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ABSTRACT

Deep Reinforcement Learning (DRL) has led to many recent breakthroughs on
complex control tasks, such as defeating the best human player in the game of
Go. However, decisions made by the DRL agent are not explainable, hindering
its applicability in safety-critical settings. Viper, a recently proposed technique,
constructs a decision tree policy by mimicking the DRL agent. Decision trees are
interpretable as each action made can be traced back to the decision rule path that
lead to it. However, one global decision tree approximating the DRL policy has
significant limitations with respect to the geometry of decision boundaries. We
propose MOËT, a more expressive, yet still interpretable model based on Mix-
ture of Experts, consisting of a gating function that partitions the state space, and
multiple decision tree experts that specialize on different partitions. We propose a
training procedure to support non-differentiable decision tree experts and integrate
it into imitation learning procedure of Viper. We evaluate our algorithm on four
OpenAI gym environments, and show that the policy constructed in such a way
is more performant and better mimics the DRL agent by lowering mispredictions
and increasing the reward. We also show that MOËT policies are amenable for
verification using off-the-shelf automated theorem provers such as Z3.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has achieved many recent breakthroughs in challenging do-
mains such as Go (Silver et al., 2016). While using neural networks for encoding state representa-
tions allow DRL agents to learn policies for tasks with large state spaces, the learned policies are
not interpretable, which hinders their use in safety-critical applications.

Some recent works leverage programs and decision trees as representations for interpreting the
learned agent policies. PIRL(Verma et al., 2018) uses program synthesis to generate a program
in a Domain-Specific Language (DSL) that is close to the DRL agent policy. The design of the DSL
with desired operators is a tedious manual effort and the enumerative search for synthesis is difficult
to scale for larger programs. In contrast, Viper (Bastani et al., 2018) learns a Decision Tree (DT)
to interpret the DRL agent policy, which not only allows for a general representation for different
policies, but also allows for verification of these policies using integer linear programming solvers.

Viper uses the DAGGER (Ross et al., 2011) imitation learning approach to collect state action pairs
for training the student DT policy given the teacher DRL policy. It modifies the DAGGER algorithm
to use the Q-function of teacher policy to prioritize states of critical importance during learning.
However, learning a single DT for the complete policy leads to some key shortcomings such as i)
less faithful representation of original agent policy measured by the number of mispredictions, ii)
lower overall performance (reward), and iii) larger DT sizes that make them harder to interpret.

In this paper, we present MOËT (Mixture of Expert Trees), a technique based on Mixture of Experts
(MOE) (Jacobs et al., 1991; Jordan and Xu, 1995; Yuksel et al., 2012), and reformulate its learn-
ing procedure to support DT experts. MOE models can typically use any expert as long as it is a
differentiable function of model parameters, which unfortunately does not hold for DTs. Similar to
MOE training with EM algorithm, we first observe that MOËT can be trained by interchangeably
optimizing the weighted log likelihood for experts (independently from one another) and optimizing
the gating function with respect to the obtained experts. Then, we propose a procedure for DT learn-
ing in the specific context of MOE. To the best of our knowledge we are first to combine standard
non-differentiable DT experts, which are interpretable, with MOE model. Existing combinations
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which rely on differentiable tree or treelike models, such as soft decision trees (Irsoy et al., 2012)
and hierarchical mixture of experts (Zhao et al., 2019) are not interpretable.

We adapt the imitation learning technique of Viper to use MOËT policies instead of DTs. MOËT
creates multiple local DTs that specialize on different regions of the input space, allowing for sim-
pler (shallower) DTs that more accurately mimic the DRL agent policy within their regions, and
combines the local trees into a global policy using a gating function. We use a simple and inter-
pretable linear model with softmax function as the gating function, which returns a distribution over
DT experts for each point in the input space. While standard MOE uses this distribution to average
predictions of DTs, we also consider selecting just one most likely expert tree to improve inter-
pretability. While decision boundaries of Viper DT policies must be axis-perpendicular, the softmax
gating function supports boundaries with hyperplanes of arbitrary orientations, allowing MOËT to
more faithfully represent the original policy.

We evaluate our technique on four different environments: CartPole, Pong, Acrobot, and Mountain-
car. We show that MOËT achieves significantly better rewards and lower misprediction rates with
shallower trees. We also visualize the Viper and MOËT policies for Mountaincar, demonstrating
the differences in their learning capabilities. Finally, we demonstrate how a MOËT policy can be
translated into an SMT formula for verifying properties for CartPole game using the Z3 theorem
prover (De Moura and Bjørner, 2008) under similar assumptions made in Viper.

In summary, this paper makes the following key contributions: 1) We propose MOËT, a technique
based on MOE to learn mixture of expert decision trees and present a learning algorithm to train
MOËT models. 2) We use MOËT models with a softmax gating function for interpreting DRL
policies and adapt the imitation learning approach used in Viper to learn MOËT models. 3) We
evaluate MOËT on different environments and show that it leads to smaller, more faithful, and
performant representations of DRL agent policies compared to Viper while preserving verifiability.

Other Related works. Explainable Machine Learning: There has been a lot of recent interest in
explaining decisions of black-box models (Guidotti et al., 2018a; Doshi-Velez and Kim, 2017).
For image classification, activation maximization techniques can be used to sample representative
input patterns (Erhan et al., 2009; Olah et al., 2017). TCAV (Kim et al., 2017) uses human-friendly
high-level concepts to associate their importance to the decision. Some recent works also generate
contrastive robust explanations to help users understand a classifier decision based on a family of
neighboring inputs (Zhang et al., 2018; Dhurandhar et al., 2018). LORE (Guidotti et al., 2018b)
explains behavior of a black-box model around an input of interest by sampling the black-box model
around the neighborhood of the input, and training a local DT over the sampled points. Our model
presents an approach that combines local trees into a global policy.

Tree-Structured Models: Irsoy et al. (Irsoy et al., 2012) propose a a novel decision tree architecture
with soft decisions at the internal nodes where both children are chosen with probabilities given by
a sigmoid gating function. Similarly, binary tree-structured hierarchical routing mixture of experts
(HRME) model, which has classifiers as non-leaf node experts and simple regression models as leaf
node experts, were proposed in (Zhao et al., 2019). Both models are unfortunately not interpretable.

2 MOTIVATING EXAMPLE: GRIDWORLD

We now present a simple motivating example to showcase some of the key differences between Viper
and MOËT approaches. Consider the N ×N Gridworld problem shown in Figure 1a (for N = 5).
The agent is placed at a random position in a grid (except the walls denoted by filled rectangles) and
should find its way out. To move through the grid the agent can choose to go up, left, right or down
at each time step. If it hits the wall it stays in the same position (state). State is represented using
two integer values (x, y coordinates) which range from (0, 0)—bottom left to (N − 1, N − 1)—top
right. The grid can be escaped through either left doors (left of the first column), or right doors (right
of the last column). A negative reward of −0.1 is received for each agent action (negative reward
encourages the agent to find the exit as fast as possible). An episode finishes as soon as an exit is
reached or if 100 steps are made whichever comes first.

The optimal policy (π∗) for this problem consists of taking the left (right resp.) action for each state
below (above resp.) the diagonal. We used π∗ as a teacher and used imitation learning approach
of Viper to train an interpretable DT policy that mimics π∗. The resulting DT policy is shown in
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Figure 1: A simple 5 x 5 Gridworld example to showcase the policies learned by Viper and MOËT.

Figure 1b. The DT partitions the state space (grid) using lines perpendicular to x and y axes, until it
separates all states above diagonal from those below. This results in a DT of depth 3 with 9 nodes.
On the other hand, the policy learned by MOËT is shown in Figure 1c. The MOËT model with 2
experts learns to partition the space using the line defined by a linear function 1.06x + 1.11y = 4
(roughly the diagonal of the grid). Points on the different sides of the line correspond to two different
experts which are themselves DTs of depth 0 always choosing to go left (below) or right (above).

We notice that DT policy needs much larger depth to represent π∗ while MOËT can represent it
as only one decision step. Furthermore, with increasing N (size of the grid), complexity of DT
will grow, while MOËT complexity stays the same; we empirically confirm this for N = [5, 10].
For N = 5, 6, 7, 8, 9, 10 DT depths are 3, 4, 4, 4, 4, 5 and number of nodes are 9, 11, 13, 15, 17, 21
respectively. In contrast, MOËT models of same complexity and structure as the one shown in
Figure 1c are learned for all values of N (models differ in the learned partitioning linear function).

3 BACKGROUND

In this section we provide description of two relevant methods we build upon: (1) Viper, an approach
for interpretable imitation learning, and (2) MOE learning framework.

Viper. Viper algorithm (included in appendix) is an instance of DAGGER imitation learning ap-
proach, adapted to prioritize critical states based on Q-values. Inputs to the Viper training algo-
rithm are (1) environment e which is an finite horizon (T -step) Markov Decision Process (MDP)
(S,A, P,R) with states S, actions A, transition probabilities P : S × A× S → [0, 1], and rewards
R : S → R; (2) teacher policy πt : S → A; (3) its Q-function Qπt : S × A → R and (4) num-
ber of training iterations N . Distribution of states after T steps in environment e using a policy π is
d(π)(e) (assuming randomly chosen initial state). Viper uses the teacher as an oracle to label the data
(states with actions). It initially uses teacher policy to sample trajectories (states) to train a student
(DT) policy. It then uses the student policy to generate more trajectories. Viper samples training
points from the collected dataset D giving priority to states s having higher importance I(s), where
I(s) = maxa∈AQ

πt(s, a)−mina∈AQ
πt(s, a). This sampling of states leads to faster learning and

shallower DTs. The process of sampling trajectories and training students is repeated for number of
iterations N , and the best student policy is chosen using reward as the criterion.

Mixture of Experts. MOE is an ensemble model (Jacobs et al., 1991; Jordan and Xu, 1995; Yuksel
et al., 2012) that consists of expert networks and a gating function. Gating function divides the input
(feature) space into regions for which different experts are specialized and responsible. MOE is
flexible with respect to the choice of expert models as long as they are differentiable functions of
model parameters (which is not the case for DTs).

In MOE framework, probability of outputting y ∈ IRm given an input x ∈ IRn is given by:

P (y|x, θ) =
E∑
i=1

P (i|x, θg)P (y|x, θi) =
E∑
i=1

gi(x, θg)P (y|x, θi) (1)
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whereE is the number of experts, gi(x, θg) is the probability of choosing the expert i (given input x),
P (y|x, θi) is the probability of expert i producing output y (given input x). Learnable parameters
are θ = (θg, θe), where θg are parameters of the gating function and θe = (θ1, θ2, ..., θE) are
parameters of the experts. Gating function can be modeled using a softmax function over a set of
linear models. Let θg consist of parameter vectors (θg1, . . . , θgE), then the gating function can be
defined as gi(x, θg) = exp(θTgix)/

∑E
j=1 exp(θTgjx) .

In the case of classification, an expert i outputs a vector yi of length C, where C is the number
of classes. Expert i associates a probability to each output class c (given by yic) using the gating
function. Final probability of a class c is a gate weighted sum of yic for all experts i ∈ 1, 2, ..., E.
This creates a probability vector y = (y1, y2, ..., yC), and the output of MOE is argmaxi yi.

MOE is commonly trained using EM algorithm, where instead of direct optimization of the likeli-
hood one performs optimization of an auxiliary function L̂ defined in a following way. Let z denote
the expert chosen for instance x. Then joint likelihood of x and z can be considered. Since z is not
observed in the data, log likelihood of samples (x, z,y) cannot be computed, but instead expected
log likelihood can be considered, where expectation is taken over z. Since the expectation has to
rely on some distribution of z, in the iterative process, the distribution with respect to the current
estimate of parameters θ is used. More precisely function L̂ is defined by (Jordan and Xu, 1995):

L̂(θ, θ(k)) = Ez[logP (x, z,y)|x,y, θ(k)] =
∫
P (z|x,y, θ(k)) logP (x, z,y)dz (2)

where θ(k) is the estimate of parameters θ in iteration k. Then, for a specific sample D =
{(xi,yi) | i = 1, . . . , N}, the following formula can be derived (Jordan and Xu, 1995):

L̂(θ, θ(k)) =

N∑
i=1

E∑
j=1

h
(k)
ij log gj(xi, θg) +

N∑
i=1

E∑
j=1

h
(k)
ij logP (yi|xi, θj) (3)

where it holds

h
(k)
ij =

gj(xi, θ
(k)
g )P (yi|xi, θ(k)j )∑E

l=1 gl(xi, θ
(k)
g )P (yi|xi, θ(k)l )

(4)

4 MIXTURE OF EXPERT TREES

In this section we explain the adaptation of original MOE model to mixture of decision trees, and
present both training and inference algorithms.

Considering that coefficients h(k)ij (Eq. 4) are fixed with respect to θ and that in Eq. 3 the gating part
(first double sum) and each expert part depend on disjoint subsets of parameters θ, training can be
carried out by interchangeably optimizing the weighted log likelihood for experts (independently
from one another) and optimizing the gating function with respect to the obtained experts. The
training procedure for MOËT, described by Algorithm 1, is based on this observation. First, the
parameters of the gating function are randomly initialized (line 2). Then the experts are trained one
by one. Each expert j is trained on a dataset Dw of instances weighted by coefficients h(k)ij (line 5),
by applying specific DT learning algorithm (line 6) that we adapted for MOE context (described
below). After the experts are trained, an optimization step is performed (line 7) in order to increase
the gating part of Eq. 3. At the end, the parameters are returned (line 8).

Our tree learning procedure is as follows. Our technique modifies original MOE algorithm in that it
uses DTs as experts. The fundamental difference with respect to traditional model comes from the
fact that DTs do not rely on explicit and differentiable loss function which can be trained by gradient
descent or Newton’s methods. Instead, due to their discrete structure, they rely on a specific greedy
training procedure. Therefore, the training of DTs has to be modified in order to take into account the
attribution of instances to the experts given by coefficients h(k)ij , sometimes called responsibility of
expert j for instance i. If these responsibilities were hard, meaning that each instance is assigned to
strictly one expert, they would result in partitioning the feature space into disjoint regions belonging
to different experts. On the other hand, soft responsibilities are fractionally distributing each instance
to different experts. The higher the responsibility of an expert j for an instance i, the higher the
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Algorithm 1 MOËT training.

1: procedure MOËT (DATA {(xi,yi) | i = 1, . . . , N}, EPOCHS NE , NUMBER OF EXPERTS E)
2: θg ← initialize()
3: for e← 1 to NE do
4: for j ← 1 to E do
5: Dw ←

{(
xi,yi,

gj(xi,θg)P (yi|xi,θj)∑E
k=1 gk(xi,θg)P (yi|xi,θk)

)
| i = 1, . . . , N

}
6: θj ← fit tree(Dw)

7: θg ← θg + λ∇θ′
∑N
i=1

∑E
j=1

[
gj(xi,θg)P (yi|xi,θj)∑E

k=1 gk(xi,θg)P (yi|xi,θk)
log gj(xi, θ

′)
]

8: return θg, (θ1, . . . , θE)

influence of that instance on that expert’s training. In order to formulate this principle, we consider
which way the instance influences construction of a tree. First, it affects the impurity measure
computed when splitting the nodes and second, it influences probability estimates in the leaves of
the tree. We address these two issues next.

A commonly used impurity measure to determine splits in the tree is the Gini index. Let U be a
set of indices of instances assigned to the node for which the split is being computed and DU set
of corresponding instances. Let categorical outcomes of y be 1, . . . , C and for l = 1, . . . , C denote
pl fraction of assigned instances for which it holds y = l. More formally pl =

∑
i∈U I[yi=l]

|U | , where
I denotes indicator function of its argument expression and equals 1 if the expression is true. Then
the Gini index G of the set DU is defined by: G(p1, . . . , pC) = 1−∑C

l=1 p
2
l . Considering that the

assignment of instances to experts are fractional as defined by responsibility coefficients h(k)ij (which
are provided to tree fitting function as weights of instances computed in line 5 of the algorithm), this
definition has to be modified in that the instances assigned to the node should not be counted, but
instead, their weights should be summed. Hence, we propose the following definition:

p̂l =

∑
i∈U I[yi = l]h

(k)
ij∑

i∈U h
(k)
ij

(5)

and compute the Gini index for the set DU as G(p̂1, . . . , p̂C). Similar modification can be per-
formed for other impurity measures relying on distribution of outcomes of a categorical variable,
like entropy. Note that while the instance assignments to experts are soft, instance assignments to
nodes within an expert are hard, meaning sets of instances assigned to different nodes are disjoint.
Probability estimate for y in the leaf node is usually performed by computing fractions of instances
belonging to each class. In our case, the modification is the same as the one presented by Eq. 5. That
way, estimates of probabilities P (y|x, θ(k)j ) needed by MOE are defined. In Algorithm 1, function
fit tree performs decision tree training using the above modifications.

We consider two ways to perform inference with respect to the obtained model. First one which
we call MOËT, is performed by maximizing P (y|x, θ) with respect to y where this proba-
bility is defined by Eq. 1. The second way, which we call MOËTh, performs inference as
argmaxy P (y|x, θargmaxj gj(x,θg)

), meaning that we only rely on the most probable expert.

Adaptation of MOËT to imitation learning. We integrate MOËT model into imitation learning
approach of Viper by substituting training of DT with the MOËT training procedure.

Expressiveness and interpretability. Standard decision trees used by Viper are interpretable, but
they make their decisions by partitioning the feature space into regions which have borders per-
pendicular to coordinate axes. To approximate borders that are not perpendicular to coordinate
axes very deep trees are usually necessary. MOËTh mitigates this shortcoming by exploiting hard
softmax partitioning of the feature space using borders which are still hyperplanes, but need not
be perpendicular to coordinate axes (see Section 2). This in turn improves the expressiveness while
maintaining interpretability. First, the gating function is interpretable as it is implemented by a linear
model with hyperplanes for decision boundaries that are easily computable from the model param-
eters, second MOËTh uses a single DT for inference (instead of weighted average). In addition, we
show a technique to translate MOËT policy to a logical formula for analysis and verification in Z3.
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Table 1: Comparison of Viper, MOËT, and MOËTh on four environments.

Viper MOËT MOËTh
D R M R M C R M C

CartPole

1 181.76 30.43% \ \
2 200.00 16.65% 200.00 0.84% E2:D1 200.00 0.91% E2:D1
3 200.00 11.04% 200.00 0.66% E3:D1 200.00 0.61% E4:D1
4 200.00 6.87% 200.00 0.92% E3:D2 200.00 0.80% E4:D2
5 200.00 5.89% 200.00 0.93% E3:D3 200.00 0.87% E3:D3

Pong

4 -6.35 76.50% 6.05 76.48% E8:D1 4.88 75.01% E4:D2
6 11.01 70.74% 15.20 70.44% E2:D5 15.21 72.37% E8:D3
8 15.96 68.12% 20.24 64.32% E2:D7 19.13 66.12% E8:D5

10 20.57 59.35% 20.70 56.78% E2:D9 20.73 54.91% E4:D8

Acrobot

2 -86.17 19.83% -82.47 20.50% E2:D1 -81.70 19.18% E2:D1
3 -83.40 19.68% -81.68 17.90% E4:D1 -80.68 19.35% E4:D1
4 -82.64 20.17% -79.92 14.89% E8:D1 -79.70 15.75% E5:D1
5 -81.99 17.41% -78.58 14.74% E7:D2 -81.92 15.88% E4:D3

Mountaincar

2 -119.07 35.09% -105.53 21.35% E2:D1 -107.15 22.85% E2:D1
3 -109.82 24.12% -101.27 14.86% E3:D1 -100.61 13.34% E3:D1
4 -103.53 9.19% -99.67 8.04% E4:D2 -100.36 7.08% E2:D3
5 -102.64 7.67% -100.07 8.84% E6:D2 -100.20 7.31% E8:D2

5 EVALUATION

We now compare MOËT and Viper on four OpenAI Gym environments: CartPole, Pong, Acrobot
and Mountaincar. For DRL agents, we use policy gradient model in CartPole, in other environments
we use a DQN (Mnih et al., 2015) (training parameters provided in appendix). The rewards obtained
by the agents on CartPole, Pong, Acrobot and Mountaincar are 200.00, 21.00,−68.60 and−105.27,
respectively (higher reward is better). Rewards are averaged across 100 runs (250 in CartPole).

Comparison of MOËT, MOËTh, and Viper policies. For CartPole, Acrobot, and Mountaincar
environments, we train Viper DTs with maximum depths of {1, 2, 3, 4, 5}, while in the case of Pong
we use maximum depths of {4, 6, 8, 10} as the problem is more complex and requires deeper trees.
For experts in MOËT policies we use the same maximum depths as in Viper (except for Pong for
which we use depths 1 to 9) and we train the policies for 2 to 8 experts (in case of Pong we train
for {2, 4, 8} experts). We train all policies using 40 iterations of Viper algorithm, and choose the
best performing policy in terms of rewards (and lower misprediction rate in case of equal rewards).
We use two criteria to compare policies: rewards and mispredictions (number of times the student
performs an action different from what a teacher would do). High reward indicates that the student
learned more crucial parts of the teacher’s policy, while a low misprediction rate indicates that in
most cases student performs the same action as the teacher. In order to measure mispredictions, we
run the student for number of runs, and compare actions it took to the actions teacher would perform.

To ensure comparable depths for evaluating Viper and MOËT models while accounting for the
different number of experts in MOËT, we introduce the notion of effective depth of a MOËT model
as dlog2(E)e+D, where E denotes the number of experts and D denotes the depth of each expert.
Table 1 compares the performance of Viper, MOËT and MOËTh. The first column shows the depth
of Viper decision trees and the corresponding effective depth for MOËT, rewards and mispredictions
are shown in R and M columns resp. We show results of the best performing MOËT configuration
for a given effective depth chosen based on average results for rewards and mispredictions, where
e.g. E3:D2 denotes 3 experts with DTs of depth 2. All results shown are averaged across 10 runs1.

1except for Pong which we run for 7 times because of high computational cost.
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(a) DRL agent policy.
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(b) Viper policy.
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(c) MOËTh policy.
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(d) Viper mispredictions.
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(e) MOËTh mispredictions.
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(f) Difference in mispredictions.

Figure 2: Visualization of DRL, Viper, and MOËTh policies, and their differences for Mountaincar.

For CartPole, Viper, MOËT and MOËTh all achieve perfect reward (200) with depths of 2 and
greater. More interestingly, for depth 2 MOËT and MOËTh obtain significantly lower average mis-
prediction rates of 0.84% and 0.91% respectively compared to 16.65% for Viper. Even for larger
depths, the misprediction rates for MOËT and MOËTh remain significantly lower. For Pong, we
observe that MOËT and MOËTh consistently outperform Viper for all depths in terms of rewards
and mispredictions, whereas MOËT and MOËTh have similar performance. For Acrobot, we simi-
larly notice that both MOËT and MOËTh achieve consistently better rewards compared to Viper for
all depths. Moreover, the misprediction rates are also significantly lower for MOËT and MOËTh
in majority of the cases. Finally, for Mountaincar as well, we observe that MOËT and MOËTh
both consistently outperform Viper with significantly higher rewards and lower misprediction rates.
Moreover, in both of these environments, we observe that both MOËT and MOËTh achieve compa-
rable reward and misprediction rates. Additional results are presented in appendix.

Analyzing the learned Policies. We analyze the learned student policies (Viper and MOËTh) by
visualizing their state-action space, the differences between them, and differences with the teacher
policy. We use the Mountaincar environment for this analysis because of the ease of visualizing its
2-dimensional state space comprising of car position (p) and car velocity (v) features, and 3 allowed
actions left, right, and neutral. We visualize DRL, Viper and MOËTh policies in Figure 2, showing
the actions taken in different parts of the state space (additional visualizations are in appendix).

The state space is defined by feature bounds p ∈ [−1.2, 0.6] and v ∈ [−0.07, 0.07], which represent
sets of allowed feature values in Mountaincar. We sample the space uniformly with a resolution
200 × 200. The actions left, neutral, and right are colored in green, yellow, and blue, respectively.
Recall that MOËTh can cover regions whose borders are hyperplanes of arbitrary orientation, while
Viper, i.e. DT can only cover regions whose borders are perpendicular to coordinate axes. This
manifests in MOËTh policy containing slanted borders in yellow and green regions to capture more
precisely the geometry of DRL policy, while the Viper policy only contains straight borders.

Furthermore, we visualize mispredictions for Viper and MOËTh policies. While in previous section
we calculated mispredictions by using student policy for playing the game, in this analysis we vi-
sualize mispredictions across the whole state space by sampling. Note that in some states (critical
states) it is more important to get the action right, while in other states choosing non-optimal action
does not affect the overall score much. Viper authors make use of this observation to weight states
by their importance, and they use difference between Q values of optimal and non-optimal actions
as a proxy for calculating how important (critical) state is. Importance score is calculated as follows:
I(s) = maxa∈AQ(s, a)−mina∈AQ(s, a), whereQ(s, a) denotes theQ value of action a in state s,
andA is a set of all possible actions. Using I function we weight mispredictions by their importance.

We create a vector i consisting of importance scores for sampled points, and normalize it to range
[0, 1]. We also create a binary vector z which is 1 in the case of misprediction (student policy

7
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decision is different from DRL decision) and 0 otherwise. We visualize m = z � i (element-wise
multiplication), where higher value indicates misprediction of higher importance and is denoted by
a red color of higher intensity. Such normalized mispredictions (m) for Viper and MOËTh policies
are shown in Figure 2d and Figure 2e respectively. We can observe that the MOËTh policy has fewer
high intensity regions leading to fewer overall mispredictions.

To provide a quantitative difference between the mispredictions of two policies, we compute M =
(
∑
jmj/

∑
j ij) · 100, which is measure in bounds [0, 100] such that its value is 0 in the case of no

mispredictions, and 100 in the case of all mispredictions. For the policies shown in Figure 2d and
Figure 2e, we obtain M = 15.51 for Viper and M = 11.78 for MOËTh policies. We also show
differences in mispredictions between Viper and MOËTh (Figure 2f), by subtracting the m vector of
MOËTh from the m vector of Viper. The positive values are shown in blue and the negative values
are shown in red. The higher intensity blue regions denote states where MOËTh policy gets more
important action right and Viper does not (similarly vice versa for high intensity red regions).

Translating MOËT to SMT. We now show the translation of MOËT policy to SMT con-
straints for verifying policy properties. We present an example translation of MOËT policy
on CartPole environment with the same property specification that was proposed for verify-
ing Viper policies (Bastani et al., 2018). The goal in CartPole is to keep the pole upright,
which can be encoded as a formula: ψ ≡ s0 ∈ S0 ∧

∧∞
t=1 |φ(ft(st−1, π(st−1))| ≤ y0,
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Figure 3: Verification times.

where si represents state after i steps, φ is the deviation of pole
from the upright position. In order to encode this formula it is
necessary to encode the transition function ft(s, a) which mod-
els environment dynamics: given a state and action it returns
the next state of the environment. Also, it is necessary to en-
code the policy function π(s) that for a given state returns action
to perform. There are two issues with verifying ψ: (1) infinite
time horizon; and (2) the nonlinear transition function ft. To
solve this problem, Bastani et al. (2018) use a finite time horizon
Tmax = 10 and linear approximation of the dynamics and we
make the same assumptions.

To encode π(s) we need to translate both the gating function and DT experts to logical formulas.
Since the gating function in MOËTh uses exponential function, it is difficult to encode the function
directly in Z3 as SMT solvers do not have efficient decision procedures to solve non-linear arith-
metic. The direct encoding of exponentiation therefore leads to prohibitively complex Z3 formulas.
We exploit the following simplification of gating function that is sound when hard prediction is used:

e = argmax
i

(
exp(θTgix)∑E
j=1 exp(θ

T
gjx)

)
= argmax

i
(exp(θTgix)) = argmax

i
(θTgix)

First simplification is possible since the denominators for gatings of all experts are same, and second
simplification is due to the monotonicity of the exponential function. For encoding DTs we use the
same encoding as in Viper. To verify that ψ holds we need to show that ¬ψ is unsatisfiable. We run
the verification with our MOËTh policies and show that ¬ψ is indeed unsatisfiable.

To better understand the scalability of our verification procedure, we report on the verification times
needed to verify policies for different number of experts and different expert depths in Figure 3.
We observe that while MOËTh policies with 2 experts take from 2.6s to 8s for verification, the
verification times for 8 experts can go up to as much as 319s. This directly corresponds to the
complexity of the logical formula obtained with an increase in the number of experts.

6 CONCLUSION

We introduced MOËT, a technique based on MOE with expert decision trees and presented a learn-
ing algorithm to train MOËT models. We then used MOËT models for interpreting DRL agent poli-
cies, where different local DTs specialize on different regions of input space and are combined into a
global policy using a gating function. We showed that MOËT models lead to smaller, more faithful
and performant representation of DRL agents compared to previous state-of-the-art approaches like
Viper while still maintaining interpretability and verifiability.

8



Under review as a conference paper at ICLR 2020

REFERENCES

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484, 2016.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically Interpretable Reinforcement Learning. In International Conference on Ma-
chine Learning, pages 5052–5061, 2018.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. In Advances in Neural Information Processing Systems, pages 2499–2509, 2018.
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Algorithm 2 Viper training (Bastani et al., 2018)

1: procedure VIPER (MDP e, TEACHER πt, Q-FUNCTION Qπt , ITERATIONS N )
2: Initialize dataset and student: D ← ∅, πs0 ← πt
3: for i← 1 to N do
4: Sample trajectories and aggregate: D ← D ∪ {(s, πt(s)) ∼ dπsi−1 (e)}
5: Sample dataset using Q values: Ds ← {(s, a) ∈ I ∼ D}
6: Train decision tree: πsi ← fit tree(Ds)

7: return Best policy πs ∈ {πs1 , ..., πsN }.

A VIPER ALGORITHM

Viper algorithm is shown in Algorithm 2.

B DRL AGENT TRAINING PARAMETERS

Here we present parameters we used to train DRL agents for different environments. For CartPole,
we use policy gradient model as used in Viper. While we use the same model, we had to retrain it
from scratch as the trained Viper agent was not available. For Pong, we use a deep Q-network (DQN)
network (Mnih et al., 2015), and we use the same model as in Viper, which originates from OpenAI
baselines (OpenAI Baselines). For Acrobot and Mountaincar, we implement our own version of
dueling DQN network following (Wang et al., 2015). We use 3 hidden layers with 15 neurons in
each layer. We set the learning rate to 0.001, batch size to 30, step size to 10000 and number of
epochs to 80000. We checkpoint a model every 5000 steps and pick the best performing one in
terms of achieved reward.

C ENVIRONMENTS

In this section we provide a brief description of environments we used in our experiments. We used
four environments from OpenAI Gym: CartPole, Pong, Acrobot and Mountaincar.

C.1 CARTPOLE

This environment consists of a cart and a rigid pole hinged to the cart, based on the system presented
by Barto et al. (Barto et al., 1983). At the beginning pole is upright, and the goal is to prevent it from
falling over. Cart is allowed to move horizontally within predefined bounds, and controller chooses
to apply either left or right force to the cart. State is defined with four variables: x (cart position), ẋ
(cart velocity), θ (pole angle), and θ̇ (pole angular velocity). Game is terminated when the absolute
value of pole angle exceeds 12◦, cart position is more than 2.4 units away from the center, or after
200 successful steps; whichever comes first. In each step reward of +1 is given, and the game is
considered solved when the average reward is over 195 in over 100 consecutive trials.

C.2 PONG

This is a classical Atari game of table tennis with two players. Minimum possible score is −21 and
maximum is 21.

C.3 ACROBOT

This environment is analogous to a gymnast swinging on a horizontal bar, and consists of a two links
and two joins, where the joint between the links is actuated. The environment is based on the system
presented by Sutton (Sutton, 1996). Initially both links are pointing downwards, and the goal is to
swing the end-point (feet) above the bar for at least the length of one link. The state consists of six
variables, four variables consisting of sin and cos values of the joint angles, and two variables for
angular velocities of the joints. The action is either applying negative, neutral, or positive torque
on the joint. At each time step reward of −1 is received, and episode is terminated upon successful

11
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Figure 4: Visualization of gating function for different experts.

reaching the height, or after 200 steps, whichever comes first. Acrobot is an unsolved environment
in that there is no reward limit under which is considered solved, but the goal is to achieve high
reward.

C.4 MOUNTAINCAR

This environment consists of a car positioned between two hills, with a goal of reaching the hill
in front of the car. The environment is based on the system presented by Moore (Moore, 1990).
Car can move in a one-dimensional track, but does not have enough power to reach the hill in one
go, thus it needs to build momentum going back and forth to finally reach the hill. Controller can
choose left, right or neutral action to apply left, right or no force to the car. State is defined by
two variables, describing car position and car velocity. In each step reward of −1 is received, and
episode is terminated upon reaching the hill, or after 200 steps, whichever comes first. The game is
considered solved if average reward over 100 consecutive trials is no less than −110.

D ADDITIONAL VISUALIZATIONS

In this section we provide visualization of a gating function. Figure 4 shows how gating function
partitions the state space for which different experts specialize. Gatings of MOËTh policy with 4
experts and depth 1 are shown.

12
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Table 2: cartpole ViperPlus Evaluation

D R M

1 181.76 30.43%
2 200.00 16.65%
3 200.00 11.04%
4 200.00 6.87%
5 200.00 5.89%

Table 3: cartpole MOE Evaluation

E D R M

2 1 200.00 0.84%
2 2 200.00 1.16%
2 3 200.00 1.04%
2 4 200.00 1.58%
2 5 200.00 2.44%
3 1 200.00 0.66%
3 2 200.00 0.92%
3 3 200.00 0.93%
3 4 200.00 1.37%
3 5 200.00 2.37%
4 1 200.00 0.80%
4 2 200.00 0.97%
4 3 200.00 0.96%
4 4 200.00 1.53%
4 5 199.96 2.71%
5 1 200.00 0.92%
5 2 200.00 1.02%
5 3 200.00 1.26%
5 4 200.00 1.97%
5 5 200.00 3.01%
6 1 200.00 0.99%
6 2 200.00 1.27%
6 3 200.00 1.17%
6 4 200.00 1.97%
6 5 200.00 2.68%
7 1 200.00 0.93%
7 2 200.00 1.07%
7 3 200.00 1.64%
7 4 200.00 2.67%
7 5 200.00 2.91%
8 1 200.00 1.29%
8 2 200.00 1.26%
8 3 200.00 1.57%
8 4 200.00 2.23%
8 5 200.00 3.27%

E ABLATION RESULTS

In this section we show results for all DT depths and numbers of experts used for training Viper
and MOËT policies. Average mispredictions and rewards are shown for all configurations. Ta-
bles 2,3,4 show results for CartPole. Tables 5,6,7 show results for Pong. Tables 8,9,10 show results
for Acrobot. Tables 11,12,13 show results for Mountaincar.

13
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Table 4: cartpole MOEHard Evaluation

E D R M

2 1 200.00 0.91%
2 2 200.00 0.98%
2 3 200.00 1.14%
2 4 200.00 1.34%
2 5 200.00 2.31%
3 1 200.00 0.93%
3 2 200.00 0.95%
3 3 200.00 0.87%
3 4 200.00 1.42%
3 5 200.00 2.48%
4 1 200.00 0.61%
4 2 200.00 0.80%
4 3 200.00 1.15%
4 4 200.00 1.86%
4 5 200.00 2.58%
5 1 200.00 0.92%
5 2 200.00 0.98%
5 3 200.00 1.31%
5 4 200.00 1.95%
5 5 200.00 3.17%
6 1 200.00 0.87%
6 2 200.00 1.02%
6 3 200.00 1.40%
6 4 200.00 2.10%
6 5 200.00 2.95%
7 1 200.00 0.90%
7 2 200.00 1.59%
7 3 200.00 1.36%
7 4 200.00 2.33%
7 5 200.00 3.30%
8 1 200.00 1.12%
8 2 200.00 1.26%
8 3 200.00 1.70%
8 4 200.00 2.57%
8 5 200.00 2.84%

Table 5: pong ViperPlus Evaluation

D R M

4 -6.35 76.50%
6 11.01 70.74%
8 15.96 68.12%
10 20.57 59.35%
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Table 6: pong MOE Evaluation

E D R M

2 3 0.09 74.09%
2 5 15.20 70.44%
2 7 20.24 64.32%
2 9 20.70 56.78%
4 2 2.95 72.88%
4 4 14.70 70.27%
4 6 18.01 65.56%
4 8 20.65 56.72%
8 1 6.05 76.48%
8 3 14.84 73.77%
8 5 17.27 64.35%
8 7 20.62 53.52%

Table 7: pong MOEHard Evaluation

E D R M

2 3 4.60 77.23%
2 5 7.64 74.29%
2 7 16.80 68.04%
2 9 19.51 56.33%
4 2 4.88 75.01%
4 4 15.13 71.10%
4 6 18.04 63.66%
4 8 20.73 54.91%
8 1 -0.23 73.31%
8 3 15.21 72.37%
8 5 19.13 66.12%
8 7 20.63 47.19%

Table 8: acrobot ViperPlus Evaluation

D R M

2 -86.17 19.83%
3 -83.40 19.68%
4 -82.64 20.17%
5 -81.99 17.41%
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Table 9: acrobot MOE Evaluation

E D R M

2 1 -82.47 20.50%
2 2 -83.51 20.63%
2 3 -85.61 19.45%
2 4 -84.22 16.97%
2 5 -82.22 15.49%
3 1 -82.17 19.48%
3 2 -82.34 19.79%
3 3 -83.69 17.47%
3 4 -86.89 17.93%
3 5 -82.28 15.13%
4 1 -81.68 17.90%
4 2 -82.62 17.92%
4 3 -84.28 16.91%
4 4 -84.36 16.34%
4 5 -82.86 14.28%
5 1 -83.70 17.87%
5 2 -83.40 17.75%
5 3 -83.12 16.84%
5 4 -85.50 15.53%
5 5 -84.53 14.67%
6 1 -81.22 17.49%
6 2 -82.74 15.07%
6 3 -84.07 16.23%
6 4 -82.64 13.52%
6 5 -84.45 13.75%
7 1 -81.10 15.88%
7 2 -78.58 14.74%
7 3 -84.00 16.07%
7 4 -81.84 13.89%
7 5 -84.96 13.19%
8 1 -79.92 14.89%
8 2 -80.19 14.23%
8 3 -83.27 15.39%
8 4 -81.61 12.77%
8 5 -82.58 13.28%
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Table 10: acrobot MOEHard Evaluation

E D R M

2 1 -81.70 19.18%
2 2 -83.61 19.68%
2 3 -82.01 19.42%
2 4 -83.86 19.37%
2 5 -85.60 18.11%
3 1 -81.08 19.52%
3 2 -82.71 19.77%
3 3 -86.51 20.72%
3 4 -83.92 17.50%
3 5 -82.01 14.70%
4 1 -80.68 19.35%
4 2 -81.19 18.72%
4 3 -81.92 15.88%
4 4 -81.86 14.68%
4 5 -84.64 15.66%
5 1 -79.70 15.75%
5 2 -84.37 18.84%
5 3 -85.08 17.87%
5 4 -82.42 14.58%
5 5 -84.11 14.83%
6 1 -81.51 16.88%
6 2 -83.27 16.37%
6 3 -85.06 15.77%
6 4 -83.52 13.84%
6 5 -82.11 13.81%
7 1 -83.57 16.61%
7 2 -82.47 15.50%
7 3 -85.09 17.11%
7 4 -81.71 12.82%
7 5 -82.86 13.24%
8 1 -79.96 14.47%
8 2 -82.56 15.41%
8 3 -82.39 15.31%
8 4 -82.97 13.99%
8 5 -84.50 13.17%

Table 11: mountaincar ViperPlus Evaluation

D R M

2 -119.07 35.09%
3 -109.82 24.12%
4 -103.53 9.19%
5 -102.64 7.67%
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Table 12: mountaincar MOE Evaluation

E D R M

2 1 -105.53 21.35%
2 2 -101.58 9.97%
2 3 -100.35 7.41%
2 4 -103.81 10.06%
2 5 -104.60 6.92%
3 1 -101.27 14.86%
3 2 -100.51 7.95%
3 3 -101.27 8.23%
3 4 -103.95 8.91%
3 5 -104.00 6.31%
4 1 -101.87 13.03%
4 2 -99.67 8.04%
4 3 -100.65 7.39%
4 4 -105.02 7.52%
4 5 -103.49 6.39%
5 1 -101.58 11.70%
5 2 -100.50 6.63%
5 3 -100.78 7.24%
5 4 -103.93 8.36%
5 5 -105.33 6.96%
6 1 -101.01 10.73%
6 2 -100.07 8.84%
6 3 -101.45 7.50%
6 4 -104.99 7.83%
6 5 -104.60 6.92%
7 1 -100.57 11.72%
7 2 -100.79 7.69%
7 3 -102.05 8.83%
7 4 -104.44 7.21%
7 5 -103.39 4.82%
8 1 -102.15 13.32%
8 2 -100.36 7.40%
8 3 -102.06 7.00%
8 4 -105.07 6.48%
8 5 -104.91 6.34%
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Table 13: mountaincar MOEHard Evaluation

E D R M

2 1 -107.15 22.85%
2 2 -102.37 12.27%
2 3 -100.36 7.08%
2 4 -101.33 7.97%
2 5 -104.40 7.10%
3 1 -100.61 13.34%
3 2 -100.79 8.10%
3 3 -100.57 6.96%
3 4 -102.71 7.61%
3 5 -103.97 5.90%
4 1 -102.06 11.65%
4 2 -100.36 9.77%
4 3 -101.17 7.89%
4 4 -104.29 6.84%
4 5 -104.21 5.65%
5 1 -100.86 11.05%
5 2 -100.42 7.57%
5 3 -101.27 7.59%
5 4 -104.00 5.94%
5 5 -104.16 4.70%
6 1 -100.68 9.62%
6 2 -100.60 8.56%
6 3 -100.68 7.14%
6 4 -104.92 6.97%
6 5 -104.40 6.05%
7 1 -100.59 11.85%
7 2 -100.52 7.84%
7 3 -101.67 7.06%
7 4 -102.81 5.27%
7 5 -105.14 8.18%
8 1 -103.09 12.71%
8 2 -100.20 7.31%
8 3 -101.41 6.69%
8 4 -104.67 5.73%
8 5 -105.80 4.69%
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