
Under review as a conference paper at ICLR 2020

BAIL: BEST-ACTION IMITATION LEARNING FOR
BATCH DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The field of Deep Reinforcement Learning (DRL) has recently seen a surge in
research in batch reinforcement learning, which aims for sample-efficient learning
from a given data set without additional interactions with the environment. In the
batch DRL setting, commonly employed off-policy DRL algorithms can perform
poorly and sometimes even fail to learn altogether. In this paper we propose a
new algorithm, Best-Action Imitation Learning (BAIL), which unlike many off-
policy DRL algorithms does not involve maximizing Q functions over the action
space. Striving for simplicity as well as performance, BAIL first selects from the
batch the actions it believes to be high-performing actions for their corresponding
states; it then uses those state-action pairs to train a policy network using imitation
learning. Although BAIL is simple, we demonstrate that BAIL achieves state of
the art performance on the Mujoco benchmark.

1 INTRODUCTION

The field of Deep Reinforcement Learning (DRL) has recently seen a surge in research in batch rein-
forcement learning, which is the problem of sample-efficient learning from a given data set without
additional interactions with the environment. Batch reinforcement learning is appealing because
it dis-entangles policy optimization (exploitation) from data collection (exploration). This enables
reusing the data collected by a policy to possibly improve the policy without further interactions with
the environment. Furthermore, a batch learning reinforcement learning algorithm can potentially be
deployed as part of a growing-batch algorithm, where the batch algorithm seeks a high-performing
exploitation policy using the data in an experience replay buffer, combines this policy with explo-
ration to add fresh data to the buffer, and then repeats the whole process (Lange et al., 2012).

Fujimoto et al. (2018a) recently made the critical observation that commonly employed off-policy
algorithms based on Deep Q-Learning (DQL) often perform poorly and sometimes even fail to learn
altogether. Indeed, off-policy DRL algorithms typically involve maximizing an approximate Q-
function over the action space (Lillicrap et al., 2015; Fujimoto et al., 2018b; Haarnoja et al., 2018a),
leading to an extrapolation error, particularly for state-action pairs that are not in the batch distribu-
tion. Batch-Constrained deep Q-learning (BCQ), which obtains good performance for many of the
Mujoco environments (Todorov et al., 2012), avoids the extrapolation error problem by constraining
the set of actions over which the approximate Q-function is optimized (Fujimoto et al., 2018a).

We propose a new algorithm, Best-Action Imitation Learning (BAIL), which strives for both sim-
plicity and performance. BAIL does not suffer from the extrapolation error problem since it does
not maximize over the action space in any step of the algorithm. BAIL is simple, thereby satisfying
the principle of Occam’s razor.

The BAIL algorithm has two steps. In the first step, it selects from the batch a subset of state-action
pairs for which the actions are believed to be good actions for their corresponding states. In the
second step, it simply trains a policy network with imitation learning using the selected actions from
the first step. To find the best actions, we train a neural network to obtain the “upper envelope” of
the Monte Carlo returns in the batch data, and then we select from the batch the state-action pairs
that are near the upper envelope. We believe the concept of the upper-envelope of a data set is also
novel and interesting in its own right.

1

Under review as a conference paper at ICLR 2020

Because the BCQ code is publicly available, we are able to make a careful comparison of the per-
formance of BAIL and BCQ. We do this for batches generated by training DDPG (Lillicrap et al.,
2015) for the Half-Cheetah, Walker, and Hopper environments, and for batches generated by train-
ing Soft Actor Critic (SAC) for the Ant environment (Haarnoja et al., 2018a;b). Although BAIL is
simple, we demonstrate that BAIL achieves state of the art performance on the Mujoco benchmark,
often outperforming Batch Constrained deep Q-Learning (BCQ) by a wide-margin. We also provide
anonymized code for reproducibility1.

2 RELATED WORK

Batch reinforcement learning in both the tabular and functional approximator settings has long been
studied (Lange et al., 2012; Strehl et al., 2010) and continues to be a highly active area of research
(Swaminathan & Joachims, 2015; Jiang & Li, 2015; Thomas & Brunskill, 2016; Farajtabar et al.,
2018; Irpan et al., 2019; Jaques et al., 2019). Imitation learning is also a well-studied problem
(Schaal, 1999; Argall et al., 2009; Hussein et al., 2017) and also continues to be a highly active area
of research (Kim et al., 2013; Piot et al., 2014; Chemali & Lazaric, 2015; Hester et al., 2018; Ho
et al., 2016; Sun et al., 2017; 2018; Cheng et al., 2018; Gao et al., 2018).

This paper relates most closely to (Fujimoto et al., 2018a), which made the critical observation
that when conventional DQL-based algorithms are employed for batch reinforcement learning, per-
formance can be very poor, with the algorithm possibly not learning at all. Off-policy DRL al-
gorithms involve maximizing an approximate action-value function Q(s, a) over all actions in the
action space. (Or over the actions in the manifold of the parameterized policy.) The approximate
action-value function can be very inaccurate, particularly for state-action pairs that are not in the
state-action distribution of the batch (Fujimoto et al., 2018a). Due to this extrapolation error, poor-
performing actions can be chosen when optimizing Q(s, a) over all actions. With traditional off-
policy DRL algorithms (such as DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018b) and
SAC (Haarnoja et al., 2018a)), if the action-value function over-estimates a state-action pair, the
policy will subsequently collect new data in the over-estimated region, and the estimate will get
corrected. In the batch setting, however, where there is no further interaction with the environment,
the extrapolation error is not corrected, and the poor choice of action persists in the policy (Fujimoto
et al., 2018a).

Batch-Constrained deep Q-learning (BCQ) avoids the extrapolation error problem by constraining
the set of actions over which the approximate Q-function is optimized (Fujimoto et al., 2018a).
More specifically, BCQ first trains a state-dependent Variational Auto Encoder (VAE) using the
state action pairs in the batch data. When optimizing the approximate Q-function over actions,
instead of optimizing over all actions, it optimizes over a subset of actions generated by the VAE.
The BCQ algorithm is further complicated by introducing a perturbation model, which employs
an additional neural network that outputs an adjustment to an action. BCQ additionally employs
a modified version of clipped-Double Q-Learning to obtain satisfactory performance. We show
experimentally that our much simpler BAIL algorithm typically performs better than BCQ by a
wide margin.

Kumar et al. (2019) recently proposed BEAR for batch DRL. BEAR is also complex, employing
Maximum Mean Discrepancy (Gretton et al., 2012), kernel selection, a parametric model that fits a
tanh-Gaussian distribution, and a test policy that is different from the learned actor policy. In this
paper we do not experimentally compare BAIL with BEAR since the code for BEAR is not publicly
available at the time of writing.

Agarwal et al. (2019) recently proposed another algorithm for batch DRL called Random Ensemble
Mixture (REM), an ensembling scheme which enforces optimal Bellman consistency on random
convex combinations of the Q-heads of a multi-headed Q-network. For the Atari 2600 games, batch
REM can out-perform the policies used to collect the data. REM and BAIL are orthogonal, and it
may be possible to combine them in the future to achieve even higher performance. No experimental
results are provided for REM applied to the Mujoco benchmark (Agarwal et al., 2019).

1https://anonymous.4open.science/r/e5fbe703-a32d-4679-a2a8-095e74b96e85

2

https://anonymous.4open.science/r/e5fbe703-a32d-4679-a2a8-095e74b96e85

Under review as a conference paper at ICLR 2020

3 BATCH DEEP REINFORCEMENT LEARNING

We represent the environment with a Markov Decision Process (MDP) defined by a tuple
(S,A, g, r, ρ, γ), where S is the state space, A is the action space, ρ is the initial state distribu-
tion, and γ is the discount factor. The functions g(s, a) and r(s, a) represent the dynamics and
reward function, respectively. In this paper we assume that the dynamics of the environment are
deterministic, that is, there are real-valued functions g(s, a) and r(s, a) such that when in state s and
action a is chosen, then the next state is s′ = g(s, a) and the reward received is r(s, a). We note that
all the simulated robotic locomotion environments in the Mujoco benchmark are deterministic, and
many robotic tasks are expected to be deterministic environments. Furthermore, many of the Atari
game environments are deterministic (Bellemare et al., 2013). Thus, from an applications perspec-
tive, the class of deterministic environments is a large and important class. Although we assume
that the environment is deterministic, as is typically the case with reinforcement learning, we do not
assume the functions g(s, a) and r(s, a) are known.

In batch reinforcement learning, we are provided a batch of m data points B = {(si, ai, ri, s′i), i =
1, ...,m}. We assume B is fixed and given, and there is no further interaction with the environment.
Often the batch B is training data, generated in some episodic fashion. However, in the batch
reinforcement learning problem, we do not have knowledge of the algorithm, models, or seeds that
were used to generate the episodes in the batch B.

Typically the batch data is generated during training with a non-stationary DRL policy. After train-
ing, the original DRL algorithm produces a final-DRL policy, with exploration turned off. In our
numerical experiments, we will compare the performance of policies obtained by batch algorithms
with the performance of the final-DRL policy. Ideally, we would like the performance of the batch-
derived policy to be as good or better than the final-DRL policy.

The case where batch data is generated from a non-stationary training policy is of particular interest
because it is typically a rich data set from which it may be possible to derive high-performing
policies. Furthermore, a batch learning algorithm can potentially be deployed as part of a growing-
batch algorithm, where the batch algorithm seeks a high-performing exploitation policy using the
current data in an experience replay buffer, combines this policy with exploration to add fresh data
to the buffer, and then repeats the whole process (Lange et al., 2012).

4 BEST-ACTION IMITATION LEARNING (BAIL)

In this paper we present BAIL, an algorithm that not only performs well on simulated robotic loco-
motion tasks, but is also conceptually and algorithmically simple. BAIL has two steps. In the first
step, it selects from the batch data B the state-action pairs for which the actions are believed to be
good actions for their corresponding states. In the second step, we simply train a policy network
with imitation learning using the selected actions from the first step.

Many approaches could be employed to select the best actions. In this paper we propose training a
single neural network to create an upper envelope of the Monte Carlo returns, and then selecting the
state-action pairs in the batch B that have returns near the upper envelope.

4.1 UPPER ENVELOPE

We first define a λ-smooth upper envelope, and then provide an algorithm for finding it. To the best
of our knowledge, the notion of the upper envelope of a data set is novel.

Recall that we have a batch of data B = {(si, ai, ri, s′i), i = 1, ...,m}. Although we do not assume
we know what algorithm was used to generate the batch, we make the natural assumption that the
data in the batch was generated in an episodic fashion, and that the data in the batch is ordered
accordingly. For each data point i ∈ {1, . . . ,m}, we calculate an approximate Monte Carlo return
Gi as the sum of the discounted returns from state si to the end of the episode:

Gi =

Ti∑
t=i

γt−irt (1)

3

Under review as a conference paper at ICLR 2020

where Ti denotes the time at which the episode ends for the data point si. The Mujoco environments
are naturally infinite-horizon non-episodic continuing-task environments (Sutton & Barto, 2018).
During training, however, researchers typically create artificial episodes of length 1000 time steps;
after 1000 time steps, a random initial state is chosen and a new episode begins. Because the Mujoco
environments are continuing tasks, it is desirable to approximate the return over the infinite horizon,
particularly for i values that are close to the (artificial) end of an episode. To do this, we note that the
data-generation policy from one episode to the next typically changes slowly. We therefore apply a
simple augmentation heuristic of concatenating the subsequent episode to the current episode, and
running the sum in (1) to infinity. (In practice, we end the sum when the discounting reduces the
contribution of the rewards to a negligible amount.) Our ablation study in the Appendix shows that
this simple heuristic can significantly improve performance. Note this approach also obviates the
need for knowing when new episodes begin in the data set B.

Having defined the return for each data point in the batch, we now seek an upper-envelope V (s) for
the data G := {(si, Gi), i = 1, ...,m}. Let Vφ(s) be a neural network with parameters φ that takes
as input a state s and outputs a real number. We say that Vφ∗(s) is a λ-smooth upper envelope for G
if it has the following properties:

1. Vφ∗(si) ≥ Gi for all i = 1, . . . ,m.
2. Among all the parameterized functions Vφ(s) satisfying condition 1, it minimizes:

L(φ) =

m∑
i=1

[Vφ(si)−Gi]2 + λ||φ||2 (2)

where λ is a non-negative constant. An upper-envelope is thus a smooth function that lies above all
the data points, but is nevertheless close to the data points.
Theorem 4.1. Suppose that Vφ∗(s) is a λ-smooth upper envelope for G. Then,

(1) Vφ∗(s) = max{Gi : i = 1, 2, . . . ,m} as λ→∞.

(2) If there is sufficient capacity in the network and λ = 0, then the Vφ∗ interpolates the data
in G. For example, if λ = 0 and Vφ(s) is a neural network with ReLU activation functions
with at least 2m+ d weights and two layers, where d is the dimension of the state space S,
then Vφ∗(si) = Gi for all i = 1, 2, . . . ,m.

From the above theorem, we see that when λ is very small, the upper envelope aims to interpolate
the data, and when λ is large, the upper envelope approaches a constant going through the highest
data point. Just as in classical regression, there is a sweet-spot for λ, the one that provides the best
generalization.

We note that there are other natural approaches for defining an upper-envelope, some based on alter-
native loss functions, others based on data clustering without making use of function approximators.
Also, it may be possible to combine episodes to generate improved upper envelopes. These are all
questions for future research.

To obtain an approximate upper envelope of the data G, we employ classic regression with a modified
loss function, namely,

L(φ) =

m∑
i=1

(Vφ(si)−Gi)2{1(Vφ(si)>Gi) +K1(Vφ(si)<Gi)}+ λ‖φ‖2 (3)

where K >> 1 and 1(·) is the indicator function.

For a finite K value, the above loss function will only produce an approximate upper envelope,
since it is possible V (si) may be slightly less than Gi for a few data points. In practice, we find
K = 10, 000 works well for all environments tested. When K → ∞, the approximation becomes
exact, as stated in the following:
Theorem 4.2. Let φ∗ be an optimal solution that minimizes L(φ). Then, when K → ∞, Vφ∗(s)
will be an exact λ-smooth upper envelope.

Also, instead of L2 regularization, in practice we employ the simpler early-stopping regularization,
thereby obviating a search for the parameter λ. We also clip the upper envelope at values near
maxiGi, as described in the appendix, which can potentially provide further gains in performance.

4

Under review as a conference paper at ICLR 2020

4.2 SELECTING THE BEST ACTIONS

The BAIL algorithm employs the upper envelope to select the best (s, a) pairs from the batch data
B. It then uses ordinary imitation learning (behavioral cloning) to train a policy network using the
selected actions. Let V (s) denote the upper envelope obtained from minimizing the loss function
(3) for a fixed value of K.

We consider two approaches for selecting the best actions. In the first approach, which we call
BAIL-border, we choose all (si, ai) pairs from the batch data set B such that

Gi > xV (si) (4)

We set x such that p% of the data points are selected, where p is a hyper-parameter. In this paper we
use p = 25 for all environments and batches. Thus BAIL-border chooses state-action pairs whose
returns are near the upper envelope. The pseudo-code for the Bail-border algorithm is given in the
appendix.

In the second approach, which we refer to as BAIL-TD, we select a pair (si, ai) if

ri + γV (s′i) > xV (si) (5)

where x is a hyper-parameter close to 1. Thus BAIL-TD chooses state-action pairs for which backed-
up estimated return ri + γV (s′i) is close to the upper envelope value V (si).

In summary, BAIL employs two neural networks. The first neural network is used to approximate a
value function based on the data in the batch B. The second neural network is the policy network,
which is trained with imitation learning. This simple approach does not suffer from extrapolation
error since it does not perform any optimization over the action space. An algorithmic description
of BAIL is given in Algorithm 1.

Algorithm 1 BAIL

1: Initialize upper envelope parameters φ, policy parameter θ, obtain batch data B.
2: Compute return for each data point i: Gi =

∑Ti
t=i γ

t−irt
3: Obtain upper envelope by minimizing the loss:
4: for j = 1, . . . , J do
5: sample a minibatch of data B from the batch B
6: minimize over φ: L(φ) =

∑|B|
i=1(Vφ(si)−Gi)2{1(Vφ(si)>Gi) +K1(Vφ(si)<Gi)}+ λ‖φ‖2

7: Select data i forGi > xVφ(si), select x so that p% data in B are selected, let U be set of selected
data

8: for l = 1, . . . , L do
9: sample a minibatch U of data from U

10: minimize over θ: L(θ) =
∑|U |
i=1(πθ(si)− ai)2

5 EXPERIMENTAL RESULTS

We carried out experiments with four of the most challenging environments in the Mujoco bench-
mark (Todorov et al., 2012) of OpenAI Gym. For the environments Hopper-v2, Walker-v2 and
HalfCheetah-v2, we used the “Final Buffer” batch exactly as described in Fujimoto et al. (2018a)
to allow for a fair comparison with BCQ. Specifically, we trained DDPG for one million time steps
with σ = 0.5 to generate a batch. For the environment Ant-v2, we trained adaptive SAC (Haarnoja
et al., 2018b) again for one million time steps to generate a batch.

In our experiments, we found that different batches generated with different seeds but with the
same algorithm in the same environment can lead to surprisingly different results for batch DRL
algorithms. To address this, for each of the environments we generated four batches, giving a total
of 16 data sets.

Figure 1 provides visualizations of 4 of the 16 upper envelopes, one for each of the 4 environments.
In each visualization, the data points in the corresponding batch are ordered according to their upper-
envelope values V (si). With this new ordering, the figure plots (si, Gi) for each of the one million

5

Under review as a conference paper at ICLR 2020

data points. The monotonically increasing blue line is the the upper envelope obtained by minimiz-
ing V (s). Note that in all of the figures, a small fraction of the data points are above upper envelopes
due to the finite value of K = 10, 000. But also note that the upper envelope mostly hugs the data.
The constant black line is the clipping value. The final upper envelope is the minimum of the blue
and black lines. All 16 upper envelopes are shown in the appendix.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2 (d) Ant-v2

Figure 1: Five illustrative upper envelopes trained from data with adaptive clipping

Figure 2 compares the performance of BAIL, BCQ, Behavioral Cloning (BC), and the final
DDPG/SAC policy for the four environments. When training with BCQ, we used the code pro-
vided by the authors (Fujimoto et al., 2018a). Because at the time of writing the code for BEAR was
not available, we do not compare our results with BEAR (Kumar et al., 2019). Also, all the results
presented in this section are for BAIL-border, which we simply refer to as BAIL. In the appendix we
provide results for BAIL-TD. The x-axis is the number of parameter updates and the y-axis is the test
return averaged over 10 episodes. BAIL, BCQ, and BC are each trained with five seeds. The figure
shows the mean and standard deviation confidence intervals for these values. The figure also shows
test result of the final-DDPG/SAC policy. This value is obtained by averaging test results from the
last 100,000 timesteps (of one million time steps). During this period, test performance of SAC and
particularly DDPG can greatly fluctuate with relatively small improvement on average. We calculate
the mean and standard deviation of the test results over this period, plot the mean as a straight line,
and use the transparent green background to show the confidence intervals. This enables us to fairly
compare the performance of the final test policy obtained with the behavioral algorithm with the test
policies from the batch algorithms.

We make the following observations. For Hopper, Walker and Ant, BAIL always beats BCQ usually
by a wide margin. For HalfCheetah, BAIL does better than BCQ for half of the batches. In almost
all of the curves, BAIL has a much lower confidence interval than BCQ. Perhaps more importantly,
BAIL’s performance is stable over training, whereas BCQ can vary dramatically. (This is a serious
issue for batch reinforcement learning, since it cannot interact with the environment to find the best
stopping point.) Importantly, BAIL also performs as well or better than the Final-DDPG/SAC policy
in all but of the 16 batches. This gives promise that BAIL, or a future variation of BAIL, could also
be employed within a growing-batch algorithm.

Table 1: Performance comparison at one million samples (mean and std over batches and random
seeds). Last column shows percentage improvement of BAIL over BCQ.

Environment Final-DDPG/SAC BCQ BAIL Improvement

Hopper-v2 2547.7± 750.4 1468.9± 552.6 2437.5± 489.7 65.9%
Walker2d-v2 1742.1± 656.3 2020.2± 699.3 2496.7± 409.9 23.6%
HalfCheetah-v2 2612.4± 342.2 2449.7± 267.7 2660.0± 77.7 8.6%
Ant-v2 4506.0± 483.6 4315.6± 416.4 4630.7± 310.9 7.3%

We also summarize the results in Table 1. For this table, we average the performance of each
algorithm over four batches, using the performance values at one million updates. Table 1 shows
that BAIL’s performance is better than that of BCQ for all four environments, with a 66% and 23%
average improvement for Hopper and Walker, respectively. BAIL also beats the Final-DDPG/SAC
policies in three of the environments, and has significantly lower variance.

6

Under review as a conference paper at ICLR 2020

(a) Hopper-v2 1st (b) Hopper-v2 2nd (c) Hopper-v2 3rd (d) Hopper-v2 4th

(e) Walker2d-v2 1st (f) Walker2d-v2 2nd (g) Walker2d-v2 3rd (h) Walker2d-v2 4th

(i) HalfCheetah-v2 1st (j) HalfCheetah-v2 2nd (k) HalfCheetah-v2 3rd (l) HalfCheetah-v2 4th

(m) Ant-v2 1st (n) Ant-v2 2nd (o) Ant-v2 3st (p) Ant-v2 4th

Figure 2: Performance comparison of BAIL, BCQ, BC and Final-DDPG/SAC

In the appendix we also provide experimental results for DDPG batches generated with σ = 0.1,
which is similar to the “Concurrent” dataset in Fujimoto et al. (2018a). For this low noise level
0.1, BAIL continues to beat BCQ by a wide margin for Hopper and Walker, and continues to beat
Final-DDPG for half of the batches. However, in the low noise case for HalfCheetah, BCQ beats
BAIL for 3 of the 4 batches.

5.1 ABLATION STUDY

BAIL uses an upper envelope to select the “best” data points for training a policy network with
imitation learning. We have shown that BAIL typcially beats ordinary behavioral cloning and BCQ
by a wide margin, and often performs better than the Final-DDPG and Final-SAC policies. But
it is natural to ask how BAIL performs when using more naive approaches for selecting the best
actions. We consider two naive approaches. The first approach, “Highest Returns,” is to select from
the batch the 25% of data points that have the highest Gi values. The second approach, “Recent
Data,” is to select the last 25% data points from the batch. Figure (3) shows the results for all four
environments. We see that for each environment, the upper envelope approach is the winner for
most of the batches: for Hopper, the upper envelope wins for all four batches by a wide margin;
for Walker the upper-envelope approach wins by a wide margin for two batches, and ties Highest
Returns for two batches; for HalfCheetah, the upper-envelope approach wins for three batches and
ties Highest Returns for one batch; and for Ant, the upper-envelope approach wins for three batches
and ties the other two approaches for the other batch. We conclude, for the environments and batch
generation mechanisms considered in this paper, the upper envelope approach performs significantly
better and is more robust than both naive approaches.

7

Under review as a conference paper at ICLR 2020

(a) Hopper-v2 1st (b) Hopper-v2 2nd (c) Hopper-v2 3rd (d) Hopper-v2 4th

(e) Walker-v2 1st (f) Walker-v2 2nd (g) Walker-v2 3rd (h) Walker-v2 4th

(i) HalfCheetah-v2 1st (j) HalfCheetah-v2 2nd (k) HalfCheetah-v2 3rd (l) HalfCheetah-v2 4th

(m) Ant-v2 1st (n) Ant-v2 2nd (o) Ant-v2 3rd (p) Ant-v2 4th

Figure 3: Comparison of BAIL scheme with Highest Returns and with Recent Samples schemes.
All schemes use 25% of the data in the batch.

In the Appendix we provide additional ablation studies. Our experimental results show that modify-
ing the returns to approximate infinite horizon returns is often useful for BAIL’s performance, and
that clipping the upper envelope also provides gains although much more modest.

In summary, our experimental results show that BAIL achieves state-of-the-art performance, and
often beats BCQ by a wide margin. Moreover, BAIL’s performance is stable over training, whereas
BCQ typically varies dramatically over training. Finally, BAIL achieves this superior performance
with an algorithm that is much simpler than BCQ.

6 CONCLUSION

Although BAIL as described in this paper is simple and gives state-of-the-art performance, there are
several directions that could be explored in the future for extending BAIL. One avenue is generating
multiple upper envelopes from the same batch, and then ensembling or using a heuristic to pick the
upper envelope which we believe would give the best performance. A second avenue is to optimize
the policy by modifying the best actions. A third avenue is to assign weights to the state-action pairs
when training with imitation learning. And a fourth avenue is to explore designing a growing batch
algorithm which uses BAIL as a subroutine for finding a high-performing exploitation policy for
each batch iteration.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Josh Achiam. Openai spinning up documentation. https://spinningup.openai.com/
en/latest/index.html. Accessed: 2018-12-20.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. Striving for simplicity in off-policy
deep reinforcement learning. arXiv preprint arXiv:1907.04543, 2019.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Jessica Chemali and Alessandro Lazaric. Direct policy iteration with demonstrations. In Twenty-
Fourth International Joint Conference on Artificial Intelligence, 2015.

Ching-An Cheng, Xinyan Yan, Nolan Wagener, and Byron Boots. Fast policy learning through
imitation and reinforcement. arXiv preprint arXiv:1805.10413, 2018.

Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust doubly robust
off-policy evaluation. arXiv preprint arXiv:1802.03493, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018a.

Scott Fujimoto, Herke van Hoof, and Dave Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018b.

Yang Gao, Ji Lin, Fisher Yu, Sergey Levine, Trevor Darrell, et al. Reinforcement learning from
imperfect demonstrations. arXiv preprint arXiv:1802.05313, 2018.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Jonathan Ho, Jayesh Gupta, and Stefano Ermon. Model-free imitation learning with policy opti-
mization. In International Conference on Machine Learning, pp. 2760–2769, 2016.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):21, 2017.

Alex Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian Ibarz, and Sergey Levine.
Off-policy evaluation via off-policy classification. arXiv preprint arXiv:1906.01624, 2019.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning.
arXiv preprint arXiv:1511.03722, 2015.

9

https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html

Under review as a conference paper at ICLR 2020

Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup. Learning from limited
demonstrations. In Advances in Neural Information Processing Systems, pp. 2859–2867, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. arXiv preprint arXiv:1906.00949, 2019.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted bellman residual minimization handling
expert demonstrations. In Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, pp. 549–564. Springer, 2014.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3
(6):233–242, 1999.

Alex Strehl, John Langford, Lihong Li, and Sham M Kakade. Learning from logged implicit explo-
ration data. In Advances in Neural Information Processing Systems, pp. 2217–2225, 2010.

Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Deeply
aggrevated: Differentiable imitation learning for sequential prediction. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 3309–3318. JMLR. org, 2017.

Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated horizon policy search: Combining rein-
forcement learning & imitation learning. arXiv preprint arXiv:1805.11240, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through
counterfactual risk minimization. Journal of Machine Learning Research, 16(1):1731–1755,
2015.

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In International Conference on Machine Learning, pp. 2139–2148, 2016.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. ICLR, 2017.

10

Under review as a conference paper at ICLR 2020

A PROOFS

A. Proof of Theorem 4.1

Proof. First, let us consider the case when λ → +∞. We can re-write the definition of the upper
envelope as a constrained optimization problem:

min
φ

m∑
i=1

[Vφ(si)−Gi]2 + λ‖φ‖2 (6)

s.t. Gi − Vφ(si) ≤ 0, i = 1, 2 . . . ,m

where Vφ∗ is the optimal solution to the above optimization problem. We write the Lagrangian
function:

L(φ, µ) =

m∑
i=1

[Vφ(si)−Gi]2 + λ‖φ‖2 +
m∑
i=1

µi[Gi − Vφ(si)] (7)

As the optimal solution, Vφ∗ must satisfy the KKT conditions specified below:
dL(φ,µ)

dφ |φ=φ∗ = 0

µi[Gi − Vφ∗(si)] = 0, i = 1, 2, . . . ,m
µi ≥ 0, i = 1, 2, . . . ,m

(8)

Suppose φ = (φ1, . . . , φn), by the first KKT condition, we have

∂

∂φj

m∑
i=1

[Vφ(si)−Gi]2|φj=φ∗j +2λφ∗j +
∂

∂φj

m∑
i=1

µi[Gi−Vφ(si)]|φj=φ∗j = 0, j = 1, 2, . . . , n.

So we have:

φ∗j = −
1

2λ

∂

∂φj

m∑
i=1

[Vφ(si)−Gi]2|φj=φ∗j−
1

2λ

∂

∂φj

m∑
i=1

µi[Gi−Vφ(si)]|φj=φ∗j , j = 1, 2, . . . , n.

When λ → ∞, we have φ∗ = 0. In this case, it follows that Vφ∗ = C for some constant C. As
Vφ∗(si) ≥ Gi, in order to minimize (3) we must have C = max{Gi, i = 1, 2, . . . ,m}.
For the case of λ = 0, notice that we only have finitely many input si to be the input of the neural
network. Therefore, this is a typical problem regarding the finite-sample expressivity of the neural
networks, and the proof directly follows from the work done by Zhang et al. (Zhang et al., 2017).

B. Proof of Theorem 4.2

Proof. Let φ∗ be the optimal value that minimizes L(φ). Let’s proceed by contradiction and assume
that there exists some k such that

Vφ∗(sk) < Gk
Let φ′ be an arbitrary given value such that Vφ′(si) ≥ Gi for all i ∈ {1, 2, . . . ,m}. Then we have

m∑
i=1

(Vφ∗(si)−Gi)21(Vφ∗ (si)>Gi) +K(Vφ∗(sk)−Gk)2 + λ‖φ∗‖2 ≤ L(φ∗)

L(φ∗) ≤ L(φ′) =
m∑
i=1

(Vφ′(si)−Gi)2 + ‖φ′‖2

This implies that
m∑
i=1

(Vφ∗(si)−Gi)21(Vφ∗ (si)>Gi) +K(Vφ∗(sk)−Gk)2 + λ‖φ∗‖2 ≤
m∑
i=1

(Vφ′(si)−Gi)2 + ‖φ′‖2

which is impossible whenK →∞. Therefore, we must have Vφ∗(si) ≥ Gi for all i ∈ {1, 2, . . . ,m}
as K →∞. In this way, when K →∞, φ∗ actually minimizes

L(φ) =

m∑
i=1

(Vφ(si)−Gi)2 + ‖φ‖2

which completes the proof.

11

Under review as a conference paper at ICLR 2020

B IMPLEMENTATION DETAILS AND HYPERPARAMETERS

B.1 IMPLEMENTATION OF BAIL ALGORITHM

Table 2: Upper Envelope Hyperparameters

Parameter Value

optimizer Adam (Kingma & Ba, 2014)
learning rate 3 · 10−3
discount (γ) 0.99
regularization constant λ 2 · 10−2
K 10,000
number of hidden units 128× 128

Table 3: BAIL Hyperparameters

Parameter Value

data in batch 106

optimizer Adam (Kingma & Ba, 2014)
learning rate 10−3

regularization constant λ 0
mini-batch size 100
BAIL-border p% 25%
BAIL-TD x 0.96
number of hidden units 400× 300

B.2 IMPLEMENTATION OF COMPETING ALGORITHMS

For the behavioral DDPG algorithm, we used the implementation of Fujimoto et al. (2018b). For
the behavioral SAC algorithm, we implemented it in Pytorch, mainly following the pseudocode
provided by (Achiam), and used hyperparameters in Haarnoja et al. (2018b). For the BCQ algorithm,
we used the authors’ implementation (Fujimoto et al., 2018a). For behavioral cloning and its variants
in the ablation study section, the network structure, learning rate, mini-batch size, and so on are
identical to those in Table 3 for BAIL.

For the upper envelope network, our network has two hidden layers as does the Q network in BCQ
and SAC. However, the number of hidden units in our network is less than those used in BCQ
(400×300) and SAC (256×256). In future work we will see if we can obtain further improvements
with BAIL using larger networks for the upper envelope.

B.3 CLIPPING HEURISTICS

As is shown in Figure 1, in practice the trained upper envelope does not always fit well the data
points on the right side of the plots, where the upper envelope can become very large. In that region,
the data points with the highest returns will not be selected as “best actions” and therefore not used
for imitation learning step. We observe that if we plot the upper envelope values for all the states
in the buffer in ascending order as is shown in Figure 1, the upper envelope value V (si) starts to
deviate from the Monte Carlo return Gi at a point where V (si) ≈ max{Gi}. We therefore use the
following heuristic. We say that the upper envelope value begins to deviate from the Monte Carlo
return at state si if V (sj) > Gj for i ≤ j < i + 10000. We set the clipping value C = V (s′)
where s′ is the starting point of this deviation. Then the actual UE values used to select data is
min{V (s), C}. In practice, the clipping heuristic gives a small boost in performance as is shown in
Figure 5.

12

Under review as a conference paper at ICLR 2020

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTS ON BAIL-TD

We present some of the experimental results for BAIL-TD in this subsection. Figure 4 shows that
the performance of BAIL-TD is similar to the performance of naive Behavioral Cloning in Hopper-
v2 and Walker2d-v2 environments. The result implies that the BAIL-TD approach is limited in
the ability to distinguish between good data points and the bad ones. This is possibly due to the
inaccuracy of the trained upper envelope. Recall that in BAIL-TD algorithm, we select state action
pairs based on the difference between the values of r+V (s′i) and V (si). Since we only use one-step
Monte Carlo return, and the value of r is very small compared with the value of v(si), the selection
is very sensitive to the accuracy of V (si).

(a) Hopper-v2 1st (b) Walker2d-v2 1st (c) Hopper-v2 2nd (d) Walker2d-v2 2nd

Figure 4: Performance comparison of BAIL-border, BAIL-TD, BCQ, BC and Behavioral Policy
(DDPG)

13

Under review as a conference paper at ICLR 2020

C.2 ABLATION STUDY FOR BAIL

We do additional ablation studies for BAIL, where we focus on two heuristic features in the BAIL
algorithm: clipping of upper envelope, and return augmentation to approximate non-episodic contin-
uous tasks. We removed each of these features one at a time from the BAIL algorithm and compare
with the original BAIL algorithm. Each performance curve is again averaged over 5 independent
runs.

(a) Hopper-v2 1st (b) Hopper-v2 2nd (c) Hopper-v2 3rd (d) Hopper-v2 4th

(e) Walker2d-v2 1st (f) Walker2d-v2 2nd (g) Walker2d-v2 3rd (h) Walker2d-v2 4th

(i) HalfCheetah-v2 1st (j) HalfCheetah-v2 2nd (k) HalfCheetah-v2 3rd (l) HalfCheetah-v2 4th

(m) Ant-v2 1st (n) Ant-v2 2nd (o) Ant-v2 3rd (p) Ant-v2 4th //

Figure 5: Ablation of BAIL without Upper Envelope clipping

We found that clipping often, but not always, gives a small boost in performance. As for return aug-
mentation, we found it does not harm the performance of BAIL, and sometimes gives a considerable
improvement, particularly for Hopper.

14

Under review as a conference paper at ICLR 2020

(a) Hopper-v2 1st (b) Hopper-v2 2nd (c) Hopper-v2 3rd (d) Hopper-v2 4th

(e) Walker2d-v2 1st (f) Walker2d-v2 2nd (g) Walker2d-v2 3rd (h) Walker2d-v2 4th

(i) HalfCheetah-v2 1st (j) HalfCheetah-v2 2nd (k) HalfCheetah-v2 3rd (l) HalfCheetah-v2 4th

(m) Ant-v2 1st (n) Ant-v2 2nd (o) Ant-v2 3rd (p) Ant-v2 4th

Figure 6: Ablation of BAIL without return augmentation

15

Under review as a conference paper at ICLR 2020

C.3 BAIL FOR LOW NOISE-LEVEL DATA

In the main body of the paper we present BAIL in the ”Final Buffer” case as described in Fujimoto
et al. (2018a), where the exploration noise σ = 0.5 added to behavior policy is relatively large.
In this section we examine the performance of BAIL in a low-noise scenario. To this end, we set
σ = 0.1 and do a similar experiments as were done σ = 0.5 for the Hopper, Walker and HalfCheetah
environments. (Recall that for Ant we used adaptive SAC, which does not have an explicit noise
parameter.)

The results are shown in Figure 7. We see that even in this low-noise scenario, BAIL out-performs
BCQ by a wide margin for Hopper and Walker, and BAIL continues to out-perform the Final-DDPG
policy in most batches. For HalfCheetah, where the Final-DDPG policy gives greatly different
results depending on the batch, BAIL’s performance is stable and typically near that of the of Final-
DDPG policy. After sufficient training, however, BCQ can often do better than the Final-DDPG
policy in this environment.

(a) Hopper-v2 1st (b) Hopper-v2 2nd (c) Hopper-v2 3rd (d) Hopper-v2 4th

(e) Walker-v2 1st (f) Walker-v2 2nd (g) Walker-v2 3rd (h) Walker-v2 4th

(i) HalfCheetah-v2 1st (j) HalfCheetah-v2 2nd (k) HalfCheetah-v2 3rd (l) HalfCheetah-v2 4th

Figure 7: Performance comparison of BAIL, BCQ, BC and Final-DDPG with noise level σ = 0.1

16

Under review as a conference paper at ICLR 2020

C.4 VISUALIZATION OF UPPER ENVELOPES USED

In this section we present the upper envelopes used in the training of BAIL in Figure 2.

(a) Hopper-v2 1st (b) Hopper-v2 2nd (c) Hopper-v2 3rd (d) Hopper-v2 4th

(e) Walker2d-v2 1st (f) Walker2d-v2 2nd (g) Walker2d-v2 3rd (h) Walker2d-v2 4th

(i) HalfCheetah-v2 1st (j) HalfCheetah-v2 2nd (k) HalfCheetah-v2 3rd (l) HalfCheetah-v2 4th

Figure 8: Upper Envelopes of BAIL (DDPG data)

(a) Ant-v2 1st (b) Ant-v2 2nd (c) Ant-v2 3rd (d) Ant-v2 4nd

Figure 9: Upper Envelopes of BAIL (SAC data)

17

	Introduction
	Related Work
	Batch deep reinforcement learning
	Best-Action Imitation Learning (BAIL)
	Upper Envelope
	Selecting the best actions

	Experimental results
	Ablation Study

	Conclusion
	Proofs
	Implementation Details and Hyperparameters
	Implementation of BAIL algorithm
	Implementation of competing algorithms
	Clipping Heuristics

	Additional Experimental Results
	Experiments on BAIL-TD
	Ablation Study for BAIL
	BAIL for Low Noise-level Data
	Visualization of Upper Envelopes Used

