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ABSTRACT

The problem of adversarial examples has shown that modern Neural Network (NN)
models could be rather fragile. Among the most promising techniques to solve the
problem, one is to require the model to be e-adversarially robust (AR); that is, to
require the model not to change predicted labels when any given input examples
are perturbed within a certain range. However, it is widely observed that such
methods would lead to standard performance degradation, i.e., the degradation on
natural examples. In this work, we study the degradation through the regularization
perspective. We identify quantities from generalization analysis of NNs; with the
identified quantities we empirically find that AR is achieved by regularizing/biasing
NN towards less confident solutions by making the changes in the feature space
(induced by changes in the instance space) of most layers smoother uniformly in
all directions; so to a certain extent, it prevents sudden change in prediction w.r.t.
perturbations. However, the end result of such smoothing concentrates samples
around decision boundaries, resulting in less confident solutions, and leads to worse
standard performance. Our studies suggest that one might consider ways that build
AR into NNs in a gentler way to avoid the problematic regularization.

1 INTRODUCTION

Despite the remarkable performance ( , ) of Deep Neural Networks (NNs),
they are found to be rather fragile and easily fooled by adversarial examples ( , ).
More intriguingly, these adversarial examples are generated by adding imperceptible noise to normal
examples, and thus are indistinguishable for humans. NNs that are more robust to adversarial
examples tend to have lower standard accuracy ( , ), i.e., the accuracy measured on
natural examples. The trade-off between robustness and accuracy has been widely observed. To
understand such a phenomenon, ( ) show that for linear models, if examples are
closed to decision boundaries, robustness provably conflicts with accuracy, though the proof seems
unlikely to generalize to NNs. ( ) show that a gap exists between surrogate risk
gap and 0-1 risk gap if many examples are close to decision boundaries, and better robustness can
be achieved by pushing examples away from decision boundaries. But pushing examples away
again degrades NN performance in their experiments. A more established remedy is developed to
require NNs to be e-adversarially robust (AR), e.g., via Adversarial Training ( , ),
Lipschitz-Margin Training ( , ); that is, they require the model not to change
predicted labels when any given input examples are perturbed within a certain range. In practice, such
methods are also found to lead to worse performance measured in standard classification accuracy. It
is this branch of methods that we aim to investigate in this work.

We investigate how adversarial robustness influence the behaviors of NNs to make them more robust
but have lower performance. In an earlier time ( s ), adversarial training has been
suggested as a form of regularization: it augments the training of NNs with adversarial examples,
thus might improve the generalization of the end models. How does a possible improvement in
generalization end up degrading performance? It prompts us to analyze the regularization effects
of AR on NNs. A successful regularization technique is expected to improve test performance,
but an improved performance is only one of the possible outcomes of improved generalization.
Technically, improved generalization implies the reduction in gap between training errors and test
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Figure 1: Experiment results on ResNet56 ( , ) trained on the CIFAR10 dataset. For the

details of the experiments, refer to section 5. (a) The standard deviation of singular values of each
layer of NNs with adversarial robustness (AR) strength 4, 16 (AR strength 8 is dropped for clarity
of the plot). To emphasize, the z-axis is the layer index — overall 56 layers are involved. (b) The
probability distribution of margins of NNs with AR strength 4, 8, 16. (¢) The standard and adversarial
accuracy of NNs with AR 4, 8, 16.

errors. Regularization achieves the gap reduction by reducing the size of the hypothesis space, which
reduces the variance, but meanwhile increases the bias of prediction made — a constant classifier can
have zero generalization errors, but also have low test performance. Thus, when a hypothesis space
is improperly reduced, another possible outcome is biased poorly performing models with reduced
generalization gaps.

Key results. Through a series of theoretically motivated experiments, we find that AR is achieved
by regularizing/biasing NNs towards less confident solutions by making the changes in the feature
space of most layers (which are induced by changes in the instance space) smoother uniformly in all
directions; so to a certain extent, it prevents sudden change in prediction w.r.t. perturbations. However,
the end result of such smoothing concentrates examples around decision boundaries and leads to
worse standard performance. We elaborate the above statement in details shortly in section 1.1.

Overall, the investigation of generalization behaviors of NNs points out possible directions where
we might go if we are to resolve the issue of the test performance degradation done by AR. The
main result shows that the hypothesis space of NNs is improperly reduced, thus we might investigate
how to avoid it when enforcing AR. Though beyond the scope of this work, we conjecture that the
improper reduction comes from the indistinguishability of the change induced in the intermediate
layers of NNs by adversarial noise and that by inter-class difference. To guarantee AR, NN are asked
to smoothe out difference uniformly in all directions in a high dimensional space, and thus are biased
towards diffident solutions that make similar/concentrated predictions. We leave the investigation of
the conjecture as future works.

1.1 AR LEADS TO DIFFIDENT NNS WITH MORE INDECISIVE MISCLASSIFICATIONS

This section elaborates the key results we briefly present previously.

1. AR reduces the variance of (norms of) the activation/outputs (compared with NNs with different
AR strength) at most layers that are emitted/induced by feeding perturbations (of any directions)
to that layer from the previous layer. Through a series of theoretically motivated experiments, the
results prompt us to look at the singular value distributions of the weight matrix of each layer of
the NNs. Shown in fig. 1a, we find that overall the standard deviation (STD) of singular values
associated with a layer of the NN trained with lower AR strength 4 is larger than that of the NN
with higher AR strength 16' — the green dots are mostly below the red dots. Note that given a
matrix W and an example «, singular values of W determine how the norm ||[Wx|| is changed
when compared with ||z||. More specifically, let o yin, Omax be the maximal and minimal singular

'The AR strength is characterized by the maximally allowed I, norm of adversarial examples that are used
to train the NNs — we use adversarial training ( R ) to build adversarial robustness into NNs.
Details can be found in appendix A.1
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values, if @ is not in the null space of W, then we have ||Wz|| € [omin||Z|], omax||Z||], Wwhere
|| - || denotes 2-norm. This applies to norm ||dx|| of a perturbation as well; that is, given possible
changes dx of x of the same norm ||dx|| = ¢, where c is a constant, the variance of o(W)
roughly determines the variance of ||W dz||, where o (W) denotes all singular values {o;} of W.
In more details, note that by SVD decomposition, Wix = El UiuiviT dx, thus o; determines
how the component v} §z in the direction of v; is amplified. To see an example, suppose that
Omin = Omax = 00, then the variance of (W) is zero, and ||W dz|| = o¢||dx||. In this case, the
variance of ||Wdx|| (given an ensemble of perturbations dx of the same norm c) is zero as well.
The conclusion holds as well for ReLU(W dx), where W here is a weight matrix of a layer of
a NN, and ReLU denotes Rectifier Linear Unit activation function (proved by applying Cauchy
interlacing law by row deletion ( ) to lemma 4.1). Consequently, by reducing the variance
of singular values of weight matrix of a layer of the NN, AR reduces the norm variance of layer
activations induced by input perturbations.

2. The reduced norm variance induced by example perturbations concentrates examples, and it
empirically concentrates them around decision boundaries, that is, predictions are more diffident.
The reduced variance implies that the outputs of each layer of the NN are more concentrated, but
it does not tell where they are concentrated. Note that in the previous paragraph, the variance
relationship discussed between ||Wdx|| and ||0x|| equally applies to ||Wz|| and ||x||, where x
is an actual example instead of perturbations. Thus, to find out the concentration of perturbations,
we can look at the concentration of samples. Technically, we look at margins of examples. In a
multi-class setting, suppose a NN computes a score function f : R? — R, where L is the number
of classes; a way to convert this to a classifier is to select the output coordinate with the largest
magnitude, meaning « — arg max; f;(z). The confidence of such a classifier could be quantified
by margins. It measures the gap between the output for the correct label and other labels, meaning
fy(x) — max;, f;(x). Margin piece-wise linearly depends on the scores, thus the variance of
margins is also in a piece-wise linear relationship with the variance of the scores, which are
computed linearly from the activation of a NN layer. Thus, the consequence of concentration
of activation discussed in the previous paragraph can be observed in the distribution of margins.
More details of the connection between singular values and margins are discussed in section 5.2.2,
after we present lemma 4.1. A zero margin implies that a classifier has equal propensity to
classify an example to two classes, and the example is on the decision boundary. We plot the
margin distribution of the test set of CIFAR10 in fig. 1b, and find that margins are increasingly
concentrated around zero — that is, the decision boundaries — as AR strength grows.

3. The sample concentration around decision boundaries smoothes sudden changes induced per-
turbations, but also increases indecisive misclassification. The concentration of test set margins
implies that the induced change in margins by the perturbation in the instance space is reduced by
AR. The statement may not be immediately obvious, so we explain in details as follows. Given
two examples @, x’ from the test set, 0 = & — x’ can be taken as a significant perturbation that
changes the example x to «’. The concentration of overall margins implies the change induced
by dx is smaller statistically in NNs with higher AR strength. Thus, for an adversarial perturba-
tion applied on z, statistically the change of margins is smaller as well — experimentally it is
reflected in the increased adversarial robustness of the network, as shown in the increasing curve
in fig. lc. That is, the sudden changes of margins originally induced by adversarial perturbations
are smoothed (to change slowly). However, the cost of such smoothness is lower confidence
in prediction, and more test examples are slightly/indecisively moved to the wrong sides of the
decision boundaries — incurring lower accuracy, as shown in the decreasing curve in fig. 1c.

Lastly, we note that experiments in this section are used to illustrate our main arguments in this
section. Further consistent quality results are reported in section 5 by conducting experiments on
CIFAR10/100 and Tiny-ImageNet with networks of varied capacity.

1.2 OUTLINE AND CONTRIBUTIONS

As briefly discussed at the beginning, this work carries out generalization analysis on NNs with AR.
The quantities we investigate in the previous section are identified by the generalization errors (GE)
upper bound we establish at theorem 4.1, which characterizes the regularization of AR on NNs. The
key result is actually obtained at the end of a series of analysis, thus we present the outline of the
analysis here.
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QOutline. After presenting some preliminaries in section 3, we proceed to analyze the regularization
of AR on NN, and establish a GE upper bound in section 4. The bound prompts us to look at the
GE gaps in experiments. In section 5.1, we find that for NNs trained with higher AR strength, the
surrogate risk gaps (GE gaps) decrease for a range of datasets, i.e., CIFAR10/100 and Tiny-ImageNet
( , ). It implies AR effectively regularizes NNs. We go further to study the finer
behavior change of NNs that might lead to such a gap reduction. Again, we follow the guidance
of theorem 4.1. We look at the margins in section 5.2.1, then at the singular value distribution in
section 5.2.2, and discover the main results described in section 1.1. More corroborative experiments
are run in appendix A.4 to show that such phenomenon exists in a broad range of NNs with varied
capacity, and more complementary results are present in appendix A.3 to explain some seemingly
abnormal observations. More related works are present in section 2.

Contributions. Overall, the core contribution in this work is to show that adversarial robustness
(AR) regularizes NNs in a way that hurts its capacity to learn to perform in test. More specifically:

e We establish a generalization error (GE) bound that characterizes the regularization of AR on NNs.
The bound connects margin with adversarial robustness radius € via singular values of weight
matrices of NNs, thus suggesting the two quantities that guide us to investigate the regularization
effects of AR empirically.

e Our empirical analysis tells that AR effectively regularizes NNs to reduce the GE gaps. To
understand how reduced GE gaps turns out to degrade test performance, we study variance of
singular values of layer-wise weight matrices of NNs and distributions of margins of samples,
when different strength of AR are applied on NNs.

e The study shows that AR is achieved by regularizing/biasing NNs towards less confident solutions
by making the changes in the feature space of most layers (which are induced by changes in the
instance space) smoother uniformly in all directions; so to a certain extent, it prevents sudden
change in prediction w.r.t. perturbations. However, the end result of such smoothing concentrates
samples around decision boundaries and leads to worse standard performance.

2 RELATED WORKS

Robustness in machine learning models is a large field. We review some more works that analyze
robustness from the statistical perspective. The majority of works that study adversarial robustness
from the generalization perspective study the generalization behaviors of machine learning models
under adversarial risk. The works that study adversarial risk include ( );

(2018); (2018); (2018); (2018); (2018).
The bounds obtained under the setting of adversarial risk characterize the risk gap introduced by
adversarial examples, thus, it is intuitive that a larger risk gap would be obtained for a larger allowed
perturbation limit €, which is roughly among the conclusions obtained in those bounds. That is to
say, the conclusion normally leads to a larger generalization error as an algorithm is asked to handle
more adversarial examples, for that it focuses on characterizing the error of adversarial examples, not
that of natural examples. However, adversarial risk is not our focus. In this paper, we study when a
classifier needs to accommodate adversarial examples, what is the influence that the accommodation
has on generalization behaviors of empirical risk of natural data.

3 PRELIMINARIES

Assume an instance space Z = X x ), where X’ is the space of input data, and ) is the label space.
Z := (X,Y) are the random variables with an unknown distribution , from which we draw samples.
We use Sy, = {z; = (x4, y:)}, to denote the training set of size m whose examples are drawn
independently and identically distributed (i.i.d.) by sampling Z. Given a loss function [, the goal
of learning is to identify a function 7" : X — ) in a hypothesis space (a class 7 of functions) that
minimizes the expected risk
R(IoT) = Bz, [L(T(X),Y)),

Since p is unknown, the observable quantity serving as the proxy to the expected risk R is the

empirical risk
m

Ru(loT) = -5 1(T (@), 1)

i=1

4
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Our goal is to study the discrepancy between R and R,,,, which is termed as generalization error —
it is also sometimes termed as generalization gap in the literature

GE(loT)=|R(loT)— Ry(loT)|. (1)

Definition 1 (Covering number). Given a metric space (S, p), and a subset ScCS we say that a
subset S of S is a e-cover of S, if Vs € S, 35 € S such that p(8, §) < e. The e-covering number of S
is
Nc(S, p) = min{|S| : S is an e-covering of S}.

Various notions of adversarial robustness have been studied in ex1st1ng works (

; , ). They are conceptually similar; in this work, we formahze 1ts
definition to make clear the object for study.
Definition 2 ((p, €)-adversarial robustness). Given a multi-class classifier f : X — R, and a metric
p on X, where L is the number of classes, f is said to be adversarially robust w.r.t. adversarial
perturbation of strength €, if there exists an € > 0 such thatVz = (x,y) € Z and 6z € {p(dx) < €},
we have

fylx+dz) — fi(x +dx) >0,

where j = argmax; f;(x) and i # § € ). ¢ is called adversarial robustness radius. When the
metric used is clear, we also refer (p, €)-adversarial robustness as e-adversarial robustness.

Note that the definition is an example-wise one; that is, it requires each example to have a guarding
area, in which all examples are of the same class. Also note that the robustness is w.r.t. the predicted
class, since ground-truth label is unknown for a @ in test.

We characterize the GE with ramp risk, which is a typical risk to undertake theoretical analysis
( , ; ,
Definition 3 (Margin Operator). A margin operator M : RE x {1,... L} — R is defined as

M(s,y) = s, —maxs;
i#y

Definition 4 (Ramp Loss). The ramp loss I, : R — R is defined as

0 r < =7y
ly(r):=q1+r/y re[—0]
1 r>0

Definition 5 (Ramp Risk). Given a classifier f, ramp risk is the risk defined as
Ry (f) := E(ly (=M(f(X),Y))),

where X,Y are random variables in the instance space Z previously.

We will use a different notion of margin in theorem 4.1, and formalize its definition as follows. We
reserve the unqualified word “margin” specifically for the margin discussed previously — the output
of margin operator for classification. We call this margin to-be-introduced instance-space margin
(IM).
Definition 6 (Smallest Instance-space Margin). Given an element z = (x,y) € Z, let v(x) be the
distance from x to its closest point on the decision boundary, i.e., the instance-space margin (IM) of
example x. Given an e-covering of Z, let

Vin = min v(x). 2)

ze{xeX |||le—z;||2<e Ve, €S}

Umin IS the smallest instance-space margin of elements in the covering balls that contain training
examples.

4 THEORETICAL INSTRUMENTS FOR EMPIRICAL STUDIES ON AR

In this section, we rigorously establish the bound mentioned in the introduction. We study the map
T defined in section 3 as a NN (though technically, 7" now is a map from X to RZL instead of to ),
such an abuse of notation should be clear in the context). To begin with, we introduce an assumption,
before we state the generalization error bound guaranteed by adversarial robustness.
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Figure 2: (a) Illustration of the regularization effect of adversarial robustness. If a NN 7" is e-
adversarially robust, for a given example « (drawn as filled squares or circles) and points ' in the
yellow ball {z’ | p(x, x’) < ¢} around x, the predicted labels of x, 2’ should be the same, and the
loss variation is potentially bigger as ' moves from the center to the edge, as shown as intenser
yellow color at the edge of a ball. Collectively, the adversarial robustness of each example requires
an instance-space margin (IM) to exist for the decision boundary, shown as the shaded cyan margin.
As normally known, margin is related to generalization ability that shrinks the hypothesis space. In
this case, the IM required by adversarial robustness would weed out hypotheses that do not have
an adequate IM, such as the red dashed line shown in the illustration. (b) Illustration of lemma 4.1.
Given a NN with ReLU activation function, the feature map I; at layer [ is divided into regions where
I,(z) is piecewise linear w.r.t. . The induced linear map W is given by diag(7i(q)) W7, where
diag(7;(q)) is a diagonal matrix whose diagonal entries are given by a vector 71 (¢) that has 0-1 values.
For example, in region p, I} = Wz and distance between instances x are vertical elongated, while
in region ¢, I; = W{x and distance are horizontally elongated. Thus given x, z’, the difference
[|I;(x) — I;(x')|| between I;(x) and I;(x’) is the length of the transformed line segment « — &’
drawn, of which each segment is linearly transformed in a different way.

Assumption 4.1 (Monotony). Given a point x € X, let ' be the point on the decision boundary of
a NN T that is closest to . Then, for all "’ on the line segment x + t(x’ — x),t € [0, 1], the margin
M(Tz" | y) decreases monotonously.

The assumption is a regularity condition on the classifier that rules out undesired oscillation between
@ and «’. To see how, notice that the margin defined in definition 3 reflects how confident the decision
is made. Since z’ is on the decision boundary, it means the classifier is unsure how it should be
classified. Thus, when the difference ' — x is gradually added to @, ideally we want the confidence
that we have on classifying x to decrease in a consistent way to reflect the uncertainty.

Theorem 4.1. Let T denote a NN with ReLU and MaxPooling nonlinear activation functions (a
definition is put at eq. (6) for readers’ convenience), l, the ramp loss defined at definition 4, and Z the
instance space assumed in section 4. Assume that Z is a k-dimensional regular manifold that accepts
an e-covering with covering number (CTX)’“, and assumption 4.1 holds. If T is eg-adversarially
robust (defined at definition 2), € < €, and denote vy, the smallest IM margin in the covering balls
that contain training examples (defined at definition 6), o' , the smallest singular values of weight
matrices Wi, i =1,...,L — 1 of a NN, {wi}izl,...,m the set of vectors made up with ith rows of
W, (the last layer’s weight matrix), then given an i.i.d. training sample Sy, = {z; = (2;,y:) }%,
drawn from Z, its generalization error GE(l o T') (defined at eq. (1)) satisfies that, for any n > 0,
with probability at least 1 —n

210g(2)C% | 2log(L/n)

GE(l, o T) < max{0,1 — -2} 4 \/
Y

: 3)
ekm m
where
L—1
Umin = min |jw, — wyl|2 H O inUmin 4
Y,9€V,y#£Y iy

is a lower bound of margins of examples in covering balls that contain training samples.
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The proof of theorem 4.1 is in appendix B. The bound identifies quantities that would be studied
experimentally in section 5 to understand the regularization of AR on NNs. The first term in eq. (3)
in theorem 4.1 suggests that quantities related to the lower bound of margin u.,;, might be useful
to study how e-adversarial robustness (e-AR) regularizes NNs. However, e-AR is guaranteed in the
instance space that determines the smallest instance-space margin vp;,. To relate GE bound with
e-AR, we characterize in eq. (4) the relationship between margin with IM, via smallest singular
values of NNs’ weight matrices, suggesting that quantities related to singular values of NNs’ weight
matrices might be useful to study how AR regularizes NNs as well. An illustration on how AR could
influence generalization of NNs through IM is also given in fig. 2a. The remaining of this paper are
empirical studies that are based on the quantities, e.g., margin distributions and singular values of
NNs’ weight matrices, that are related to the identified quantities, i.€., Umin, 0p,;,,- These studies aim
to illuminate with empirical evidence on the phenomena that AR regularizes NNs, reduces GE gaps,
but degrades test performance.’

Before turning into empirical study, we further present a lemma to illustrate the relation characterized
in eq. (4) without the need to jump into proof of theorem 4.1. It would motivate our experiments later
in section 5.2.2. We state the following lemma that relates distances between elements in the instance
space with those in the feature space of any intermediate network layers.

Lemma 4.1. Given two instances x,x' € X, let I}(x) be the activation g(W;g(W;_1 ...g(Wix)))
at layer | of x (c.f. definition of NNs at appendix B.2), then there exist n € N sets of matrices
{Vij Yiz1..1,7 = 1...n, that each of the matrix Wf“ is obtained by setting some rows of W to

K}

zero, and {q;} j=1...n are arbitrary distinctive symbols indexed by j that index Wiqj , such that

i) - 1) =Y [

where s1 = 0,541 = €j,en, = 1,5;,e; € [0,1] — each [s;, e;] is a segment in the line segment
parameterized by t that connects x and x'.

!
H W dt(x — ')
i=1

Its proof is in appendix B, and an illustration is given in fig. 2b. Essentially, it states that difference
in the feature space of a NN, induced by the difference between elements in the instance space, is a
summation of the norms of the linear transformation (Hi:1 Wiqj) applied on segments of the line
segment that connects @, ' in the instance space. Since W," is obtained by setting rows of W; to
zero, the singular values of these induced matrices are intimately related to weight matrices W; of
NN by Cauchy interlacing law by row deletion ( ). Since the margin of an example x is a linear
transform of the difference between I, _1(x) and the I,_;(2’) of an element x’ on the decision
boundary, singular values of {W;},—; 1 determine the amplification/shrinkage of the IM = — @’

5 EMPIRICAL STUDIES ON REGULARIZATION OF ADVERSARIAL ROBUSTNESS

In this section, guided by theorem 4.1, we undertake empirical studies to explore AR’s regularization
effects on NNs. We first investigate the behaviors of off-the-shelf architectures of fixed capacity
on various datasets in section 5.1 and 5.2. More corroborative controlled studies that explore the
regularization effects of AR on NNs with varied capacity are present in appendix A.4.

5.1 ADVERSARIAL ROBUSTNESS EFFECTIVELY REGULARIZES NNS ON VARIOUS DATASETS

This section aims to explore whether AR can effectively reduce generalization errors — more
specifically, the surrogate risk gaps. We use adversarial training ( , ) to build
adversarial robustness into NNs. The AR strength is characterized by the maximally allowed [, norm

Note that in the previous paragraph, though we identifies quantities wmin and o', related to the upper
bound of GE, the quantities we actually would study empirically are margin distribution and all singular values
that characterize the GE of all samples, not just the extreme case (upper bound). The analytic characterization
of the GE of all samples is not possible since we do not have enough information (at least we do not know the
true distribution of samples). That’s why to arrive at close-form analytic characterization of GE, we resort to
the extreme non-asymptotic large-sample behaviors. The analytic form is a neat way to present how relevant
quantities influence GE. In the rest of the paper, we would carry on empirical study on the distributions of
margins and singular values mostly to investigate AR’s influence on GE of all samples.
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Figure 3: Experiment results on CIFAR10/100, and Tiny-ImageNet. Net A, B are ResNet-56 and
ResNet-110 ( , ) respectively. The unit of x-axis is the adversarial robustness (AR)
strength of NN, c.f. the beginning of section 5. (a) Plots of loss gap (and error rate gap) between
training and test datasets v.s. AR strength. (b) Plots of losses (and error rates) on training and test
datasets v.s. AR strength.

of adversarial examples that are used to train the NNs. Details on the technique to build adversarial
robustness into NNs is given in appendix A.1.

Our experiments are conducted on CIFAR10, CIFAR100, and Tiny-ImageNet ( s ) that
represent learning tasks of increased difficulties. We use ResNet-56 and ResNet-110 ( , )
for CIFAR10/100, and Wide ResNet (WRN-50-2-bottleneck) ( , ) for
Tiny-ImageNet ( , ). These networks are trained with increasing AR strength. Results

are plotted in fig. 3, where Net A stands for ResNet56, and Net B for ResNet-110.

Regularization of AR on NNs. We observe in fig. 3a (shown as blue lines marked by circles)
that GE gaps (the gaps between training and test losses) decrease as strength of AR increase; we
also observe in fig. 3a that training losses increase as AR strength increase; these results (and
more results in subsequent fig. 6) imply that AR does regularize training of NNs by reducing their
capacities to fit training samples. Interestingly, in the CIFAR10/100 results in fig. 3b, the test losses
show a decreasing trend even when test error rates increase. It suggests that the network actually
performs better measured in test loss as contrast to the performance measured in test error rates.
This phenomenon results from that more diffident wrong predictions are made by NNs thanks to
adversarial training, which will be explained in details in section 5.2, when we carry on finer analysis.
We note that on Tiny-ImageNet, the test loss does not decrease as those on CIFAR10/100. It is likely
because the task is considerably harder, and regularization hurts NNs even measured in test loss.

Trade-off between regularization of AR and test error rates. The error rate curves in fig. 3b
also tell that the end result of AR regularization leads to biased-performing NNs that achieve degraded
test performance. These results are consistent across datasets and networks.

Seemingly abnormal phenomenon. An seemingly abnormal phenomenon in CIFAR10 observed
in fig. 3a is that the error rate gap actually increases. It results from the same underlying behaviors
of NNs, which we would introduce in section 5.2, and an overfitting phenomenon that AR cannot
control. Since it would be a digress to explain, it is put in appendix A.3.

We finally note that the adversarial robustness training reproduced is relevant, of which the defense
effect is comparable with existing works. One may refer to fig. 7 in appendix C.2 for the details.
We can see from it that similar adversarial robustness to ( ) and ( ) is
achieved for CIFAR10/100, Tiny-ImageNet in the NNs we reproduce.

5.2 REFINED ANALYSIS THROUGH MARGINS AND SINGULAR VALUES

The experiments in the previous sections confirm that AR reduces GE, but decreases accuracy. We
study the underlying behaviors of NNs to analyze what have led to it here. More specifically, we show
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that adversarial training implements e-adversarial robustness by making NNs biased towards less
confident solutions; that is, the key finding we present in section 1.1 that explains both the prevented
sudden change in prediction w.r.t. sample perturbation (i.e., the achieved AR), and the reduced test
accuracy.

5.2.1 MARGINS THAT CONCENTRATE MORE AROUND ZERO LEAD TO REDUCED GE GAP

To study how GE gaps are reduced, theorem 4.1 suggests we first look at the margins of examples —
a lower bound of margins is unyi, in eq. (4). The analysis on margins has been a widely used tool in
learning theory ( , ). It reflects the confidence that a classifier has on an example,
which after being transformed by a loss function, is the surrogate loss. Thus, the loss difference
between examples are intuitively reflected in the difference in confidence characterized by margins.
To study how AR influences generalization of NNs, we plot in fig. 4 the margin distributions of
samples which are obtained by training ResNet-56 on CIFAR10 and CIFAR100 with increased AR
strength (the same setting as for fig. 3). Applying the same network of ResNet-56 respectively on
CIFAR-10 and CIFAR-100 of different learning difficulties creates learning settings of larger- and
smaller-capacity NNs.
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Figure 4: Margin distributions of NNs with AR strength 4, 8, 16 on Training and Test sets of
CIFAR10/100.

Concentration and reduced accuracy. In fig. 4, we can see that in both CIFAR10/100, the
distributions of margins become more concentrated around zero as AR grows. The concentration
moves the mode of margin distribution towards zero and more examples slightly across the decision
boundaries, where the margins are zero, which explains the reduced accuracy.

Concentration and reduced loss/GE gap. The concentration has different consequences on train-
ing and test losses. Before describing the consequences, to directly relate the concentration to loss gap,
we further introduce estimated probabilities of examples. This is because though we use ramp loss
in theoretical analysis, in the experiments, we explore the behaviors of more practically used cross
entropy loss. The loss maps one-to-one to estimated probability, but not to margin, though they both
serve as a measure of confidence. Suppose p(x) is the output of the softmax function of dimension L
(L is the number of target classes), and y is the target label. The estimated probability of & would
be the y-th dimension of (p(x)), i.e., (p(x)),. On the training sets, since the NNs are optimized
to perform well on the sets, only a tiny fraction of them are classified wrongly. To concentrate the
margin distribution more around zero, is to make almost all of predictions that are correct more
diffident. Thus, a higher expected training loss ensues. On the test sets, the estimated probabilities
of the target class concentrate more around middle values, resulting from lower confidence/margins
in predictions made by NN, as shown in fig. 5a (but the majority of values are still at the ends). Note
that wrong predictions away from decision boundaries (with large negative margins) map to large
loss values in the surrogate loss function. Thus, though NNs with larger AR strength have lower
accuracy, they give more predictions whose estimated probabilities are at the middle (compared with
NNs with smaller AR strength). These predictions, even if relatively more of them are wrong, maps
to smaller loss values, as shown in fig. Sb, where we plot the histogram of loss values of test samples.
In the end, it results in expected test losses that are lower, or increase in a lower rate than the training
losses on CIFAR10/100, Tiny-ImageNet, as shown in fig. 3b. The reduced GE gap results from the
increased training losses, and decreased or less increased test losses.
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Figure 5: (a)(b) are histograms of estimated probabilities and losses respectively of the test set
sample of NNs trained AR strength 4, 8, 16. We plot a subplot of a narrower range inside the plot
of the full range to show the histograms of examples that are around the middle values to show the
change induced by AR that induces more middle valued confidence predictions. (c)(d) are standard
deviations of singular values of weight matrices of NNs at each layer trained on CIFAR10/100 with
AR strength 4, 16. The AR strength 8 is dropped for clarity.

5.2.2 AR MAKES NNS SMOOTHE PREDICTIONS W.R.T. INPUT PERTURABTIONS IN ALL
DIRECTIONS

The observation in section 5.2.1 shows that AR make NNs just less confident by reducing the
variance of predictions made and concentrate margins more around zero. In this section, we study the
underlying factors of AR that make NNs become less confident.

To begin with, we show that the singular values of the weight matrix of each layer determine the
perturbation in margins of samples induced by perturbations in the instance space. Such a connection
between singular values and the perturbation of outputs of a single layer, i.e., ReLU(W dx), has
been discussed in section 1.1. In the following, with lemma 4.1, we describe how the relatively
more complex connection between margins and singular values of each weight matrix of layers of
NNs holds. Observe that margins are obtained by applying a piece-wise linear mapping (c.f. the
margin operator in definition 3) to the activation of the last layer of a NN. It implies the perturbations
in activation of the last layer induce changes in margins in a piece-wise linear way. Meanwhile,
the perturbation in the activation of the last layer (induced by perturbation in the instance space)
is determined by the weight matrix’s singular values of each layer of NNs. More specifically, this
is explained as follows. Lemma 4.1 shows that the perturbation JI induced by dx, is given by

i :jj ‘Hizl w 5mdt’ ‘ Note that for each i, W is a matrix. By Cauchy interlacing law

by row deletion ( 11), the singular values of W;, the weight matrix of layer i, determine the
singular values of VVfJ. Thus, suppose [ = 1, we have the change (measured in norm) induced by

perturbation as Z?zl f:_j | |W1q’ 5wdt’ | The singular values of W; would determine the variance
J

(of norms) of activation change induced by perturbations dx, similarly as explained in section 1.1
except that the norm change now is obtained by a summation of n terms | W 6wdtH (each of
which is the exact form discussed in section 1.1) weighted by 1/(e; — s;). Similarly, for the case
where [ = 2... L — 1, the singular values of W; determine the variance of changes induced by the
perturbation of the previous layer (induced by perturbation from further previous layer recursively)
of layer . Consequently, we choose to study these singular values.

Initially, we plot the singular value distributions of all layers of NNs, and find that the NN with higher
AR have singular values concentrated in a narrower range. Thus, we plot the standard deviation
of singular values of each layer of ResNet56 trained on CIFAR10/100 earlier, shown in fig. 5¢ 5d.
Overall, we can see that the standard deviation of singular values associated with a layer of the NN
trained with AR strength 4 is mostly larger than that of the NN with AR strength 16. The STD
reduction in CIFAR10O is relatively smaller than CIFAR10, since as observed in fig. 4b, the AR
induced concentration effect of margin distributions is also relatively less obvious than that in fig. 4a.
More quantitative analysis is given in appendix A.2. This leads us to our key results described in
section 1.1.
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APPENDICES

A FURTHER EMPIRICAL STUDIES ON ADVERSARIAL ROBUSTNESS

A.1 TECHNIQUE TO BUILD ADVERSARIAL ROBUSTNESS

To begin with, we describe the technique that we use to build AR into NNs. As mentioned in the
caption of fig. 1, we choose arguably the most well received technique, i.e., the adversarial training
method ( s ). Specifically, we use [.,-PGD ( R ) untargeted attack
adversary, which creates an adversarial example by performing projected gradient descent starting
from a random perturbation around a natural example. Then, NNs are trained with adversarial
examples. NNs with different AR strength are obtained by training them with increasingly stronger
adversarial examples. The adversarial strength of adversarial examples is measured in the /o, norm
of the perturbation applied to examples. [,,-norm is rescaled to the range of 0 — 255 to present
perturbations applied to different datasets in a comparable way; that means in fig. 1 34 56 7, AR
is measured in this scale. We use 10 steps of size 2/255 and maximum of = [4/255, 8/255, 16/255]
respectively for different defensive strength in experiments. For example, a NN with AR strength 8
is a NN trained with adversarial examples generated by perturbations whose [, norm are at most
8. Lastly, we note that although adversarial training could not precisely guarantee an adversarial
robustness radius of ¢, a larger [, norm used in training would make NN adversarially robust in a
larger ball around examples. Thus, though the precise adversarial robustness radius is not known, we
know that we are making NNs adversarially robust w.r.t. a larger e. Consequently, it enables us to
study the influence of e-AR on NNs by studying NN trained with increasing [, norm.

A.2 QUANTITATIVE ANALYSIS OF VARIANCE REDUCTION IN SINGULAR VALUES

Here, we provide more quantitative analysis on fig. 5S¢ and fig. 5d, as noted previously in section 5.2.2.

Quantitatively, we can look at the accumulated standard deviation (STD) difference in all layers. We
separate the layers into two group: the group that the STD (denoted o) of singular values of layer i
(of the NN trained) with AR strength 4 that is larger than that (denoted 02-16) of AR strength 16; and
the group that is smaller. In CIFAR10, for the first group, the summation of the difference/increments
of STD of the two networks (3", ot — 07%) is 4.7465, and the average is 0.1158. For the second
groups, the summation (Zi 01»16 — J?) is 0.4372, and the average is 0.0312. In CIFAR100, the
summation of the first group is 3.7511, and the average is 0.09618; the summation of the second
group is 0.4372, and the average is 0.1103. The quantitative comparison shows that the accumulated
STD decrease in layers that have their singular value STDs decreased (comparing STD of the NN
with AR strength 16 with STD of the NN with AR strength 4) is a magnitude larger the accumulated
STD increase in the layers that have their singular value STDs increased. The magnitude difference
is significant since the STDs of singular values of most layers are around 1.

A.3 DISCREPANCY BETWEEN TRENDS OF LOSS AND ERROR RATE GAPS IN LARGE CAPACITY
NNs

In section 5.1, we have noted an inconsistent behaviors of CIFAR10, compared with that of CIFAR100
and Tiny-ImageNet: the error gap reduces for CIFAR100 and Tiny-ImageNet, but increases for
CIFARI10. It might suggest that AR does not effectively regularize NNs in the case of CIFAR10.
However, we show in this section that the abnormal behaviors of CIFAR10 are derived from the same
margin concentration phenomenon observed in section 5.2.1 due to capacity difference, and compared
with the error gaps, the GE/loss gaps are more faithfully representatives of the generalization ability
of the NNs. Thus, the seemingly abnormal phenomenon corroborate, not contradict, the key results
present in section 1.

Using CIFAR10 and CIFAR100 as examples and evidence in the previous sections, we explain how
the discrepancy emerges from AR’s influence on margin distributions of the same network trained on
tasks with different difficulties. Further evidence that the discrepancy arises from capacity difference
would be shown at appendix A.4, where we run experiments to investigate GE gap of NNs with
varied capacities on the same task/dataset.
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Figure 6: The four plots from upper left to lower bottom (in each subfigure) are NNs with increasingly
smaller spectral complexity, where “Spectral Norm 1” means for each weight matrix of the NN,
its spectral norm is at most 1. (a) Plots of training/test loss gap (and error gap) against adversarial
robustness strength. (b) Training/test losses and error rates against increased strength of adversarial
robustness.

1. On CIFARIO, the margin distribution of training sets not only concentrate more around zero, but
also skews towards zero. As shown in the margin distribution on training sets of CIFAR10 in
fig. 4c, we find that the large error gap is caused by the high training accuracy that is achieved
with a high concentration of training samples just slightly beyond the decision boundary. This
phenomenon does not happen in CIFAR100. Comparing margin distribution on the test set in
fig. 4a, the margin distribution on the training set in fig. 4c is highly skewed, i.e., asymmetrically
distributed w.r.t. mean. While the margin distributions of CIFAR100 training set in fig. 4d
is clearly less skewed, and looks much more like a normal distribution, as that of the margin
distribution on the test set.

2. The high skewness results from the fact that the NN trained on CIFARI0 is of large enough capacity
to overfit the training set. As known, CIFAR100 is a more difficult task w.r.t. CIFAR10 with
more classes and less training examples in each class. Thus, relatively, even the same ResNet56
network is used, the capacity of the network trained on CIFAR10 is larger than the one trained on
CIFAR100. Recall that NNs have a remarkable ability to overfit training samples (

). And note that though AR requires in a ball around an example, the examples in the ball
should be of the same class, since the ball is supposed only to include imperceptible perturbation
to the example, few of the training samples are likely in the same ball. Thus, the ability to overfit
the training set is not regularized by AR: if NNs can overfit all training samples, it can still overfit
some more examples that are almost imperceptibly different. For CIFAR10, since NNs have
enough capacity, the NN simply overfits the training set.

3. However, as shown in the observed overfitting phenomenon in fig. 4c, the high training accuracy
is made up of correct predictions with relatively lower confidence (compared with NNs with lower
AR), which is bad and not characterized by the error rate; and the low test accuracy are made
up of wrong predictions with relatively lower confidence as well (as explain in section 5.2.1),
which is good, and not characterized by error rate as well. Thus, the error gap in this case does
not characterize the generalization ability (measured in term of prediction confidence) of NNs
well, while the GE gap more faithfully characterizes the generalization ability, and show that AR
effectively regularizes NNs. In the end, AR still leads to biased poorly performing solutions —
since the overfitting in training set does not prevent the test margin distribution concentrating more
around zero, which leads to higher test errors of CIFAR10 as shown in 3b. It further suggests that
the damage AR done to the hypothesis space is not recovered by increasing capacity, however the
ability of NN to fit arbitrary labels is not hampered by AR.

A.4 FURTHER EVIDENCE OF REGULARIZATION EFFECTS ON NNS WITH VARIED CAPACITY
In previous sections, we observe AR consistently effectively regularizes NNs; meanwhile, we also

observe that in the case where a NN has a large capacity, it can spuriously overfit training samples
and lead to an increased error gap. In this section, we present additional results by applying AR to
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networks of controlled capacities. This is to ensure that our observations and analysis in previous
sections exist not just at some singular points, but also in a continuous area in the hypothesis space.

To control capacities of NNs quantitatively, we choose the measure based on spectral norm (
s ; s ). In spectral norm based capacity measure bound (
, ), the NN capacity is normally proportional to a quantity called spectral
complex1ty (SC), which is defined as follows.

Definition 7 (Spectral Complexity). Spectral complexity SC(T') of a NN T is the multiplication of
spectral norms of weight matrices of layers in a NN.

L
7) = TIIwill2
i=1

where {W,;},—1...1, denotes weight matrices of layers of the NN.

To control SC, we apply the spectral normalization (SN) ( , ) on NNs. The technique
renormalizes the spectral norms of the weight matrices of a NN to a designated value after certain
iterations. We carry out the normalization at the end of each epoch. We train ResNet56 with
increasingly strong AR and with increasingly strong spectral normalization. The results are shown in

fig. 6.

As can be seen, as the capacity of NNs decreases (from upper left to bottom right in each sub-
figure), the error gap between training and test gradually changes from an increasing trend to
a decreasing trend, while the loss gap keeps a consistent decreasing trend. It suggests that the
overfitting phenomenon is gradually prevented by another regularization techniques, i.e., the spectral
normalization. As a result, the regularization effect of AR starts to emerge even in the error gap, which
previously manifests only in the loss gap. The other curves corroborate our previous observations
and analysis as well.

B PROOF OF THEOREM 4.1

B.1 ALGORITHMIC ROBUSTNESS FRAMEWORK

In order to characterize the bound to the GE, we build on the algorithmic robustness framework (

s ). We introduce the framework below.
Definition 8 ((K, €(-))-robust). An algorithm is (K, €(-)) robust, for K € Nand e(-) : Z™ — R, if
Z can be partitioned into K disjoint sets, denoted by C = {Ck}le, such that the following holds
Sorall s; = (x;,y;) € S,z = (x,y) € Z,Cr €C:

Vs; = (@i, yi) € C,Vz = (z,y) € Ck

The gist of the definition is to constrain the variation of loss values on test examples w.r.t. those of
training ones through local property of the algorithmically learned function f. Intuitively, if s € S,,
and z € Z are “close” (e.g., in the same partition C}), their loss should also be close, due to the
intrinsic constraint imposed by f.

For any algorithm that is robust, Xu & Mannor ( , ) proves

Theorem B.1 (Xu & Mannor ( , ). If a learning algorithm is (K, €(+))-robust
and L is bounded, a.k.a. L(f(x),y) < M Vz € Z, for any n) > 0, with probability at least 1 — 1 we
have

2K log(2) + 2log(1/n)

GE(fs,) < €(5,)+ 2y ®

To control the first term, an approach is to constrain the variation of the loss function. Covering
number (Shalev-Shwartz & Ben-David, ( , ), Chapter 27) provides
a way to characterize the variation of the loss function, and conceptually realizes the actual number
K of disjoint partitions.
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For any regular k-dimensional manifold embedded in space equipped with a metric p, e.g., the image
data embedded in L?(IR?), the square integrable function space defined on R?, it has a covering
number N'(X; p, €) of (Cx /€)k ( , ), where C'y is a constant that captures its “intrinsic”
properties, and € is the radius of the covering ball. When we calculate the GE bound of NNs, we
would assume the data space is a k-dimensional regular manifold that accepts a covering.

Adversarial robustness makes NNs a (K, €(-))-robust algorithm, and is able to control the variation
of loss values on test examples. Building on covering number and theorem B.1, we are able to prove
theorem 4.1.

B.2 NEURAL NETWORKS

A NN is a map that takes an input x from the space &', and builds its output by recursively applying a
linear map W; followed by a pointwise non-linearity g:

x; = g(Wizi_1),

where ¢ indexes the times of recursion, which is denoted as a layer in the community, i = 1,..., L,
ro = x, and g denotes the activation function. which is restricted to Rectifier Linear Unit (ReLU)
( , ) or max pooling operator ( , ) in this paper. To compactly summarize
the operation of T', we denote
Te=g(Wrg(Wr_1...g(Wiz))). (6)
B.3 PROOF
Proof of lemma 4.1. By Theorem 3 in ( ), we have
1
() — Li(=)]| = ’ / J(@ —t(x' —x))dt(x — x') ‘ @)
0
where J(x) denotes the Jacobian of I;(x) at x.
By lemma 3.2 in ( ), when we only have max pooling layers and ReLU as nonlinear layer
in NNs, J(x) is a linear operator at a local region around @. For terminology concerning regions, we

follow the definitions in ( ). More specifically, we have

l
J(@) =[] we

where W is the linear mapping (matrix) induced by J () at «. It is a matrix obtained by selectively
setting certain rows of W to zero. For the more concrete form of W ?, refer to lemma 3.2 in

( ). In ( ), it is noted as W, where ¢ is a region where « is in. Suppose that from x
to a', the line segment & — &’ passes through regions {g; };—1,... ». Then eq. (7) can be written as

n /ej
j=17%i

where s;, e; denotes the start and end of the segment [s;, ;] C [0, 1] of the segment [0, 1] that passes
through the region g;.

!
H W dt(x — ')
i=1

O

In the cases that a linear operator is applied on the feature map I; () without any activation function,
we can also obtain a similar conclusion. Actually, such cases are just degenerated cases of feature
maps that have activation functions.

Corollary B.1. Given two elements x, ', and I;)(x) = W;g(Wi_1 ... g(Wix)), we have

@ - @) =3 [

where symbols are defined similar as in lemma 4.1.

-1
’VVZ H Widt(x — ')
i=1
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Now, we are ready to prove theorem B.1.

Proof of theorem B.1. Similar with the proof of theorem B.1, we partition space Z into the e-cover
of Z, which by assumption is a k-dimension manifold. Its covering number is upper bounded by
C*% /é*, denoting K = C% /€*, and C; the ith covering ball. For how the covering ball is obtained
from the e-cover, refer to theorem 6 in ( ). We study the constraint/regularization
that adversarial robustness imposes on the variation of the loss function. Since we only have e-
adversarial robustness, the radius of the covering balls is at most e — this is why we use the same
symbol. Beyond ¢, adversarial robustness does not give information on the possible variation anymore.
Let T” denotes the NN without the last layer.

First, we analyze the risk change in a covering ball C;. The analysis is divided into two cases: 1 all
training samples in C; are classified correctly; 2) all training samples in C; are classified wrong. Note
that no other cases exist, for that the radius of C; is restricted to be €, and we work on e-adversarial
robust classifiers. It guarantees that all samples in a ball are classified as the same class. Thus, either
all training samples are all classified correctly, or wrongly.

We first study case 1). Given any example z = (z,y) € C;, let § = argmax, ., w!l'T'z. Its ramp
loss is

1
ly(z,y) = max{0,1 — ;(fwy —wy) ' T'z}.

Note that within C;, (w, — w@)TT’w > 0, thus I, (x,y) is mostly 1, and we would not reach the
region where r > 0 in definition 4. Let u(x) := (w, — wy)? Tz, and u! ;, = minyzec, u(x). We
have

i :
L (z,y) < max{0,1— @} < max{0,1 — Hmin }
Y v

where u,i, denotes the smallest margin among all partitions.

The inequality above shows adversarial robustness requires that 7" should vary slowly enough,
so that in the worst case, the loss variation within the adversarial radius should satisfy the above
inequality. The observation leads to the constraint on the loss difference ¢(-) defined earlier in
definition 8 in the following.

Given any training example z := (x,y) € C;, and any element 2’ := (x’,y’) € C;, where C; is the
covering ball that covers x, we have

|l’y(wa y) - l"/(w/a y/)|

=|max{0,1 — @}—max{o,l—w}

Umin
< 0,1 — Lminy 8
<max{ 5 } )

Now we relate the margin to the margin in the instance space.
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Given z := (z,y) € Z, and 2/, of which @’ is the closest points to  (measured in Euclidean norm)
on the decision boundary, we can derive the inequality below.

u(x) = u(x) — u(z) )

:/01 J(x —t(x —'))dt(x — ) (10)

1 L—-1
= / (wy —wy)T H Wf_t(m_m Vdt(z — ')
0 i=1

1 L-1
/0

(wy, —wy)T H Wfft(w*ml)dt(a: —x') (11)

i=1

n e; L—-1
= Z/ (wy, —wy)T H W dt(x — ') (12)
j=175i i=1
L—1 1
>  min w, — W ot Nle—a /dt 13
_y,z}ey,y;é@H Yy y||2£[1 mmH H2 o ( )
L-1
> min w, — Wy Pl — !
_y,ﬁ)Gy,y?f:DH Y y||2 HJmmH H2

i=1
where J () denotes the Jacobian of I;(x) at xz. Equation (10) can be reached by Theorem 3 in
(2017). Equation (11) can be reached because (w, — wy) W= "®~*) (2 — ') is the

i
actually classification score u(x), u(x’) difference between x, «’, and by assumptions 4.1, they are
positive throughout. Equation (12) is reached due to corollary B.1 — in this case, the matrix W; in

corollary B.1 is of rank one.

To arrive from eq. (12) to eq. (13), we observe that &’ is the closest point to x on the decision
boundary. Being the closest means  — ' L N ((w, — wy)T"). If the difference «’ — x satisfies
x —x' } N(T'), we can always remove the part in the A/(7"), which would identify a point that is
closer to x, but still on the decision boundary, which would be a contradiction. Then if x — x’ is
orthogonal to the null space, we can bound the norm using the least singular values. We develop the
informal reasoning above formally in the following.

Similarly in Lemma 3.4 in ( ), by Cauchy interlacing law by row deletion, assuming
x L N([T= W) (W denotes the null space; the math statement means @ is orthogonal to the

null space of J (x)), we have

L1 L-1
T Wil > [] otullell2 (14)

i=1 i=1
where o¢ . is the smallest singular value of W;. Then conclusion holds as well for multiplication of

. L-1 P S . .
matrices [ [, VViqJ , since the multiplication of matrices are also a matrix.

Notice that in each integral in eq. (12), we are integrating over constant. Thus, we have it equates to

n

L—1
> (es—s) |(wy —wy)" T[ W (x —2')|.

j=1 i=1

Now we show that in each operand, z — ' L N((w, — wy)T HZL:_ll W), Denote T,, as

N((wy — wy)T Hf;ll W/). Suppose that it does not hold. Then we can decompose = — 2’ into
two components Ay, Ay, where Ay L T, , Ay [ T, . We can find a new point £/ = = 4 A; that
is on the boundary. However, in this case

[z —x"|l2 = [[Ai]l2 < [[A]lz + [|Agllz = [z — ||

Recall that &’ is the closest point to & on the decision boundary. This leads to a contradiction. Repeat
this argument for all j = 1,...,n, then we have  — &’ be orthogonal to all N'(T},). Thus, by the

j
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inequality eq. (14) earlier, we can arrive at eq. (13) — notice that w, — wy is a matrix with one
column, thus also satisfies the above reasoning.

Through the above inequality, we can transfer the margin to margin in the instance space. Let v(x) be
the shortest distance in || - || norm from an element 2 € A’ to the decision boundary. For a covering
ball C;, let v’ ; be mingec, v(x). Let Umin be the smallest v? ;  among all covering balls C; that
contain at least a training example. We have that

min

L—1
in > min__fjw, —wg| fnin Ui
Umin = min _||Jw, — wgl|2 O pin Umin
Y, 9€Y, Y7y it

Consequently, we can obtain an upper bound of eq. (8) parameterized on vy,;,, as follows

Umin

. L—-1
mlnyaﬂey’?ﬁég ||wy wy| ‘2 Hz 1 Umlnvmln}

max{0,1 —
Y

} <max{0,1—

Notice that only because €y-adversarial robustness, we can guarantee that v,,;, is non-zero, thus the
bound is influenced by AR.

Then, we study case 2), in which all training samples z € C; are classified wrong. In this case, for all
z € C;, the g given by § = arg max; ,, w!T'x in the margin operator is the same, for that 7 is the
wrongly classified class. Its ramp loss 1s

ly(z,y) = max{0,1 — %(fwy —wy) Tz}
Note that in the case 1), it is the y that stays fixed, while ¢ may differ from example to example;
while in the case 2), it is the ¢ stays fixed, while y may differ.
Similarly, within C; as required by adversarial robustness, (w, — w;)TT"x < 0, thus we always
have 1 — %('wy —wy)TT'x > 1, implying
L(@,y) = 1.

Thus, Vz = (x,y), 2 = (2',y') € C;

(2, y) — 1y(2',y)| = 0. (15)
Since only these two cases are possible, by eq. (8) and eq. (15), we have Vz, 2’ € C;

Umin
Ly (x,y) — Iy (2, y')] < max{0,1 — 5 }. (16)

The rest follows the standard proof in algorithmic robust framework.

Let N; be the set of index of points of examples that fall into C;. Note that (| N;|);=1.. k is an IDD
multimonial random variable with parameters m and (|u(C;)|)i=1...k. Then

‘R(l oT) = Rm(loT)|
m

_\ZEZNM I(TX,Y))] _*Zl Tz, y;)l

=1
K
IN:| 1
< Ez . [(TX,Y lT i Yi
D Ean X VI = S T
K K N
1Y B XY N(C) — 3 B v N
i=1 i=1
| X
<|— s
m Z Z max|l (Tz,y) — (Txzj,y;)| a7
=1 jEN;
R
+ [max (T, y)| ; may(en][s (18)
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Remember that z = (x, y).

By eq. (16) we have eq. (17) is equal or less than max{0, 2(1 — “%)} By Breteganolle-Huber-Carol

log(2)2k+1C%, 2log(1/7n)
~yEm m .

inequality, eq. (18) is less or equal to \/
The proof is finished. O
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Figure 7: The plot of accuracy on adversarial examples v.s. adversarial defense strength built in NNs.
The dotted line of which the intersections are marked by stars are adversarial accuracy in
( ) (CIFARI10), in ( ) (Tiny ImageNet) under similar adversarial attack strength.

C IMPLEMENTATION DETAILS

We summarize the details of the experiments in this section. The experiments are run with PyTorch

( , ).

C.1 DATASETS

CIFAR10/100. Each CIFAR dataset consists of 50, 000 training data and 10, 000 test data. CIFAR-10
and CIFAR-100 have 10 and 100 classes respectively. Our data augmentation follows the standard
manner in ( ): during training, we zero-pad 4 pixels along each image side, and sample
a 32 x 32 region cropped from the padded image or its horizontal flip; during testing, we use the
original non-padded image.

Tiny-ImageNet. Tiny-ImageNet is a subset of ImageNet dataset, which contains 200 classes rather
than 1,000 classes. Each class has 500 training images and 50 validation images. Images in the
Tiny-ImageNet dataset are of 64 x 64 pixels, as opposed to 256 x 256 in the full ImageNet set. The
data augmentation is straightforward: an input image is 56 x 56 randomly cropped from a resized
image using the scale, aspect ratio augmentation as well as scale jittering. A single 56 x 56 cropped
image is used for testing.

C.2 EXPERIMENTS IN SECTION 5.1

CIFAR10/100 Models and Training. The models for CIFAR10/100 are the same as the ones in
appendix A.4, except that we do not use spectral normalization anymore. CIFAR100 has 100 output
neurons instead of 10.

Tiny-ImageNet Model. For Tiny ImageNet dataset, we use 50-layered wide residual networks with
4 groups of residual layers and [3, 4, 6, 3] bottleneck residual units for each group respectively. The
3 x 3 filter of the bottleneck residual units have [64 x k, 128 x k, 256 x k,512 x k] feature maps
with the widen factor £ = 2 as mentioned in ( ). We replace the first
7 x 7 convolution layer with 3 x 3 filters with stride 1 and padding 1. The max pooling layer after
the first convolutional layer is also removed to fit the 56 x 56 input size. Batch normalization layers
are retained for this dataset. The weights of convolution layers for Tiny ImageNet are initialized with
Xavier uniform ( , ). Again, all dropout layers are omitted.

Tiny-ImageNet Training. The experiments on the Tiny-ImageNet dataset are based on a mini-batch
size of 256 for 90 epochs. The initial learning rate is set to be 0.1 and decayed at 10 at 30 and 60
epochs respectively. All experiments are trained on the training set with stochastic gradient descent
with the momentum of 0.9.
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Table 1: Raw data of CIFAR10 dataset for plots in fig. 3 and fig. 7.

Defensive Strength

Method 7 3 16

Trn Acc.  99.51 98.45 95.97

Test Acc. 88.86 87.51 84.89

AAcc.  10.65 10.94 11.08

Ijiige‘ég T Loss _ 0.014 0.043 0.105

v TestLoss 0.683 0.649 0.650

ALoss  0.669 0.606 0.545

PGD 6592 6524 72.16

Trn Acc.  99.95 99.62 98.42

Test Acc.  89.20 87.09 85.02

AAcc. 1075 12.53  13.40

ResNet-110 - —r o 0,002 0,010 0.044
+ Adv Trn

Test Loss 0.825 0.813 0.729
ALoss 0.823 0.803 0.685
PGD 58.02 66.94 72.40

Table 2: Raw data of CIFAR100 dataset for the plot in fig. 3 and fig. 7.

Defensive Strength

Method 7 3 16

Trn Acc.  88.73 86.97 82.17

Test Acc. 61.31 60.87 59.43

AAce. 2742 2610 22.74

E‘iizfvetég T Loss 0357 0.413 0.570

TestLoss 2.063 2.106 1.978

ALoss 1.706 1.693 1.408

PGD 3052 4099 4881

T Ace.  96.91 9455 90.90

Test Acc. 61.48 61.26 59.56

AAcc. 3543 3329 31.34

ResNet-110 — e e—0 008 0.17T 0278
+ Adv Trn

Test Loss 2.645 2.413 2.323
ALoss 2.547 2.241  2.045
PGD 33.33  42.08  50.99

Results. The data for fig. 3 are given in table 1, 2 and 3. More specifically, the data on CIFAR10 are
given in table 1. The result on CIFAR100 are given in table 2. The result on Tiny-ImageNet are given
in table 3.

Adversarial Robustness Attack Method. The adversarial accuracy is evaluated against [,.-PGD
( , ) untargeted attack adversary, which is one of the strongest white-box attack
methods. When considering adversarial attack, they usually train and evaluate against the same
perturbation. And for our tasks, we only use the moderate adversaries that generated by 10 iterations
with steps of size 2 and maximum of 8. When evaluating adversarial robustness, we only consider
clean examples classified correctly originally, and calculate the accuracy of the adversarial examples
generated from them that are still correctly classified. The adversarial accuracy is given in table 1 2 3,
the row named “PGD”, and plotted in fig. 7.

C.3 EXPERIMENTS IN APPENDIX A.4

Models. We use ResNet-type networks ( , ). Given that we need to isolate factors
that influence spectral complexity, we use ResNet without additional batch normalization (BN) layers.
To train ResNet without BN, we rely on the fixup initialization proposed in ( ).
The scalar layers in ( ) are also omitted, since it changes spectral norms of layers.
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Table 3: Raw data of Tiny-ImageNet dataset for the plot in fig. 3 and fig. 7.

Defensive Strength

Method 0 7 3 16
Trn Acc. 79.12 73.71 66.17 60.73
Test Acc. 63.43 62.09 61.09 57.36
. AAcc.  15.69 11.62 5.08  3.37
Wide ResNet  —p 0,974 1.080 1.384  1.64T
+ Adv Trn

TestLoss 1.561 1.637 1.689 1.806
ALoss 0.687 0.557 0.305 0.165
PGD 0.00 32.26 41.20 53.12

Table 4: Raw data for fig. 6. SP denotes spectral norm.

Strength of Defensive Strength
Spectral Normalization 4 8 16

Trn Acc.  96.91 94.38 90.58

Test Acc. 90.47 88.87 85.82

AAcc. 6.44 5.51 4.76

SP 1 Trn Loss 0.092 0.159 0.265
Test Loss 0.316 0.353 0.432

ALoss 0.224 0.194 0.168

PGD 57.93 69.98 75.98

Trn Acc.  99.65 98.51 95.94

Test Acc. 90.02 88.07 85.43

AAcc. 9.63 10.44 10.51

SP3 TrnLoss 0.010 0.039 0.107
Test Loss 0.606 0.580 0.577

ALoss 0.596 0.541 0.470

PGD 56.83 67.73 T73.41

Trn Acc.  99.57 98.33 95.96

Test Acc. 89.53 88.09 85.32

AAcc. 10.04 10.24 10.64

SP5 Trn Loss  0.012 0.045 0.105
Test Loss 0.649 0.602 0.611

ALoss 0.638 0.557 0.506

PGD 54.91 65.96 72.37

Trn Acc.  99.51 98.45 95.97

Test Acc. 88.86 87.51 84.89

AAcc. 10.65 10.94 11.08

SP Uncontrolled Trn Loss 0.014 0.043 0.105
Test Loss 0.683 0.649 0.650

ALoss 0.669 0.606 0.545

PGD 65.92 65.24 72.16

Dropout layers are omitted as well. Following ( ), we clip the spectral norm every
epoch rather than every iteration.

Training. The experiments on CIFAR10 datasets are based on a mini-batch size of 256 for 200
epochs. The learning rate starts at 0.05, and is divided by 10 at 100 and 150 epochs respectively. All
experiments are trained on training set with stochastic gradient descent based on the momentum of
0.9.

Results. The data for fig. 6 are given in table 4.
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