, so Mr[i, j] ∈ {0, 1}.)
For all but the smallest KBs, a relation matrix must be implemented using a sparse matrix data
structure, as explicitly storing all Nτ1 ×Nτ2 values is impractical.4 A common sparse matrix data
structure is a sparse coordinate pair (COO) structure, which consists of a Nr × 2 matrix Indr
containing pairs of entity indices, and a parallel vector wr ∈ RNr containing the weights of the
corresponding entity pairs. In this encoding, if (i, j) is row k of Ind, then Mr[i, j] = wr[k], and
if (i, j) does not appear in Indr, then M[i, j] is zero. Hence with a COO encoding, each KB fact
requires storing only two integers and one float.

Our implementations are based on Tensorflow (Abadi et al., 2016), which offers limited support for
sparse matrices. In particular, driven by the limitations of GPU architecture, Tensorflow only supports
matrix multiplication between a sparse matrix COO and a dense matrix, but not between two sparse
matrices, or between sparse higher-rank tensors and dense tensors.

2.2 REASONING IN A KB

The relation-set following operation. Note that relations can also be viewed as labeled edges
in a knowledge graph, the vertices of which are entities. Following this view, we define the r-
neighbors of an entity x to be the set of entities x′ that are connected to x by an edge labeled r, i.e.,
r-neighbors(x) ≡ {x′ : (x, x′) ∈ r}. Extending this to relation sets, we define

R-neighbors(X) ≡ {x′ : ∃r ∈ R, x ∈ X so that (x, x′) ∈ r}

Computing the R-neighbors of an entity is a single-step reasoning operation: e.g., the answer to
the question q =“what movies were produced or directed by Quentin Tarentino” is precisely the
set R-neighbors(X) for R = {producer_of, writer_of} and X = {Quentin_Tarentino}. “Multi-hop”
reasoning operations require nested R-neighborhoods, e.g. if R′ = {actor_of} then R′-neighbors(R-
neighbors(X)) is the set of actors in movies produced or directed by Quentin Tarentino.

We would like to approximate the R-neighbors computation with differentiable operations that can be
performed on encodings of X and R. Let vX encode a weighted set of entities X , and let vR encode
a weighted set of relations of type τ . We first define MR to be a weighted mixture of the relation
matrices for all relations of type τ , i.e., MR ≡ (

∑NτR
k=1 vR[k] ·Mrk). We then define the relation-set

following operation for vX and vR as:

follow(vX , vR) ≡ vXMR = vX(

NτR∑
k=1

vR[k] ·Mk) (1)

The numerical relation-set following operation of Eq 1 corresponds closely to the logical R-
neighborhood operation, as shown by the claim below.

Claim 1 The support of follow(vX , vR) is exactly the set of R-neighbors(X).

To better understand this claim, let z = follow(vX , vR). The claim states z can approximate the R
neighborhood of any hard sets R,X by setting to zero the appropriate components of vX and vR. It
is also clear that z[j] decreases when one decreases the weights in vr of the relations that link xj to
entities in X , and likewise, z[j] decreases if one decreases the weights of the entities in X that are
linked to xj via relations in R, so there is a smooth, differentiable path to reach this approximation.

2.3 SCALABLE RELATION-SET FOLLOWING WITH A REIFIED KB

Baseline implementations. Ignoring types for the moment, suppose the KB contains NR relations,
NE entities, and NT triples. Typically NR < NE < NT � N2

E . As noted above, we must
implement each Mr as a sparse COO matrix, so collectively these matrices require space O(NT ).
Each triple appears in only one relation, so MR in Eq 1 is also sizeO(NT ). Since sparse-sparse matrix
multiplication is not supported in Tensorflow we implement xMR using dense-sparse multiplication,

4For instance, if a KB contains 10,000 movie entities and 100,000 person entities, then a relationship like
writer_of would require storing 1 billion values—far more than few tens of thousands of writer_of facts that
would be in the KB (since most movies have only one or writers.)
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Strategy Batch? Space complexity # Operations
sp-dense dense sparse
matmul + or � +

naive mixing no O(NT +NE +NR) 1 0 NR
late mixing yes O(NT + bNE + bNR) NR NR 0
reified KB yes O(bNT + bNE) 3 1 0

Table 1: Summary of implementations of relation-set following, where NT is the number of KB
triples, NE the number of entities, NR the number of relations.

so x must be a dense vector of size O(NE), as is the output of relation-set following. So the space
complexity of follow(x, r) is O(NT +NE +NR), if implemented as suggested by Eq 1. We call this
the naive mixing implementation (see Table 1).

The major problem with naive mxing is that, in the absence of general sparse tensor contractions, it is
difficult to adapt to mini-batches—which generally make inference on GPUs much faster. We thus
consider next a setting in which x and r are replaced with matrices X and R with minibatch size b.
An alternative strategy is based on the observation that relation-set following for a single relation can
be implemented as xMr, which can be trivially extended to a minibatch as XMr. The late mixing
strategy mixes the output of many single-relation following steps, rather than mixing the KB itself:

follow(X,R) =

NτR∑
k=1

(R[:, k] · XMk) (2)

Here R[:, k], the k-th column of R, is “broadcast” to element of the matrix XMk. While there are NR
matrices XMk, each of size O(bNE), they need not all be stored at once, so the space complexity
becomes O(bNE + bNR +NT ); however we must now sum up NR dense matrices.

A reified knowledge base. While semantic parses for natural questions often use small sets of
relations (often singleton ones), there is substantial uncertainty about what these relations should
in the learning process. Furthermore, realistic wide-coverage KBs have many relations—typically
hundreds or thousands. When many relations are mixed, late mixing becomes quite expensive.

An alternative is to represent each KB assertion r(e1, e2) as a tuple (i, j, k, w) where i, j, k are the
indices of e1, e2, and r, and w is the confidence associated the triple. There are NT such triples, so
for ` = 1, . . . , NT , let (i`, j`, k`, w`) denote the `-th triple. Let δ|[a = b]| denote 1 if a = b and 0
otherwise. We now define these sparse matrices, which collectively define the sparse-matrix reified
KB:5

Msubj [`,m] ≡ δ|[m = i`]| ; Mobj [`,m] ≡ δ|[m = j`]| ; Mrel [`,m] ≡ w` · δ|[m = k`]|
Conceptually, Msubj maps the index ` of the `-th triple to its subject entity; Mobj maps ` to the object
entity; and Mrel maps ` to the relation of the `-th triple, and incidentally encodes the triple confidence
w`. We can now implement the relation-set following as below, where � is Hadamard product:

follow(X,R) = (XMT
subj � RMT

rel)Mobj (3)

For a single x, r notice that xMT
subj are the triples with an entity in x as their subject, rMT

rel are
the triples with a relation in r, and the Hadamard product is the intersection of these. The final
multiplication by Mobj finds the object entities of the triples in the intersection. These operations
naturally extend to minibatches, as given in Eq 3. The reified KB has size O(NT ), the sets of triples
that are intersected have size O(bNT ), and the final result is size O(bNE), giving a final size of
O(bNT + bNE), with no dependence on NR.

Table 1 summarizes the complexity of the three mathematically equivalent but computationally
different implementions given in Eqs 1, 2, and 3. The analysis suggests that the reified KB is
preferable if there are many relations, which is the case for most realistic KBs6.

Distributing a large reified KB. The reified KB representation is quite compact, using only six
integers and three floats for each KB triple. However, since GPU memory is often limited, it is

5Reification in logic is related to reflection in programming languages.
6The larger benchmark datasets used in this paper have 200 and 616 relations respectively, and the widely

used FreeBase-15k-237 has 1345 relations.
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Figure 1: Left and middle: inference time in queries/sec on a synthetic KB as size and number of
relations is varied. Right: speedups of reified KBs over the baseline implementations.

important to be able to distribute a KB across multiple GPUs. Fortunately matrix multiplication XM
can be decomposed: X can be split into a “horizontal stacking” of m submatrices, which we write as
[X1; . . . ;Xm], and M can be similarly partitioned into m2 submatrices, and then

XM = [X1;X2; . . . ;Xm]

 M1,1 M1,2 . . . M1,m

...
...

...
Mm,1 Mm,2 . . . Mm,m

 =

[
(

m∑
i=1

X1Mi,1); . . . ; (

m∑
i=1

XmMi,m)

]

This can be computed without storing either X or M on a single machine, and mathematically applies
to both dense and sparse matrices. (Although to our knowledge prior implementations of distributed
matrix operations (e.g., (Shazeer et al., 2018)) do not support sparse matrices.) We thus implemented
a distributed sparse-matrix implementation of reified KBs. We distibuted the matrices that define a
reified KB “horizontally”, so that different triple ids ` are stored on different GPUs.

3 EXPERIMENTS

3.1 SCALABILITY

Like prior work (Cohen et al., 2017; De Raedt et al., 2007), we used a synthetic KB based on an n-by-
n grid to study scalability of inference. Every grid cell is an entity, related to its immediate neighbors,
via relations north, south, east, and west. The KB for an n-by-n grid thus has O(n2) entities and
around O(n) triples. We measured the time to compute the 2-hop inference follow(follow(X,R),R)
for minibatches of b = 128 one-hot vectors, and report it as queries per second (qps) on a single GPU
(e.g., qps=1280 would mean a single minibatch requires 100ms).7

The results are shown Figure 1 (left and middle), on a log-log scale because some differences are very
large. With only four relations (the leftmost plot), late mixing is about 3x faster than the reified KB
method, and about 250x faster than the naive approach. However, for more than around 20 relations,
the reified KB is faster (middle plot). As shown in the rightmost plot, the reified KB is 50x faster
than late mixing with 1000 relations, and nearly 12,000x faster than the naive approach.8

3.2 MODELS USING REIFIED KBS

As discussed below in Section 4, the reified KB is closely related to key-value memory networks,
so it can be viewed as a more efficient implementation of existing neural modules, optimized for
reasoning with symbolic KBs. However, being able to include an entire KB into a model can lead to
a qualitative difference in model complexity, since it is not necessary to build machinery to retrieve
from the KB. To illustrate this, below we present simple models for several tasks, each using the
reified KB in different ways, as appropriate to the task. We consider two families of tasks: learning
semantic parsers from denotations over a large KB, and learning to complete a KB.

7The matrix R weights all relations uniformly, and we vary the number of relations by inventing m new
relation names and assigning existing grid edges to each new relation.

8 Although we do not show the results, even the method we call “naive” here is much more memory-efficient
than using dense relation-matrices. We do not show results for smaller minibatch sizes, but both reified and late
mixing are about 40x slower with b = 1 than with b = 128.
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KBQA for multi-hop questions. MetaQA (Zhang et al., 2018) consists of 1.2M questions, evenly
distributed into one-hop, two-hop, and three-hop questions. (E.g, the question “who acted in a movie
directed by Quentin Tarentino?” is a two-hop question.) The accompanying KB (Miller et al., 2016)
contains 43k entities and 186k facts. Past work treated one-hop, two-hop and three-hop questions
separately, and the questions are labeled with the entity ids for the “seed entities” that begin the
reasoning chains (e.g., the question above would be tagged with the id of the entity for Quentin
Tarentino).

Using a reified KB for reasoning means the neural model only needs to predict the relations used at
each stage in the reasoning process. For each step of inference we thus compute relation sets rt using
a differentiable function of the question, and then chain them together with relation-set following
steps. Letting x0 be the set of entities associated with q, the model we use is:

for t = 1, 2, 3: rt = f t(q); xt = follow(xt−1, rt)

To predict an answer on a T -hop subtask, we computed the softmax of the appropriate set xT . We
used cross entropy loss of this set against the desired answer, represented as a uniform distribution
over entities in the target set. Each f t(q)’s is a different linear projection of a common encoding for q,
specifically a mean-pooling of the tokens in q encoded with a pre-trained 128-dimensional word2vec
model (Mikolov et al., 2013). The full KB was loaded into a single GPU in our experiments.

Note that in this model the problem of learning the structured KB query has been reduced to training
differentiable functions of the question, and the loss on predicted denotations is back-propagated to
these functions. Similar strategies are used in all the other models presented below.

KBQA on FreeBase. WebQuestionsSP (Yih et al., 2016) contains 4737 natural language questions,
all of which are answerable using FreeBase (Bollacker et al., 2008), a large open-domain KB. Each
question q is again labeled with the entities x that appear in it.

Above we ignored types in the KB, but here we consider them, as this leads to smaller vectors and
faster inference. FreeBase contains two disjoint node types: real-world entities, and compound
value types (CVTs), which represent non-binary relationships or events (e.g., a movie release event,
which includes a movie id, a date, and a place.) Real-world entity nodes can be related to each other
or to a CVT node, but CVT nodes are never directly related to each other, so there are there are
three groupings of type-compatible relations: (1) relations mapping entities to entities, (2) relations
mapping entities to CVT nodes; and (3) relations mapping CVT nodes to entity nodes.

In this dataset, all questions can be answered with 1- or 2-hop chains, and all 2-hop reasoning chains
pass through a CVT entity; however, unlike MetaQA, the number of hops is not known. Our model
thus derives from q three relation sets, one of for each grouping described above, then uniformly
mixes both potential types of inferences:

rE→E = fE→E(q); rE→CVT = fE→CVT(q); rCVT→E = fCVT→E(q)

â = follow(follow(x, rE→CVT), rCVT→E) + follow(x, rE→E)

We again apply a softmax to â and use cross entropy loss, and fE→E, fE→CVT, and fCVT→E are again
linear projections of a word2vec encoding of q.

In the experiments below we used a subset of Freebase with 43.7 million facts and 12.9 million
entities, containing all facts in Freebase within 2-hops of entities mentioned in any question, excluding
paths through some very common entities. We split the KB across three 12-Gb GPUs, and used a
fourth GPU for the rest of the model.

Knowledge base completion. Following Yang et al. (2017) we treat KB completion as an inference
task, analogous to KBQA: a query q is a relation name and a head entity x, and from this we predict a
set of tail entities. We assume the answers are computed with the disjunction of multiple inference
chains of varying length. Each inference chain has a maximum length of T and we build N distinct
inference chains in total, using this model:

for i = 1, . . . , N and t = 1, . . . , T : rti = f ti (q); xt+1
i = follow(xti, r

t
i) + xti

The final output is a softmax of the mix of all the xTi ’s: i.e., we let â = softmax(
∑
i∈{1...N} xTi ). The

purpose of the update xt+1
i = follow(xti, rti) + xti is to give the model access to outputs of all chains
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ReifKB ReifKB KV-Mem VRN GRAFTNet
(ours) + mask (baseline)

WebQSP 52.7 — 46.7 — 67.8
MetaQA

1-hop 96.2 — 95.8 97.5 97.0
2-hop 81.1 95.4 25.1 89.9 94.8
3-hop 72.3 79.7 10.1 62.5 77.2

Grid
5-hop 98.4 — — — —
10-hop 89.7 — — — —

non-differentiable components
of architectures

KV-Mem initial memory
retrieval

VRN question-specific
GRAFTNet subgraph retrieval

ReifKB(ours) none

Table 2: Hits@1 on the KBQA datasets. Results for KV-Mem and VRN on MetaQA are from (Zhang
et al., 2018); results for GRAFT-Net and KV-Mem on WebQSP are from (Sun et al., 2018).

of length less than t. The encoding of q is based on a lookup table, and each relation vector f ti is a
learned linear transformation of q’s embedding.9

An encoder-decoder architecture for varying inferential structures. To explore performance on
more complex reasoning tasks, we generated simple artificial natural-language sentences describing
longer chains of relationships on a 10-by-10 grid. For this task we used an encoder-decoder model
which emits chains of relation-set following operations. The question is encoded with the final
hidden state of an LSTM, written here h0. We then generate a reasoning chain of length up to
T using a decoder LSTM. At iteration t, the decoder emits a scalar probability of “stopping”,
pt, and a distribution over relations to follow rt, and then, as we did for the KBQA tasks, sets
xt = follow(xt−1, rt). Finally the decoder updates its hidden state to ht using an LSTM cell that
“reads” the “input” rt−1. For each step t, the model thus contains the steps

pt = fp(ht−1); rt = fr(ht−1); xt = follow(xt−1, rt); ht = LSTM(ht−1, rt−1)

The final predicted location is a mixture of all the xt’s weighted by the probability of stopping pt
at iteration t, i.e., â = softmax(

∑T
t=1 xt · pt

∏
t′<t(1 − pt

′
)). The function fr is a softmax over a

linear projection, and fp is a logistic function. In the experiments, we trained on 360,000 sentences
requiring between 1 and T hops, for T = 5 and T = 10, and tested on an additional 12,000 sentences.

Experimental results. We next consider the performance of these models relative to strong baselines
for each task. We emphasize our goal here is not to challenge the current state of the art on any
particular benchmark, and clearly there are many ways the models of this paper could be improved.
(For instance, our question encodings are based on word2vec, rather than contextual encodings (e.g.,
(Devlin et al., 2018)), and likewise relations are predicted with simple linear classifiers, rather than,
say, attention queries over some semantically meaningful space, such as might be produced with
language models or KB embedding approaches (Bordes et al., 2013)). Rather, our contribution is to
present a generally useful scheme for including symbolic KB reasoning into a model, and we have
thus focused on describing simple, easily understood models that do this for several tasks. However,
it is important to confirm that the reified KB models “work”—e.g., that they are amenable to use of
standard optimizers, etc.

Performance (using Hits@1) of our models on the KBQA tasks is shown in Table 2. For the non-
synthetic tasks we also compare to a Key-Value Memory Network (KV-Mem) baseline (Miller et al.,
2016). For the smaller MetaQA dataset, KV-Mem is initialized with all facts within 3 hops of the
query entities, and for WebQuestionsSP it is initialized by a random-walk process seeded by the query
entities (see (Sun et al., 2018; Zhang et al., 2018) for details). ReifKB consistently outperforms the
baseline, dramatically so for longer reasoning chains. The synthetic grid task shows that there is very
little degradation as chain length increases, with Hits@1 for 10 hops still 89.7%. It also illustrates the
ability to predict entities in a KB, as well as relations.

We also compare these results to two much more complex architectures that perform end-to-end
question answering in the same setting used here: VRN (Zhang et al., 2018) and GRAFT-Net (Sun
et al., 2018). Both systems build question-dependent subgraphs of the KB, and then use graph
CNN-like methods (Kipf & Welling, 2016) to “reason” with these graphs. Although not superior,
ReifKB model is competitive with these approaches, especially on the most difficult 3-hop setting.

9In the experiments we tune the hyperparameters T ∈ {1, . . . , 6} and N ∈ {1, 2, 3} on a dev set.
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NELL-995
H@1 H@10

ReifKB (Ours) 64.1 82.4
DistMult* 61.0 79.5
ComplEx* 61.2 82.7

ConvE* 67.2 86.4

ReifKB (Ours) MINERVA
NELL-995 64.1 66.3
Grid with seed entity
10-hop NSEW 98.9 99.3
10-hop NSEW-VH 73.6 34.4

MetaQA 3-hop 72.3 41.7

Table 3: Left: Hits@1 and Hits@10 for KB completion on NELL 995. Starred KB completion
methods are transductive, and do not generalize to entities not seen in training. Right: Comparison to
MINERVA on several tasks for Hits@1.

NELL-995 MetaQA WebQuestionsSP
# Facts 154,213 196,453 43,724,175
# Entities 75,492 43,230 12,942,798
# Relations 200 9 616
Time (seconds) 44.3 72.6 1820

Table 4: Time to run 10K examples for KBs of different size.
We also observed that in the MetaQA 2-hop and 3-hop questions, the questions often exclude the
seed entities (e.g., “other movies with the same director as Pulp Fiction”). This can be modeled by
masking out seed entities from the predictions after the second hop (ReifKB + mask); this slightly
extended model leads to better performance than GRAFT-Net on 2-hop and 3-hop questions.

For KB completion, we evaluated the model on the NELL-995 dataset (Xiong et al., 2017) which is
paired with a KB with 154k facts, 75k entities, and 200 relations. On the left of Table 3 we compare
our model with three popular embedding approaches (results are from Das et al. (2017)). The reified
KB model outperforms DistMult (Yang et al., 2014), is slightly worse than ConvE (Dettmers et al.,
2018), and is comparable to ComplEx (Trouillon et al., 2017). However, all these approaches are
quite different from our model, because they are transductive—they only make predictions for entities
seen in training. This is a substantial disadvantage in KBC, since it means that when new entities are
added to a KB no predictions can be made for them.

As a non-transductive baseline, we also compared to the MINERVA model, which uses reinforcement
learning (RL) methods to learn how to traverse a KB to find a desired answer. Although RL methods
less suitable as “neural modules”, MINERVA is a arguably a plausible competitor to end-to-end
learning with a reified KB. MINERVA slightly outperforms our simple KB completion model on the
NELL-995 task. However, unlike our model, MINERVA is trained to find a single answer, rather
than trained to infer a set of answers. To explore this difference, we compared to MINERVA on the
grid task under two conditions: (1) the KB relations are the grid directions north, south, east and west,
so only the result of the target chain is a single grid location, and (2) the KB relations also include a
“vertical move” (north or south) and a “horizontal move”), so the result of the target chain can be a
set of locations. As expected MINERVA’s performance drops dramatically in the second case, from
99.3% Hits@1 to 34.4 %, while our model’s performance is more robust. MetaQA answers can also
be sets, so we also modified MetaQA so that MINERVA could be used10 and noted a similarly poor
performance. These results are shown on the right of Table 3.

Finally in Table 4 we compare the training time of our model with minibatch size of 10 on NELL-995,
MetaQA, and WebQuestionsSP. With over 40 million facts and nearly 13 million entities from
Freebase, it takes less than 10 minutes to run one epoch over WebQuestionsSP (with 3097 training
examples) on four P100 GPUs.

4 RELATED WORK

The relation-set following operation using reified KBs is implemented in an open-source pack-
age called NQL, for neural query language. NQL implements a broader range of operations for
manipulating KBs, which are described in a short companion paper (Authors, 2019). This paper
focuses on implementation and evaluation of the relation-set following operation with different KB
representations, issues not covered in the companion paper.

NQL is semantically related to TensorLog (Cohen et al., 2017), a probabilistic logic which also can be
compiled to Tensorflow, and hence is another differentiable approach to neuralizing a KB. However,

10By making the non-entity part of the sentence the “relation” input and the seed entity the “start node” input.
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TensorLog does not support relation sets, making it unnatural to express the models shown in this
paper, and does not use the more efficient reified KB representation. The differentiable theorem
prover (DTP) is another differentiable logic (Rocktäschel & Riedel, 2017), but DPT appears to be
much less scalable: it has not been applied to KBs larger than a few thousand triples. The Neural ILP
system (Yang et al., 2017) uses approaches related to late mixing together with an LSTM controller
to perform KB completion and some simple QA tasks, but it is a monolithic architecture focused on
rule-learning, while in contrast we propose a re-usable neural component, which can be used in as a
component in many different architectures, and a scalable implementation of this. It is also reported
that neural ILP does not scale to the size of the NELL995 task (Das et al., 2017).

Relation-set following is much like the bilinear model for path following from Guu et al. (2015).
However, we generalize this to path queries that include weighted sets of relations, allowing the
relations in paths to be learned. Guu et al. (2015) also show KB embeddings produce cascaded errors
in compositional reasoning, a problem only partially addressed by their methods, which involve
low-rank dense approximations; in contrast we focus on accurate, models of reasoning an a symbolic
KB, which requires consideration of novel scalability issues. Similar differences apply to the work of
Hamilton et al. (2018).

Neural architectures like memory networks (Weston et al., 2014), or other architectures that use
attention over some data structure approximating assertions (Andreas et al., 2016; Gupta & Lewis,
2018) can be used to build soft versions of relation-set following: however, they also do not scale well
to large KBs, so they are typically used either with a non-differentiable ad hoc retrieval mechanism,
or else in cases where a small amount of information is relevant to a question (e.g., (Weston et al.,
2015; Zhong et al., 2017)). Similarly graph CNNs (Kipf & Welling, 2016) also can be used for
reasoning, and often do use sparse matrix multiplication, but again existing implementations have not
been scaled to tens of millions of triples/edges or millions of entities/graph nodes. Additionally while
graph CNNs have been used for reasoning tasks, the formal connection between them and logical
reasoning remains unclear, whereas there is a precise connection between relation-set following and
inference.

Reinforcement learning (RL) methods been used to learn mappings from natural-language questions
to non-differentiable logical representations (Liang et al., 2016; 2018) and have also been applied to
KB completion tasks (Das et al., 2017; Xiong et al., 2017). (Above we compared experimentally to
MINERVA, one such method.) However, the gradient-based approaches enabled by our methods are
generally preferred as being easier to implement and tune on new problems, and easier to combine in
a modular way with other architectural elements.

5 CONCLUSIONS

We introduced here a novel way of representing a symbolic knowledge base (KB) called a sparse-
matrix reified KB. This representation enables neural modules that are fully differentiable, faithful
to the original semantics of the KB, expressive enough to model multi-hop inferences, and scalable
enough to use with realistically large KBs. In a reified KB, all KB relations are represented with three
sparse matrices, which can be distributed across multiple GPUs, and symbolic reasoning on realistic
KBs with many relations is much faster than with naive implementations—more than four orders of
magnitude faster on synthetic-data experiments compared to naive sparse-matrix implementations.

The simple vector representation used for weighted sets in a reified KB makes several operations
trivial to implement: set union corresponds to vector sum, intersection to Hadamard product, and
the complement of X is 1− vX . Interestingly, only a single additional neural operation is needed
to support the KB reasoning tasks needed for the five benchmark tasks considered here, namely the
relation-set following operation, written follow(vX , vR). All the KB reasoning required here can be
implemented by composing these operations.

This new architectural component leads to radically simpler architectures for neural semantic parsing
from denotations and KB completion—in particular, they make it possible to learn neural KBQA
models in a completely end-to-end way, mapping from text to KB entity sets, for KBs with tens of
millions of triples and entities and hundreds of relations.
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