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ABSTRACT

Recent breakthroughs of large-scale pretrained language models have shown the
effectiveness of self-training for natural language processing (NLP). In addition
to standard syntactic and semantic NLP tasks, pretrained models achieve strong
improvements on tasks that involve real-world knowledge, suggesting that large-
scale language modeling could be an implicit method to capture knowledge. In
this work, we further investigate the extent to which pretrained models such as
BERT capture knowledge using a zero-shot fact completion task. Moreover, we
propose a simple yet effective weakly supervised training objective, which explic-
itly forces the model to incorporate knowledge about real-world entities. Models
trained with our new objective yield significant improvements on the fact comple-
tion task. When applied to downstream tasks, our model also achieves consistent
improvements over BERT on four entity-related question answering datasets (av-
erage 2.7 F1 improvements on WebQuestions, TriviaQA, SearchQA and Quasar-
T) and a standard fine-grained entity typing dataset (i.e., 5.7 accuracy gains on
FIGER), establishing several new state-of-the-art.

1 INTRODUCTION

Language Models pretrained on a large amount of text such as ELMo (Peters et al., 2018a)),
BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019c) have established new state-of-the-art
on a wide variety of NLP tasks. Researchers ascertain that pretraining allows models to learn syn-
tactic and semantic information about language that is then transferred on other tasks (Peters et al.,
2018b; Clark et al., 2019). Interestingly, pretrained models also perform well on tasks that re-
quire grounding language and reasoning about the real world. For instance, the new state-of-the-art
for WNLI (Wang et al., 2019), ReCoRD (Zhang et al., 2018) and SWAG (Zellers et al., 2018) is
achieved by pretrained models. These tasks are carefully designed so that the text input alone does
not convey the complete information for accurate predictions – external knowledge is required to
fill the gap. These results suggest that large-scale pretrained models implicitly capture real-world
knowledge. Logan et al. (2019) and Petroni et al. (2019) further validate this hypothesis through
a zero-shot fact completion task that involves single-token entities, showing that pretrained models
achieve much better performance than random guessing and can be on par with specifically-trained
relation extraction models.

As unstructured text encodes a great deal of information about the world, large-scale pretraining
over text data holds the promise of simultaneously learning syntax, semantics and connecting them
with knowledge about the real world within a single model. However, existing pretraining objectives
are usually defined at the token level and do not explicitly model entity-centric knowledge. In this
work, we investigate whether we can further enforce pretrained models to focus on encyclopedic
knowledge about real-world entities, so that they can better capture entity information from natural
language and be applied to improving entity-related NLP tasks. We evaluate the extent to which a
pretrained model represents such knowledge by extending an existing fact completion evaluation to
a cloze ranking setting that allows us to deal with a large number of multi-token entity names without
manual judgments. Our experiments on 10 common Wikidata (Vrandečić & Krötzsch, 2014) rela-
tions reveal that existing pretrained models encode entity-level knowledge only to a limited degree.
Thus, we propose a new weakly supervised knowledge learning objective that requires the model to
distinguish between true and false knowledge expressed in natural language. Specifically, we replace
entity mentions in the original documents with names of other entities of the same type and train
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Figure 1: Type-Constrained Entity Replacements for Knowledge Learning.

the models to distinguish the correct entity mention from randomly chosen ones. Models trained
with this objective demonstrates much stronger fact completion performance for most relations we
test on. Compared with previous work (Zhang et al., 2019; Peters et al., 2019) that utilize external
knowledge base to incorporate entity knowledge, our method is able to directly derive real-world
knowledge from unstructured text. Moreover, our method requires no additional data processing,
memory or modifications to the BERT model when fine-tuning for downstream tasks.

We test our model on two practical NLP problems that require entity knowledge: Question Answer-
ing (QA) and fine-grained Entity Typing. We use four previously published datasets for open-domain
QA and observe that questions in these datasets often concern entities. The Entity Typing task re-
quires the model to recognize fine-grained types of specified entity mentions given short contexts.
Our pretraining method outperforms all previous state-of-the-arts on three of the QA datasets and
the fine-grained typing task. Through ablation analysis, we show that the new entity-centric training
objective is instrumental for achieving state-of-the-art results.

In summary, this paper makes the following contributions: 1) We extend existing fact completion
evaluation settings to test pretrained models’ ability on encoding knowledge of common real-world
entities; 2) We propose a new weakly supervised pretraining method which results in models that
better capture knowledge about real-world entities from natural language text; 3) The model trained
with our knowledge learning objective establishes new state-of-the-art on three entity-related QA
datasets and a standard fine-grained entity typing dataset.

We begin by introducing our weakly supervised method for knowledge learning (§2) and then dis-
cuss experiment settings and evaluation protocols, compare our model to previously published work
and perform ablation analysis. Finally, we review related work in §4 and conclude in §5.

2 ENTITY REPLACEMENT TRAINING

We design an entity-centric training objective that utilizes weakly supervised training signals to
explicitly encourage knowledge learning during pretraining. Given an input document, we first
recognize the entity mentions and link them to Wikipedia entities1. We consider the original texts
as positive knowledge statements and create negative statements by randomly replacing the entity
mentions (E+) with the names of other random entities (E−) that have the same entity type as the
mentioned entity. This setup is similar in spirit to the type-constrained negative sampling technique
used to train knowledge base representations (Bordes et al., 2013). The latter technique creates

1The entity links are only required for pretraining.
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negative triples by replacing the subject or object entity with random entities of the same type.
Instead of knowledge base triples, we treat unstructured texts as factual statements. For a certain
entity e mentioned in a context C, we train the model to make a binary prediction indicating whether
the entity has been replaced:

Je,C = 1e∈E+ logP (e|C) + (1− 1e∈E+) log(1− P (e|C)).

Compared to the language modeling objective, entity replacement is defined at the entity level and
introduces stronger negative signals. When we enforce entities to be of the same type, we pre-
serve the linguistic correctness of the original sentence while the system needs to learn to perform
judgment based on the factual aspect of the sentence.

We describe the implementation in more detail in the following paragraphs.

Data Preparation We use the whole Wikipedia dump as training data and rely on all Wikipedia
entities2. Entities in documents are recognized based on Wikipedia anchor links and entity alias from
Wikidata. That is, we first retrieve the entities annotated by anchor links and then find other mentions
of these entities by string matching their Wikidata alias. We split each document into multiple text
chunks with the same size (512 tokens). Although our experiments rely on the Wikipedia corpus,
this setup can be easily extended to larger corpora with off-the-shelf entity linking tools. We leave
the larger scope of the experiments to future work.

Replacement Strategy When replacing entities, we first lookup type information from Wikidata
and then randomly select other entities with the same type. We do not replace adjacent entities.
In other words, there must be at least one unreplaced entity between any two replaced ones. This
reduces cases where we replace all entities in the same sentence and the resulting sentences happen
to introduce correct entities by chance. For replacement, we randomly sample a string from the
entities alias set. For each text chunk, we replicate it 10 times with different negative entities for
each replacement location. We show an illustration of the entity replacement method in Figure 1.

Model Architecture We use the Transformer (Vaswani et al., 2017) model used by BERT (Devlin
et al., 2019). We use the same architecture as BERT base: 12 Transformer layers, each with hidden
dimension 768. We initialize the transformer with a model pretrained based on our own BERT re-
implementations3. For each entity, we use the final representations of its boundary words (words
before and after the entity mention) to make predictions. We simply concatenate the boundary
words’ representations and add a linear layer for prediction. During training, we use 0.05 dropout at
the final layer.

Training Objectives Masked language model pretraining has been proven to be effective for
downstream tasks. While training for entity replacement we also train with the masked language
model objective in a multi-task set-up. When masking tokens, we restrict the masks to be outside
the entity spans. We use a masking ratio of 5% instead of 15% in the original BERT to avoid mask-
ing out too much of the context. We train the model for approximately 1 million updates using a
batch size of 128.

3 EXPERIMENTS

We first test our model on a fact completion task. This task resembles traditional knowledge base
completion: it requires the model to complete missing entities in factual triples. We further test
on two real-world downstream tasks that require entity-level knowledge – question answering and
fine-grained entity typing. We describe the hyperparameter and training settings of all experiments
in the appendix.

2Each Wikipedia entity (title) corresponds to a unique entity node in Wikidata.
3We use the masked language model implementation in Fairseq (Ott et al., 2019) to pre-train model for 2M

updates on the combination of BooksCorpus (Zhu et al., 2015) and English Wikipedia.
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3.1 ZERO-SHOT FACT COMPLETION

In traditional knowledge base completion tasks models have access to a set of training triples. In-
stead, we utilize a zero-shot test to examine the model’s ability to automatically derive relational
knowledge from natural language.

Dataset We rely on factual triples from Wikidata. Each triple describes the relationship between
two certain entities, e.g., {Paris, CapitalOf, France}. Following recent practices (Bosselut et al.,
2019; Logan et al., 2019) that decode structured knowledge from language models, we first manually
create templates to convert triples of 10 common relations into natural language expressions ({Paris,
CapitalOf, France}→ the capital of France is Paris). We then create queries by removing the object
entity in the expression and use pre-trained models to predict the missing entities, e.g., the capital
of France is ?. We create 1000 cloze examples4 for each of the 10 relations.

Evaluation Metrics Previous work (Logan et al., 2019; Petroni et al., 2019) either relies on human
evaluation or only considers single-token entities for fact completion. In contrast, we consider an
entity-ranking setup and create a set of candidate entities for each relation. This setting allows us
to automatically evaluate a large number of queries that usually involve multi-token entities. We
test pretrained models on their ability to recover the correct object entity from the candidate set. To
create the negative choices, we select from the set of all object entities in the particular relation,
which generally have the same type as the groundtruth and are more challenging to distinguish than
entities with different types. Our evaluation strategy is similar to previous work on knowledge base
completion (Nickel et al., 2011; Bordes et al., 2013). We follow these studies and use Hits@10 as
the evaluation metric.

Baselines We compare our model with two pretrained language models BERT (Devlin et al., 2019)
(both base and large) and GPT-2 (Radford et al., 2019). We make use of their output token proba-
bilities to rank candidate entities. For BERT, we feed in the masked queries (e.g., Qmasked = the
capital of France is [MASK]). For multi-token candidates, we use the same number of
[MASK] tokens in the query inputs. We use the average log probability of masked tokens for rank-
ing. Given a multi-token entity Ei = [e1i , e

2
i , ..., e

|Ei|
i ], the ranking score from BERT is calculated

as

SEi =
1

|Ei|
∑
k

logP (eki |Qmasked).

For GPT-2, we feed in the original query without the answer entity and use the first-token probability
of candidate entities for ranking, which performs better than using average log probabilities.

Results Table 1 shows the fact completion results for all relations. We denote our method WKLM
for (Weakly Supervised Knowledge-Pretrained Language Model). Overall, WKLM achieves the
best results on 8 of the 10 relations. We also observe that GPT-2 outperforms BERT on average.
We think this is because the fact completion task requires models to predict the missing entities
using only a short context on the left, while BERT pretraining incorporates context from both di-
rections. Interestingly, BERT achieves good performance on several geographical relations such as
PlaceOfBirth, LocatedIn and PlaceOfDeath. We conjecture that this is because loca-
tion entities usually appear at sentence ends in Wikipedia articles, e.g., Obama was born in
Honolulu, Hawaii.. This sentence pattern is similar to our templates and BERT may learn to
rely mostly on the left context to make predictions. On most relations that include answers that are
person names, BERT lags behind both GPT-2 and our model.

Comparing the top and bottom five relations, we observe that BERT’s performance is correlated
with the size of the candidate set, while WKLM and GPT-2 are less sensitive to this number. Similar
pattern exists between models’ performance and the cardinality of groundtruth answers, i.e., our
model achieves similar performance on both single-answer and multiple-answer queries while BERT
is usually better at single-answer queries. WKLM both outperforms BERT and GPT-2 and achieves
robust performance across relations with different properties. Visualization of correlations between
relation properties and model performance can be found in the appendix.

4For each relation, we use the top triples that connecting most common entities.
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Table 1: Zero-Shot Fact Completion Results.
Relation
Name

# of
Candidates

# of
Answers

Model
BERT-base BERT-large GPT-2 Ours

HASCHILD (P40) 906 3.8 9.00 6.00 20.5 63.5
NOTABLEWORK (P800) 901 5.2 1.88 2.56 2.39 4.10
CAPITALOF (P36) 820 2.2 1.87 1.55 15.8 49.1
FOUNDEDBY (P112) 798 3.7 2.44 1.93 8.65 24.2
CREATOR (P170) 536 3.6 4.57 4.57 7.27 9.84
PLACEOFBIRTH (P19) 497 1.8 19.2 30.9 8.95 23.2
LOCATEDIN (P131)) 382 1.9 13.2 52.5 21.0 61.1
EDUCATEDAT (P69) 374 4.1 9.10 7.93 11.0 16.9
PLACEOFDEATH (P20) 313 1.7 43.0 42.6 8.83 26.5
OCCUPATION (P106) 190 1.4 8.58 10.7 9.17 10.7

Average Hits@10 572 2.9 11.3 16.1 16.3 28.9

3.2 DOWNSTREAM TASKS

Background knowledge is important for language understanding. We expect our pretraining ap-
proach to be beneficial to NLP applications where entity-level knowledge is essential. We consider
two such applications: question answering and entity-typing. We find that a large portion of the
questions in existing QA datasets are about entities and involve entity relations. In a way, our pre-
training objective is analogous to question answering in a multiple-choice setting (Hermann et al.,
2015). The entity-typing task requires the model to predict a set of correct types of entity mentions
in a short context. The context itself can be insufficient and the training data for this task is small
and noisy. We believe a model that encodes background entity knowledge can help in both cases.

3.2.1 QUESTION ANSWERING

Datasets We consider four question answering datasets:

• WebQuestions (Berant et al., 2013) is originally a dataset for knowledge base question
answering. The questions are collected using Google Suggest API and are all asking about
simple relational facts of Freebase entities.
• TriviaQA5 (Joshi et al., 2017) includes questions from trivia and quiz-league websites.

Apart from a small portion of questions to which the answers are numbers and free texts,
92.85% of the answers are Wikipedia entities.
• Quasar-T (Dhingra et al., 2017) is another dataset that includes trivia questions. Most of

the answers in this dataset are none phrases. According to our manual analysis on random
samples, 88% of the answers are real-world entities6.
• SearchQA (Dunn et al., 2017) uses questions from the television quiz show Jeopardy! and

we also find that almost all of the answers are real-world entities.

Questions in all three datasets are created without the context of a paragraph, which resembles the
scenario of practical question answering applications. All the questions except WebQuestions are
written by humans. This indicates that humans are generally interested to ask questions to seek
information about entities. We show the statistics and example questions in Table 2. Since our
model is based on our own BERT implementations, in addition to the aforementioned entity-related
datasets, we first use the standard SQuAD (Rajpurkar et al., 2016) benchmark to validate our model’s
answer extraction performance.

Settings We adopt the fine-tuning approach to extract answer spans with pretrained models. We
add linear layers over the last hidden states of the pretrained models to predict the start and end
positions of the answer. Unlike SQuAD, questions in the datasets we use are not paired with para-
graphs that contain the answer. We follow previous work (Chen et al., 2017; Wang et al., 2018a)
and retrieve context paragraphs with information retrieval systems. Details of the context retrieval

5The splits of TriviaQA might be different in previous work, we use the same splits used by Lin et al. (2018).
6We consider answers as entities as long as they correspond to Wikidata entities or Wikipedia titles.
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Table 2: Properties of the QA Datasets.
Dataset Train Valid Test Example Questions

WebQuestions 3778 - 2032 Who plays Stewie Griffin on Family Guy?
TriviaQA 87291 11274 10790 What is the Japanese share index called?
SearchQA 99811 13893 27247 Hero several books 11 discover’s wizard?
Quasar-T 37012 3000 3000 Which vegetable is a Welsh emblem?

process for each dataset can be found in the appendix. Reader models are trained with the same dis-
tantly supervised data7. Since the reader model needs to read multiple paragraphs to predict a single
answer at inference time, we also train a BERT based paragraph ranker with distant-supervised data
to assign each paragraph a relevance score. The paragraph ranker takes question and paragraph
pairs and predicts a score in the range [0, 1] for each pair. During inference, for each question and
its evidence paragraph set, we first use the paragraph reader to extract the best answer from each
paragraph. These answers are then ranked based on a linear combination of the answer extraction
score (a log sum of the answer start and end scores) and the paragraph relevance score. We also
evaluate model performance without using the relevance scores.

Open-Domain QA Baselines We compare our QA model with the following systems:

• DrQA (Chen et al., 2017) is an open-domain QA system which uses TF-IDF with bigram
features for ranking and a simple attentive reader for answer extraction.

• R3 (Wang et al., 2018a) is a reinforcement learning based system which jointly trains a
paragraph ranker and a document reader.

• DSQA (Lin et al., 2018) uses RNN-based paragraph ranker and jointly trains the paragraph
ranker and attentive paragraph ranker with a multi-task loss.

• Evidence Aggregation (Wang et al., 2018b) uses a hybrid answer reranking module to
aggregate answer information from multiple paragraphs and rerank the answers extracted
from multiple paragraphs.

• BERTserini (Yang et al., 2019a) is a BERT-based open-domain QA system, which uses
BM25-based retriever to retrieve 100 paragraphs and a BERT-based reader to extract an-
swers. The paragraph reader is either trained with SQuAD (Rajpurkar et al., 2016) data or
distant-supervision data (Yang et al., 2019b)

• ORQA (Lee et al., 2019) replaces the traditional BM25 ranking with a BERT-based ranker.
The ranker model is pretrained on the whole Wikipedia corpus with an inverse cloze
task which simulates the matching between questions and paragraphs. All text blocks in
Wikipedia are be pre-encoded as vectors and retrieved with Locality Sensitive Hashing.

Table 3: SQuAD Dev Results.
Model EM F1

Google’s BERT-base 80.8 88.5
Google’s BERT-large 84.1 90.9
Our BERT-base 83.4 90.5
WKLM (base) 84.3 91.3

Results Table 3 shows the SQuAD results and Ta-
ble 4 shows the open-domain results on the four
datasets that are highly entity-related. From the
SQuAD results, we observe that our BERT reimple-
mentation performs better than the original model this
is due to the fact that it is trained for twice as many
updates: 2 million vs. 1 million for the original BERT.
Although lots of the answers in SQuAD are non-entity
spans, the WKLM model we propose achieves better
performance than BERT. We believe the improvement
is due to both the masked language model and entity
replacement objectives. Ablation experiments on the training objectives will be discussed in §3.2.3.

Having established that our BERT re-implementation performs better than the original model, we
compare with only our own BERT for the following experiments. From Table 4, we see that our
model produces consistent improvements across different datasets. Compared to the 0.8 F1 im-
provements over BERT on SQuAD, we achieve an average of 2.7 F1 improvements over BERT on

7We treat any text span in any retrieved paragraph as ground truth as long as it matches the original answers.
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entity-related datasets when the ranking scores are not used. On TriviaQA and Quasar-T, WKLM
outperforms our BERT even when it uses ranking scores. Improvements in natural language ques-
tion datasets (WebQuestions, TriviaQA, and Quasar-T) are more significant than SearchQA where
the questions are informal queries. When we utilize ranking scores from a simple BERT based
ranker, we are able to achieve the state-of-the-art on three of the four datasets.

Table 4: Open-domain QA Results.

Model WebQuestions TriviaQA Quasar-T SearchQA
EM F1 EM F1 EM F1 EM F1

DrQA (Chen et al., 2017) 20.7 - - - - - - -
R3 (Wang et al., 2018a) - - 50.6 57.3 42.3 49.6 57.0 63.2
DSQA (Lin et al., 2018) 18.5 25.6 48.7 56.3 42.2 49.3 49.0 55.3
Evidence Agg. (Wang et al., 2018b) - - 50.6 57.3 42.3 49.6 57.0 63.2
BERTserini (Yang et al., 2019a) - - 51.0 56.3 - - - -
BERTserini+DS (Yang et al., 2019b) - - 54.4 60.2 - - - -
ORQA (Lee et al., 2019) 36.4 - 45.0 - - - - -

Our BERT 29.2 35.5 48.7 53.2 40.4 46.1 57.1 61.9
Our BERT + Ranking score 32.2 38.9 52.1 56.5 43.2 49.2 60.6 65.9
WKLM 30.8 37.9 52.2 56.7 43.7 49.9 58.7 63.3
WKLM + Ranking score 34.6 41.8 58.1 63.1 45.8 52.2 61.7 66.7

3.2.2 ENTITY TYPING

To compare with an existing study (Zhang et al., 2019) that also attempts to incorporate entity
knowledge into language models, we consider an additional entity typing task using the large FIGER
dataset (Ling & Weld, 2012). The task is to assign a fine-grained type to entity mentions. We do that
by adding two special tokens before and after the entity span to mark the entity position. We use the
final representation of the start token ([CLS]) to predict the entity types. The model is fine-tuned on
weakly supervised training data with binary cross entropy loss. We evaluate the models using strict
accuracy, loose micro and macro F1 scores.

We show the results in Table 5. We compare our model with two non-BERT neural baselines (Inui
et al., 2017) that integrate a set of hand-crafted features: LSTM + Hand-crafted and Attentive +
Hand-crafted; a vanilla BERT baseline and the ERNIE model (Zhang et al., 2019) that enhances
BERT with knowledge base embeddings.

First, we see that naively applying BERT is less effective than simple models combined with sparse
hand-crafted features. Although the ERNIE model is able to improve over BERT by 5.15 points,
its performance still lags behind models that make good use of hand-crafted features. In contrast,
although based on a stronger BERT model, our model achieves larger absolute improvements (5.68
points) and sets a new state-of-the-art for this task. Given the larger improvement margin, we believe
our model that directly learn knowledge from text is more effective than the ERNIE method.

3.2.3 ABLATION STUDY: THE EFFECT OF MASKED LANGUAGE MODEL LOSS

In view of a recent study (Liu et al., 2019b) showing simply extending the training time of BERT
leads to stronger performance on various downstream tasks, we conduct further analysis to differ-
entiate the effects of entity replacement training and masked language modeling. We compare our
model with three variants: a model pretrained only with the knowledge learning objective (WKLM

Table 5: Fine-grained Entity Typing Results on the FIGER dataset.
Model Acc Ma-F1 Mi-F1

LSTM + Hand-crafted (Inui et al., 2017) 57.02 76.98 73.94
Attentive + Hand-crafted (Inui et al., 2017) 59.68 78.97 75.36
BERT baseline (Zhang et al., 2019) 52.04 75.16 71.63
ERNIE (Zhang et al., 2019) 57.19 75.61 73.39

Our BERT 54.53 79.57 74.74
WKLM 60.21 81.99 77.00
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without MLM), a model trained with both knowledge learning and masked language modeling with
more masked words (WKLM with 15% MLM) and a BERT model trained with additional 1 million
updates on Wikipedia (BERT + 1M MLM updates) and no knowledge learning.

The ablation results are shown in Table 6. The results of WKLM without MLM validate that adding
the language model objective is essential for downstream performance. We also find that masking
out too many words (i.e., 15% masking ratio as in the original BERT) leads to worse results. We
conjecture that too many masked words outside entity mentions break parts of the context informa-
tion and introduce noisy signals to knowledge learning. Results of continued BERT training show
that more MLM updates are often beneficial, especially for SQuAD. However, on tasks that are more
entity-centric, continued MLM training is less effective than our WKLM method. This suggests that
our WKLM method could serve as an effective complementary recipe to masked language modeling
when applied to entity-related NLP tasks.

Table 6: Ablation Studies on Masked Language Model and Masking Ratios.

Model SQuAD TriviaQA Quasar-T FIGER
EM F1 EM F1 EM F1 Acc

Our BERT 83.4 90.5 48.7 53.2 40.4 46.1 54.53

WKLM 84.3 91.3 52.2 56.7 43.7 49.9 60.21
WKLM without MLM 80.5 87.6 48.2 52.5 42.2 48.1 58.44
WKLM with 15% masking 84.1 91.0 51.0 55.3 42.9 49.0 59.68
Our BERT + 1M MLM updates 84.4 91.1 52.0 56.3 42.3 48.2 54.17

4 RELATED WORK

Pretrained Language Representations Early research on language representations focused on
static unsupervised word representations (Mikolov et al., 2013; Pennington et al., 2014). Word
embeddings leverage co-occurrences to learn latent word vectors that approximately reflect word
semantics. Given that words can have different meanings in different contexts, more recent stud-
ies (McCann et al., 2017; Peters et al., 2018a) show that contextual language representations can
be more powerful than static word embeddings in downstream tasks. This direction has been fur-
ther explored at a larger scale with efficient Transformer architectures (Radford et al., 2019; Devlin
et al., 2019; Yang et al., 2019c). Our WKLM method is based on these techniques and we focus on
improving the knowledge ability of pretrained models.

Knowledge-Enhanced NLP Models Background knowledge has been considered an indispens-
able part of language understanding (Fillmore et al., 1976; Minsky, 1988). As standard language
encoders usually do not explicitly model knowledge, recent studies (Ahn et al., 2016; Yang &
Mitchell, 2017; Logan et al., 2019; Liu et al., 2019a) have explored methods to incorporate ex-
ternal knowledge into NLP models. Most of these methods rely on additional inputs such as entity
representations from structured knowledge bases. With the breakthrough of large-scale pretrained
language encoders (Devlin et al., 2019), Zhang et al. (2019) and Peters et al. (2019) adopt similar
ideas and propose entity-level knowledge enhancement training objectives to incorporate knowl-
edge into pretrained models. In contrast to these methods, our method utilizes minimal external
entity information and does not require additional memory or architectural changes when applied to
downstream tasks.

5 CONCLUSION

We introduce a weakly supervised method to encourage pretrained language models to learn entity-
level knowledge. Our method uses minimal entity information during pretraining and does not in-
troduce additional computation, memory or architectural overhead for downstream task fine-tuning.
The trained model demonstrates strong performance on a probing fact completion task and two
entity-related NLP tasks. Together, our results show the potential of directly learning entity-level
knowledge from unstructured natural language and the benefits of large-scale knowledge-aware pre-
training for downstream NLP tasks.
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A APPENDIX

Implementation Details and Hyperparameters We implement our method using Fairseq Ott
et al. (2019) and the fact completion baselines are implemented with Huggingface’s Pytorch-
Transformers8. We pretrain the models with 32 V100 GPUs for 3 days. We use at most 2 GPUs for
fine-tuning the paragraph reader, use 8 GPUs for fine-tuning the paragraph ranker. The entity-typing
experiments require larger batch sizes and take 8 GPUs for training.

For the knowledge learning pretraining phase, we use the Adam optimizer (Kingma & Ba, 2014)
with learning rate 1e-5, batch size 128 and weight decay 0.01. The model is pretrained on 32
V100 GPUs for 3 days. To train the paragraph reader for open-domain QA, we select the best
learning rate from {1e-6, 5e-6, 1e-5, 2e-5} and last layer dropout ratio from {0.1, 0.2}. We set the
maximum training epoch to be 10 and batch size to be 32. The maximal input sequence length is 512
for WebQuestions and 128 for the other three datasets that use sentence-level paragraphs. For the
paragraph ranker, we choose learning rate from {1e-5, 2e-5, 5e-6}, use dropout 0.1 and batch size
256. The maximal sequence length for each dataset is consistent with the one we used for training
the paragraph reader. The linear combination of ranking and extraction scores is selected based on
validation performance. For SQuAD experiments, we select learning rate from {1e-5, 5e-6, 2e-5,
3e-5}, learning rate from {8, 16}, last layer dropout ratio from {0.1, 0.2}. We set the maximal
sequence length as 512 and the maximal training epoch as 5. For entity typing, we select learning
rate from {1e-5, 2e-5, 3e-5, 5e-5} and batch size from {128, 256}. We set the maximal sequence
length to be 256, last layer dropout ratio to be 0.1. The model is fine-tuned for at most 3 epochs to
prevent overfitting. The threshold for type prediction is selected on the validation set.

Context Collection for QA Datasets For WebQuestions, we collect evidence context using the
document retriever of DrQA (Chen et al., 2017), which uses TF-IDF based metric to retrieve the
top 5 Wikipedia articles. For Quasar-T, we use Lucene ranked paragraphs. For SearchQA and
TriviaQA, we use paragraphs ranked by search engines. Following existing research (Wang et al.,
2018b; Lin et al., 2018), we use sentence-level paragraphs for SearchQA (50 sentences), TriviaQA
(100 sentences) and SearchQA (100 sentences).

Correlation between Fact Completion Results and Properties of Relations Figure 2 shows
the fact completion results of BERT is unstable on different relations with different properties, i.e.,
BERT’s performance is strongly correlated with the size of candidate entity set and the number of
groundtruth answers. Compared to BERT, WKLM is often less sensitive to these two factors.
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Figure 2: Left: Correlation between candidate set size and hits@10; Right: Correlation between
number of groundtruth answers and hits@10.

8https://huggingface.co/pytorch-transformers
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