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ABSTRACT

The use of deep learning for a wide range of data problems has increased the need
for understanding and diagnosing these models, and deep learning interpretation
techniques have become an essential tool for data analysts. Although numerous
model interpretation methods have been proposed in recent years, most of these
procedures are based on heuristics with little or no theoretical guarantees. In this
work, we propose a statistical framework for saliency estimation for black box
computer vision models. We build a model-agnostic estimation procedure that is
statistically consistent and passes the saliency checks of Adebayo et al. (2018b).
Our method requires solving a linear program, whose solution can be efficiently
computed in polynomial time. Through our theoretical analysis, we establish an
upper bound on the number of model evaluations needed to recover the region of
importance with high probability, and build a new perturbation scheme for esti-
mation of local gradients that is shown to be more efficient than the commonly
used random perturbation schemes. Validity of the new method is demonstrated
through sensitivity analysis.

1 INTRODUCTION

Deep learning models have achieved great predictive performance in many tasks. However, these
complex, often un-tractable models are difficult to interpret and understand. This lack of inter-
pretability is a major barrier for their wide adoption, especially in domains (e.g., medicine) where
models need to be qualitatively understood and/or verified for robustness.

In order to address these issues, several interpretation approaches have been proposed in the last
few years. A group of methods are based on visualizations, either by quantifying the effect of
particular neurons or features, or by creating new images that maximize the target score for specific
classes (Erhan et al., 2009; Simonyan et al., 2013; Zeiler & Fergus, 2014). A large collection of the
techniques build saliency maps by attributing the gradients of the neural network to the input image
through various techniques (Springenberg et al., 2014; Bach et al., 2015; Montavon et al., 2017;
Shrikumar et al., 2017; Zhou et al., 2016; Selvaraju et al., 2017; Smilkov et al., 2017; Adebayo
et al., 2018a; Dumitru et al., 2018).

Another class of approaches treat the deep learner as a black-box. In this domain, Baehrens et al.
(2010) use a Parzen window classifier to approximate the target classifier locally. Ribeiro et al.
(2016) propose the LIME procedure, where small perturbations on the instance are used to obtain
additional samples with which a sparse linear model is fit. Lundberg & Lee (2017) propose SHapley
Additive exPlanation(SHAP), which combines the Shapley value from the game theory with the
additive feature attribution methods. They also make connections of the SHAP procedure with
various existing methods including LRP, LIME and DeepLIFT. Chen et al. (2019) propose L- and
C-Shapley procedures which can reliably approximate the Shapley values in linear time with respect
to the number of features.

Majority of the listed methods are heuristics which are constructed according to certain desirable
qualities. For these methods, it is not clear what the main estimand is, if it can be consistently esti-
mated or if (and how) the estimand can be computed more efficiently. In fact, according to the recent
research by Adebayo et al. (2018b), most methods with great visual inspection lack sensitivity to the
model and the data generating process. Theoretical explanation for why guided back-propagation
and deconvolutional methods perform image recovery is provided by Nie et al. (2018).
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In this work, we propose a statistically valid technique for model-agnostic saliency estimation, and
prove its consistency under reasonable assumptions. Furthermore, our method passes the sanity
checks given by Adebayo et al. (2018b). Through our analysis, we obtain insights into how to
improve the accuracy and reliability of our approach.

We note that there is recent work by Burns et al. (2019) where they provide a saliency estimation
technique with theoretical guarantees – more specifically, FDR control. Although their procedure
is very promising from a statistical perspective, and theoretically valid under a very general set of
assumptions, their technique requires human input and has a significant computational load as it
uses a generative model for filling in certain regions of the target image.

Our main contributions are as follows:

• We introduce a new saliency estimation framework for CNNs and propose a new method
based on input perturbation. Our procedure requires solving a linear program, and hence
the estimates can be computed very efficiently. Furthermore, the optimization problem can
be recast as a “parametric simplex” (Vanderbei, 2014), which allows the computation of
the full solution path in an expedient manner.

• We establish conditions under which the significant pixels in the input can be identified with
high probability. We present finite-sample convergence rates that can be used to determine
the number of necessary model evaluations.

• We find that the noise distribution for the perturbation has a substantial effect on the con-
vergence rate. We propose a new perturbation scheme which uses a highly correlated Gaus-
sian, instead of the widely used independent Gaussian distribution.

In the following section, we define the linearly estimated gradient (LEG), which is the saliency
parameter of interest (i.e. the estimand), and introduce our statistical framework. In section 3, we
propose a regularized estimation procedure for LEG that penalizes the anisotropic total-variation.
We provide our theoretical results in Section 4 and the result of our numerical comparisons in Section
5.

1.1 NOTATION

For a matrix B, we use vec(B) and vec−1(B) to denote its vectorization and inverse vectorization,
respectively. The transpose of a matrix B is given by BT and we use B+ for its pseudo-inverse .
The largest and smallest eigenvalue of a symmetric matrixB are denoted by λmax(B) and λmin(B).
For a set S, we use SC to denote its complement. For a vector u ∈ Rp and a set S ⊆ [1, . . . , p], we
use uS to refer to its components indexed by elements in S. The q-norm for a vector u is given by
‖u‖q and we use ‖B‖Fr for the Frobenius norm of a matrix B. The vector of size p whose values
are all equal to 1 is denoted by 1p. Finally, for a continuous distribution F , we use F +x0 to denote
a distribution that is mean-shifted by x0, i.e. F (z) = G(z − x0) for all z, where G = F + x0.

2 LINEARLY ESTIMATED GRADIENT

In gradient based saliency approaches, the main goal is to recover the gradient of the deep learner
with respect to the input. More specifically, let f(x) be a deep learner, f : X → [0, 1], where
X is the input space, e.g., [0, 255]28×28 for the MNIST dataset, where the input are given as 28
by 28 sized images. In this notation, the output is the probability of a specific class, for instance
Pmodel(x is a 9); although this can be modified to check for comparative quantities by setting the
output as

f(x) = f9(x)− f7(x) = Pmodel(x is a 9)− Pmodel(x is a 7). (1)

Then, local saliency is defined as the derivative of f(·) with respect to the input, evaluated at a point
of interest x0 ∈ X , i.e. ∇f(x)|x=x0

. However, in practice, local saliency is often too noisy and one
instead uses an average of the gradient around x0 (Shrikumar et al., 2017; Smilkov et al., 2017).

In order to study the saliency procedure from a statistical perspective, we start by defining an esti-
mand, whose definition is motivated by the LIME procedure (Ribeiro et al., 2016).
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Definition 1 (LEG). For a continuous distribution F , an initial point x0 ∈ X with X ⊂ Rp1×p2 ,
and a function f : X → [−1, 1], the linearly estimated gradient (LEG), γ ∈ Rp1×p2 is given by

γ(f, x0, F ) = arg min
g

Ex∼F+x0

[(
f(x)− f(x0)− vec(g)T vec(x0 − x)

)2]
.

LEG is based on a first order Taylor series expansion of the function f(x) around the point of
interest x0. The estimand is a proxy for the local gradient, and is the coefficient that gives the best
linear approximation, in terms of the squared error, among all possible choices. The distribution F
determines the range of points the analyst wants to consider. For instance, one can take F to be a
multivariate normal distribution with independent entries, which then yields a procedure similar to
Smoothgrad (Smilkov et al., 2017).

We note that the variance of F has a large effect on LEG. As F converges to a point mass at 0, if
f(x) is twice continuously differentiable in the neighborhood of x0, then γ → ∇xf(x). On the
other hand, if F has high variance, then samples from x0 + F are very different from x0 and the
gradients might no longer be useful for model interpretation. This phenomenon can also described
in terms of local vs global interpretation: for F with a small variance, LEG provides a very local
interpretation, i.e. a gradient that is valid in a small neighborhood around x0, and as the variance of
F increases, LEG produces a more global interpretation, since a larger neighborhood around x0 is
considered in the calculation.

LEG has an analytical solution as the next lemma shows.
Lemma 1. Let Z be the random variable with distribution F , i.e. Z ∼ F . Assume that covariance
of vec(Z) exists, and is positive-definite. Let Σ = Cov(vec(Z)), then

γ(f, x0, F ) = vec−1
(
Σ−1Ez∼F [(f(x0 + z)− f(x0)) vec(z)]

)
. (2)

Proof of the lemma is provided in the Appendix.

Lemma 1 shows that the LEG can be written as an affine transformation of a high dimensional
integral where the integrand is

∫
(f(x0 + z)− f(x0)) zF (z)dz. This analysis also suggests an

empirical estimate for the LEG, by replacing the expectation with the empirical mean. The empirical
mean can be obtained by sampling x from F + x0, calculating f(x), and then applying Lemma 1.
More formally, let x1, . . . , xn be random samples from F + x0, and let y1, . . . , yn be the function
evaluations with yi = f(xi). Further, let ỹi = f(xi)− f(x0) and zi = xi−x0. Then, the empirical
LEG estimate is given by

γ̂(f, x0, F ) = vec−1

(
Σ−1

[
1

n

n∑
i=1

vec (ỹizi)

])
. (3)

As the function f(x) is bounded and F has a positive-definite covariance matrix, then it follows
that as n → ∞, γ̂ → γ. However, classical linear model theory (Ravishanker & Dey, 2001) shows
that rate of the convergence is very slow, on the order of 1

λmin(Σ)

√
p1p2/n, where p1 and p2 are the

dimensions of X . This severely limits the practicality of the empirical approach. In the next section
we propose to use regularization in order to obtain faster convergence rates.

3 EFFICIENT ESTIMATION OF LEG

For interpretation of image classifiers, one expects that the saliency scores are located at a certain
region, i.e. a contiguous body or a union of such bodies. This idea has lead to various procedures
that estimate saliency scores by penalizing the local differences of the solution, often utilizing some
form of the total variation (TV) penalty (Fong & Vedaldi, 2017). The approach is very sensible
from a practical point of view: Firstly, it produces estimates that are easy to interpret as the impor-
tant regions can be easily identified; secondly, penalization significantly shrinks the variance of the
estimate and helps produce reliable solutions with less model evaluations.

In the light of the above, we propose to use 2D Fused Lasso (Tibshirani et al., 2005) for estimation,
by adding an anisotropic L1 TV penalty on the estimated coefficient.
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Definition 2 (LEG-TV). For a hyperparameter, L ≥ 0, the TV-penalized LEG estimate is given as
γ̃ = vec−1(g) where g is the solution of the following linear program

min
g
‖Dg‖1

s.t.

∥∥∥∥∥D+T

(
1

n

n∑
i=1

vec (ỹizi)− Σg

)∥∥∥∥∥
∞

≤ L, (4)

where D ∈ R(2p1p2−p1−p2)×(p1p2) is the differencing matrix with Di,j = 1, Di,k = −1 if the jth

and the kth component of g are connected on the two dimensional grid.

Note that if L = 0, then the TV-penalization has no effect and the solution of the above procedure
reduces to the empirical estimate, i.e. γ̃ = γ̂. When L > 0, then the linear program seeks to find a
solution that is both close to the empirical solution, and has sparse differences on the grid.

The proposed method enjoys low computational complexity. The problem in equation 4 can be
solved by any linear programming software, for which many open-source implementations exist.
Furthermore, the alternative formulation (provided in the Appendix) can be solved using parametric
simplex approaches which yield the whole solution path in L (Vanderbei, 2014). The last point is
often a necessity in deployment when L needs to be tuned according to some criteria.

We note that the procedure does not require any knowledge about the underlying neural network and
is completely model-agnostic. In fact, in applications where security or privacy could be a concern
and returning multiple prediction values needs to be avoided, the term given by

∑n
i=1 vec (ỹizi) can

be computed on the side and supplied alongside the prediction.

In Figure 1, we show the resulting estimates of the method with n = 500 model evaluations for
a VGG-19 (Simonyan & Zisserman, 2014) network. For the distribution F , we use a multivariate
Gaussian distribution with the proposed perturbation scheme in Section 4.2. We compute γ̃ sepa-
rately for each channel, and then sum the absolute values of the different channels to obtain the final
saliency score.

(a) Shark (b) Soccer (c) Whistle

Figure 1: LEG estimates for various images. Target classes are provided in the captions. LEG
correctly detects the main object in all of the instances. Third image is labeled as a “cellphone” but
the VGG-19 network misclassifies it as a “whistle”. More results are provided in the Appendix.

4 THEORETICAL ANALYSIS AND IMPLEMENTATION

In this section, we analyze the procedure from a theoretical perspective and derive finite sample
convergence rates of the proposed LEG-TV estimator. As we noted earlier, this analysis also gives
us insight on the properties of the ideal perturbation distribution.

4.1 CONSISTENCY

We first present our condition, which has a major role in the convergence rate of our estimator. The
condition is akin to the restricted eigenvalue condition (Bickel et al., 2009) with adjustments specific
to our problem.

Assumption 1. LetD+ be the pseudo-inverse of the differencing matrixD, and denote the elements
of singular value decomposition of D as U,Θ, V where D = UΘV T . Furthermore, denote the last
p1p2 − p1 − p2 columns of U that correspond to zero singular values as U2. For the covariance
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matrix Σ, and any set S with size s, it holds that κ > 0, where

κ = inf
‖∆S‖1 ≥ ‖∆SC‖1

UT2 ∆ = 0

∆TD+TΣD+∆

‖∆‖22
. (5)

The following theorem is our main result.

Theorem 1. Let γ∗ = γ(f, x0, F ) and Σ = Cov (vec(Z)) with Z ∼ F . Let γ̃ be the LEG-TV
estimate with L =

√
2‖D+‖1 log (p1p2/ε) /n. If Assumption 1 holds for the covariance matrix Σ

with constant κ, then with probability 1− ε,

∥∥γ∗ − γ̃ −m1p11Tp2
∥∥2

Fr
≤ 1

κ

Cp
Cd

√
s log p1p2/ε

n
,

where m ∈ R is a mean shift parameter, s is the number of non-zero elements in Dγ∗, Cp =

4
√

2‖D+‖1 ∝ p1/4
1 p

1/4
2 and Cd is the minimal positive singular value of D.

Our theorem has two major implications:

1. We can recover the true parameter as the number of model evaluations increase. That is,
TV penalized LEG is a statistically consistent model interpretation scheme.

2. Our bound depends on the constant κ, which further depends on the choice of Σ for the
perturbation scheme. It is possible to obtain faster rates of convergence with a carefully
tuned choice of Σ. As a side note, since γ∗ also depends on Σ, the estimand changes when
Σ is adjusted. In other words, our result states that certain estimands require less samples.

We note that our procedure identifies the LEG coefficient up to a mean shift parameter, m, which is
the average of the true LEG coefficient γ. In practice, the average can be consistently estimated (for
instance, using the empirical version of LEG in equation 3), and the mean can be subtracted to yield
consistent estimates for γ. However, in our numerical studies, we see that this mean shift is almost
non-existent: LEG-TV yields solutions that has no mean differences with the LEG coefficient, which
we define as the solution of the empirical version as n→∞.

4.2 PERTURBATION SCHEME

In our main result, we established that the convergence of our estimator depends on the quantity κ
which is related to the spectral properties of Σ. In this subsection we explore the ramifications of
the assumption.

Our main result in Theorem 1 states that the rate of convergence to the true LEG coefficient is
inversely proportional to the term κ. Thus, perturbation schemes for which the restricted eigenvalues
are large, as defined in Definition 1, yield saliency maps that require less samples to estimate the
LEG.

We note that most of the saliency estimation procedures that make use of perturbations take these
perturbations to be independent, which results in a covariance matrix that is equal to the identity
matrix, Σ = σ2I(p1p2)×(p1p2) for some σ2 > 0. For LEG estimation without penalization, i.e. using
equation 1, this choice is also optimal as the convergence rates under the normal setup depend on
1/λmin(Σ). However, when one seeks to find an estimate for which the solution is sparse in the TV
norm, this choice is no longer ideal as demonstrated by our theorem.

In order to choose the covariance matrix of our perturbation scheme in a manner that maximizes the
bound in equation 5, one also needs some prior information about the size of S, s. As that requires
estimation of s, and a complex optimization procedure, we instead propose a heuristic: we choose
Σ so that its eigenvectors match D+∆ for vectors ∆ with unit-norm and UT2 ∆ = 0. This choice
fixes p1p2 − 1 many of the eigenvectors of Σ. For the last eigenvector, we use the one vector as it is
orthogonal to the rest of the eigenvectors. Our proposed perturbation scheme is as follows:

1. Compute the singular value decomposition of D, and let D = UΘV T .
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2. Let Σ = σ2
(
VΘ2V T + 1

p1p2
1p1p21Tp1p2

)
for some choice of σ2 > 0.

AsD+ = VΘ+UT , with the proposed Σ, the numerator in equation 5 reduces to σ2∆T∆ and hence
κ = σ2. Without any additional assumptions on S, this is the maximal value for κ.
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Figure 2: Selected eigenvectors of the proposed Σ. The eigenvectors, which contain the principal
directions of the distribution, have maxima and minima in adjacent locations. Distributions drawn
with these properties perform as object detectors as they can be used to detect existence (or non-
existence) of significant pixels at these locations.

We plot some of the eigenvectors for our proposed Σ with p1 = p2 = 28 in Figure 2. These
eigenvectors are the principal directions of the perturbation distribution F , and the samples drawn
from F contain a combination of these directions. We see these samples will have sharp contrasts
at certain locations. This result is very intuitive: The perturbation scheme is created for a specific
problem where boundaries for objects are assumed to exist, and large jumps in the magnitude of the
distribution help our method recover these boundaries efficiently.

We conclude this section with a demonstration of the perturbation scheme using Gaussian noise. In
Figure 3, we plot a digit from the MNIST dataset (LeCun et al., 1998), along with instances obtained
by independent perturbation and by our suggested distribution.
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(b) Independent noise
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(c) New perturbation scheme

Figure 3: Demonstration of the new perturbation scheme on an example from the MNIST dataset.
Noise samples of the new scheme have a checkerboard pattern and their perturbations are uniformly
distributed across the image.

4.3 IMPLEMENTATION DETAILS

LEG-TV procedure has two tuning parameters: (i) F , which determines the structure of the pertur-
bation; and (ii) L, which controls the sparsity of the chosen interpretation.

Regarding F , we propose to use a multivariate Gaussian distribution as it is easy to sample from.
For Σ, we propose a theoretically driven heuristic for determining the correlation structure of Σ in
Section 4.2. However, the choice of the magnitude of Σ, i.e. σ2, is left to the user. If this quantity
is chosen too low, then the added perturbations are small in magnitude, and the predictions of the
neural network do not change, resulting in a LEG near zero. On the other hand, with a very large
value of σ2, the results have too much variance as some of the pixel values are set to the minimum
or the maximum pixel intensity. In our implementations, we find that setting σ2 to be between 0.05
and 0.30 results in reasonable solutions. We determine this range by computing perturbations of
various sizes on numerous images using the VGG-19 classifier. The provided range is found to
create perturbations large enough to change the prediction probabilities but small enough to avoid
major changes in the image. Most of our presented results are given for σ2 = 0.10.

For the choice of L, we propose two solutions: The first is the theoretically suggested quantity given
in Theorem 1, although this often results in estimates that are too conservative. Our second method
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is a heuristic based on some of the quantities in the optimization problem and we use this for our
demonstrations. We set L = KLLmax where K is a constant between 0 and 1 and Lmax is the
smallest value of L for which the solution in equation 4 would result with g = 0; i.e. Lmax =
n−1‖D+T (

∑n
i=1 vec(ỹizi)) ‖. We use KL = 0.05 or KL = 0.10 in our implementations. We

note that is possible to obtain the solution for all L by using a parametric simplex solver (Vanderbei,
2014), or by starting with a large initial L, then using the solution of the program as a warm-start
for a smaller choice of L. Both approaches return the solution path for all L, and might be more
desirable in practice than relying on heuristics.

5 EXAMPLES

In this section, we demonstrate the robustness and validity of our procedure by two numerical ex-
periments. In Section 5.1, we perform sanity checks as laid out by Adebayo et al. (2018b), and show
that the LEG-TV estimator fails to detect objects when the weights of the neural network are chosen
randomly. In Section 5.2, we implement a sensitivity analysis in which we use various saliency
methods to compute regions of importance, and then perturb these regions in order to see their ef-
fect on the prediction. For the deep learner, we use VGG-19 (Simonyan & Zisserman, 2014). For
computational efficiency, we compute saliency maps on a 28 by 28 grid (i.e. γ̃ ∈ R28×28) although
the standard input for VGG-19 is 224 by 224. The perturbations on the image are scaled up by 8 via
upsampling in order for the dimensions to match.

5.1 SANITY CHECKS

In Adebayo et al. (2018b), the validity of saliency estimation procedures are tested by varying the
weights of the neural network. In a technique named, “cascading randomization”, authors propose
to replace the fitted weights of a CNN layer by layer, and compute the saliency scores with each
change. As a deep learner with randomly chosen weights should have no prediction power, one
expects to see the same effect in the resulting saliency scores: namely, as more of the weights
are perturbed, the explanation offered by interpretability methods should become more and more
meaningless. Surprisingly, Adebayo et al. (2018b) show that most commonly adopted interpretation
procedures provide some saliency even after full randomization, and conclude that these methods
act as edge detectors.

Our procedure treats the classifier as a black-box and the explanations offered by LEG-TV are based
solely on the predictions made by the neural network. Thus, intuitively, there is no reason for our
method to act as an edge-detector, or fail these sanity checks. In order to verify this, we perform
cascading randomization on the weights of a VGG-19 network. For all of the images in our analysis,
we find that the LEG estimate, γ̃, is reduced to zero after randomization of either the top (i.e. logits)
or the second top layer (i.e. second fully connected layer). The results of our experiment for two
images are given in Figure 4. It is seen that after the weights are perturbed, the LEG-TV method fails
to detect any signal that could be used for interpretation. In fact, due to penalization, the estimate is
set to zero. These results show that the interpretation given by our proposed method is reliable and
is dependent on the classifier.

5.2 SENSITIVITY ANALYSIS

For our second validity test, we use various interpretation models to compute regions of high impor-
tance. We then mask these regions by decreasing the value of the pixels to zero which is equivalent
to painting them black. We compute and assess the difference of the predictions for the target class
with each perturbation.

We compare our method against three alternatives: GradCAM (Selvaraju et al., 2017), LIME
(Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017). The last two methods are chosen as
they are model-agnostic, like LEG, and do not make use of the architecture of the neural network.
GradCAM is chosen due to its popularity. We present the probability changes given by the pertur-
bations for three randomly chosen images in Figure 5. For LEG, we provide two solutions, a sparse
solution which corresponds to a larger choice of the penalty parameter L and a noisy solution which
is obtained with a smaller choice of L, denoted by LEG and LEG0, respectively.
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CASCADING RANDOMIZATION

Figure 4: Results of the sanity check with cascading randomization. The network weights are
replaced by random numbers in a cascading order, starting from the last layer. LEG is equal to zero
for all pixel values immediately after the first randomization.
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Figure 5: Results of sensitivity analysis. Predicted probability for the target class is plotted versus
the size of the perturbation. The locations for the perturbations are determined by the saliency
procedures. Predictions should decrease at a fast rate for interpretability methods that can reliably
identify regions of importance. In that regard, SHAP and LEG0 appear to be the most accurate in
determining the critical pixels, followed by LEG and GradCAM.

We see that as the size of the perturbation increases, the predictions for the target class drop for all of
the methods. The slope is sharpest for SHAP and LEG0, suggesting that these two methods identify
pixels that are crucial for the predictions. In Figure 6, we plot the chosen pixels for SHAP, LEG0,
LEG and GradCAM for the pineapple image. The pixels chosen by SHAP appear to correspond to
specific a convolution pattern and the chosen region is not contiguous. On the other hand, the pixels
identified by LEG are visually meaningful to the human eye and contain pixels that are more likely
to be relevant for the prediction.

(a) SHAP (b) LEG0 (c) LEG (d) GradCAM

Figure 6: Masked regions at 10% perturbation by various saliency procedures.
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A APPENDIX

A.1 ALTERNATIVE FORMULATION

Our linear program can also be recast by a change of variables and setting α = Dg. In this case, the
elements of α correspond to differences between adjoint pixels. This program can be written as:

min ‖α‖1

s.t.

∥∥∥∥∥D+

(
1

n

n∑
i=1

f̃ (x̃i) x̃i − ΣD+α

)∥∥∥∥∥
∞

≤ L,

UT2 α = 0,

where D+ is the pseudo-inverse of D and U2 is related to the left singular vectors of D. More
precisely, letting D = UΘV T denote the singular value decomposition of D, U2 is the submatrix
that corresponds to the columns of U for which Θj is zero. The linearity constraint ensures that the
differences between the adjoint pixels is proper. Derivation of the alternative formulation follows
from Theorem 1 in Gaines et al. (2018) and is omitted.

10



Under review as a conference paper at ICLR 2020

A.2 PROOF OF THEOREM 1

Our proof depends on the following lemma.

Lemma 2. For L ≥
√

2‖D+‖1 log (p1p2/ε) /n, γ∗ is in the feasibility set with probability 1 − ε,
that is ∥∥∥∥∥D+

(
1

n

n∑
i=1

f̃ (x̃i) x̃i

)
−D+Σγ∗

∥∥∥∥∥
∞

≤ L.

Proof. For ease of notation, let G = D+E
[

1
n

∑n
i=1 f̃ (x̃i) x̃i

]
, and note that G = D+Σγ∗. Fur-

thermore, let zi = f̃ (x̃i)D
+x̃i. We also assume that the images have been rescaled so that the

maximum value of x̃i is 1 (without rescaling, the maximum would be given as the largest intensity,
i.e. 255). Since, the function values are also in the range given by [-2,2], we can bound |zi,j |, that is

|zi,j | =
∣∣∣f̃ (x̃i)D

+
j x̃i

∣∣∣ ≤ 2
∥∥D+

j

∥∥
1

max
i
|xi,j | ≤ 2

∥∥D+
j

∥∥
1
.

The proof follows by applying the McDiarmid’s inequality (Vershynin, 2018) for each row of the
difference and then taking the supremum over the terms. By application of McDiarmid’s inequality,
we have that

P

(∣∣∣∣∣ 1n∑
i

zij −Gj

∣∣∣∣∣ ≥ L
)
≤ 2e

−L2n

2‖D+‖1 .

Let L =
√

2‖D+‖1 log (p1p2/2ε) /n. Then, taking a union bound over all variables, we have

P

(
max
j

∣∣∣∣∣ 1n∑
i

zij −Gj

∣∣∣∣∣ ≥ L
)
≤

p∑
j=1

e
−L2n

2‖D+‖1 = ε.

Now note that that the feasibility set for any L
′ ≥ L contains that of L and thus γ∗ is automatically

included.

We now present the proof of the theorem. Note that the technique is based on the Confidence Set
approach by Fan (2013). In the proof, we use γ to refer to vec(γ) for ease of presentation.

Proof. First, let the high probability set for which Lemma 2 holds by A. All of the following
statements hold true forA. We let ∆ = D (γ̂ − γ∗) .We know that ‖Dγ̂‖1 ≤ ‖Dγ∗‖1 since both are
in the feasibility set, as stated in Lemma 2. Let α∗ = Dγ∗, α̂ = Dγ̂ and define S = {j : α∗j 6= 0},
and the complement of S as SC . By assumption of the Theorem, we have that the cardinality of S
is s, i.e. |S| = s. Now let ∆S as the elements of ∆ in S. Then, using the above statement, one can
show that ‖∆S‖1 ≥ ‖∆SC‖1. Note,

‖α̂‖1 = ‖α∗ + ∆‖1
= ‖α∗ + ∆S‖1 + ‖∆SC‖1
≥ ‖α∗‖1 − ‖∆S‖1 + ‖∆SC‖1
≥ ‖α̂‖1 − ‖∆S‖1 + ‖∆SC‖1 ,

and ‖∆S‖1 ≥ ‖∆SC‖1 follows immediately. Furthermore

∥∥∥∆̂
∥∥∥

2
≥
∥∥∥∆̂S

∥∥∥
2
≥
∥∥∥∆̂S

∥∥∥
1
/
√
s ≥

∥∥∥∆̂
∥∥∥

1

2
√
s 1

,

where the last line uses the previous result.

Additionally, note that

∆TD+ΣD+∆ ≤ ‖∆‖1‖D+ΣD+∆‖∞
≤ 2L‖∆‖1,
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where the first inequality follows by Holder’s inequality and the second follows from Lemma 2 and
the fact that both γ̂ and γ∗ are in the feasibility set for L =

√
2‖D+‖1 log (p1p2/ε) /n. We further

bound the right hand side of the inequality by using the previous result, which gives

∆TD+ΣD+∆ ≤ 4L
√
s‖∆‖2.

Next, we bound ‖∆‖2 by combining the previous results. Now, by assumption of the Theorem, we
have that

a ‖∆‖22 ≤ ∆TD+TΣD+∆

≤ 4L
√
s‖∆‖2.

Dividing both sides by ‖∆‖2, we obtain that

‖Dγ̂ −Dγ∗‖2 ≤
Cp
a

√
s log p1p2/ε

n
.

Finally, we note that

‖D(γ̂ − γ∗)‖22 = ‖D(m1 + γ̂ − γ∗)‖22

≥ CD ‖m1 + γ̂ − γ∗‖22 +
1

p1p2

p1p2m+
∑
j

γ̃j −
∑
j

γ∗j

2

,

where D is the smallest singular value of D that is positive. This follows from the fact that D has
only one zero right singular value, whose eigenvector is given by a vector of ones multiplied by
1/
√
p1p2. Letting m = (p1p2)−1

(∑
j γ
∗
j −

∑
j γ̃j

)
concludes the proof.

A.3 PROOF OF LEMMA 1

Proof. Let

h(g) = Ex∼F+x0

[(
f(x)− f(x0)− vec(g)T vec(x0 − x)

)2]
.

Note that h(g) is quadratic and convex in g. Taking the derivative with respect to vec(g), and pushing
the expectation we obtain

Σ vec(g∗) = Ez∼F [(f(x0 + z)− f(x0)) vec(z)] ,

where g∗ is the minimizer. The result follows trivially.

12



Under review as a conference paper at ICLR 2020

A.4 EXAMPLES ON MNIST

Figure 7: Saliency estimates from various procedures on the MNIST dataset for a LeNet (LeCun
et al., 1998). The listed procedures are the empirical version of LEG [LEG-Exact], LEG, Direct
Saliency, DeepLIFT (Shrikumar et al., 2017), ELRP (Bach et al., 2015), Occlusion Maps and SHAP
(Lundberg & Lee, 2017)
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A.5 EXAMPLES ON IMAGENET

(a) Balloon (b) Beacon

(c) Bear (d) Bookcase

(e) Daisy (f) Elephant

(g) Helmet Crab (h) Ice Cream

(i) Lemon (j) Lifeboat

Figure 8: LEG estimates for various images from the ImageNet dataset. Target classes are provided
in the captions.
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(a) Mailbox (b) Pineapple

(c) Plane (d) Shark

(e) Soccer (f) Tiger Cat

(g) Traffic Light (h) Tree Snake

(i) Vulture (j) Yorkie

Figure 9: LEG estimates for various images from the ImageNet dataset. Target classes are provided
in the captions.
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