
Under review as a conference paper at ICLR 2020

LEARNING TO RANK LEARNING CURVES

Anonymous authors
Paper under double-blind review

ABSTRACT

Many automated machine learning methods, such as those for hyperparameter
and neural architecture optimization, are computationally expensive because they
involve training many different model configurations. In this work, we present a
new method that saves computational budget by terminating poor configurations
early on in the training. In contrast to existing methods, we consider this task as a
ranking and transfer learning problem. We qualitatively show that by optimizing
a pairwise ranking loss and leveraging learning curves from other data sets, our
model is able to effectively rank learning curves without having to observe many
or very long learning curves. We further demonstrate that our method can be
used to accelerate a neural architecture search by a factor of up to 100 without
a significant performance degradation of the discovered architecture. In further
experiments we analyze the quality of ranking, the influence of different model
components as well as the predictive behavior of the model.

1 INTRODUCTION

A method commonly used by human experts to speed up the optimization of neural architectures
or hyperparameters is the early termination of iterative training processes that are unlikely to im-
prove the current solution. A common technique to determine the likelihood of no improvement is
to compare the learning curve of a new configuration to the one of the currently best configuration.
This idea can also be used to speed up automated machine learning processes. For this purpose, it is
common practice to extrapolate the partial learning curve in order to predict the final performance
of the currently investigated model. Current extrapolation techniques have several weaknesses that
make them unable to realize their full potential in practice. Many of the methods require sufficient
sample learning curves to make reliable predictions (Chandrashekaran & Lane, 2017; Klein et al.,
2017; Baker et al., 2018). Thus, the extrapolation method for the first candidates can not be used yet,
which means more computational effort. Other methods do not have this disadvantage, but require
sufficiently long learning curves to make reliable predictions which again means unnecessary over-
head (Domhan et al., 2015). Many of these methods also do not take into account other information
such as the hyperparameters of the model being examined or its network architecture.

We address the need for sample learning curves by devising a transfer learning technique that uses
learning curves from other problems. Since the range of accuracy varies from data set to data
set, we are forced to consider this in our modeling. But since we are not interested in predicting
the performance of a model anyway, we use a ranking model that models the probability that the
model currently being investigated surpasses the best solution so far. This does not only solve the
problem but also provides a better modeling of the actual task. In order to be able to make reliable
predictions for short learning curves, we consider further characteristics of the model such as its
network architecture. We compare our ranking method with respect to a ranking measure against
different methods on five different image classification data sets. We also show that our method is
capable of significantly accelerating a neural architecture search. Furthermore, we conduct several
ablation studies to provide a better motivation of our model and its behavior.

2 RELATED WORK

Most of the prior work for learning curve prediction is based on the idea of extrapolating the partial
learning curve by using a combination of continuously increasing basic functions.

1



Under review as a conference paper at ICLR 2020

Iterations

V
al

id
at

io
n

A
cc

ur
ac

y

×
Final Performance

×
Intermediate Performance

Figure 1: Learning curve prediction tries to predict from the partial learning curve (solid line) the
final performance.

Domhan et al. (2015) define a set of 11 parametric basic functions, estimate their parameters and
combine them in an ensemble. Klein et al. (2017) propose a heteroscedastic Bayesian model which
learns a weighted average of the basic functions. Chandrashekaran & Lane (2017) do not use basic
functions but use previously observed learning curves of the current data set. An affine transforma-
tion for each previously seen learning curve is estimated by minimizing the mean squared error with
respect to the partial learning curve. The best fitting extrapolations are averaged as the final predic-
tion. Baker et al. (2018) use a different procedure. They use support vector machines as sequential
regressive models to predict the final accuracy based on features extracted from the learning curves,
its gradients, and the neural architecture itself.

The predictor by Domhan et al. (2015) is able to forecast without seeing any learning curve before
but requires observing more epochs for accurate predictions. The model by Chandrashekaran &
Lane (2017) requires seeing few learning curves to extrapolate future learning curves. However,
accurate forecasts are already possible after few epochs. Algorithms proposed by Klein et al. (2017);
Baker et al. (2018) need to observe many full-length learning curves before providing any useful
forecasts. However, this is prohibiting in the scenarios where learning is time-consuming such as in
large convolutional neural networks.

All previous methods for automatically terminating iterative learning processes are based on meth-
ods that predict the learning curve. Ultimately, however, we are less interested in the exact learning
curve but rather whether the current learning curve leads to a better result. This way of obtaining
a ranking is referred to as pointwise ranking methods (Liu, 2011). They have proven to be less
efficient than pairwise ranking methods which directly optimize for the objective function (Burges
et al., 2005). Yet, we are the first to consider a pairwise ranking loss for this application.

The use of methods that terminate less promising iterative training processes early are of particular
interest in the field of automated machine learning, as they can, for example, significantly accel-
erate hyperparameter optimization. The most computationally intensive subproblem of automated
machine learning is Neural Architecture Search (Zoph & Le, 2017), the optimization of the neural
network topology. Our method is not limited to this problem, but as it is currently one of the ma-
jor challenges in automated machine learning, we use this problem as a sample application in our
evaluation.

3 LEARNING CURVE RANKING

With learning curve we refer to the function of qualitative performance with growing number of
iterations of an iterative learning algorithm. We use the term final learning curve to explicitly denote
the entire learning curve, y1, . . . , yL, reflecting the training process from beginning to end. Here,
yi is a measure of the performance of the model (e.g., classification accuracy), which is determined
at regular intervals. Contrary, a partial learning curve, y1, . . . , yl, refers to learning curves that are
observed only up to a time l. We visualize the concepts of the terms in Figure 1.

All automated methods that stop early follow broadly the same principle. The first model is trained
to completion and is considered as the current best modelmmax with its performance being ymax. For

2



Under review as a conference paper at ICLR 2020

each further modelmi, the probability that it is better than the current best model, p (mi > mmax), is
monitored at periodic intervals during training. If it is below a given threshold, the model’s training
is terminated (see Algorithm 1). All existing methods rely on a two-step approach to determine
this probability which involves extrapolating the partial learning curve and a heuristic measure.
Instead of the two-step process to determine the probability, we propose LCRankNet to predict the
probability that a model mi is better than mj directly. LCRankNet is based on a neural network
f which considers model characteristics and the partial learning curve xi as input. We define the
probability that mi is better than mj as

p(mi > mj) = p̂i,j =
ef(xi)−f(xj)

1 + ef(xi)−f(xj)
. (1)

Given a set of final learning curves, the values pi,j for the posteriors can be determined. We minimize
the cross-entropy loss ∑

i,j

−pi,j log p̂i,j − (1− pi,j) log(1− p̂i,j) (2)

to determine the parameters of f . Now the probability p(mi > mj) can be predicted for arbitrary
pairs mi and mj .

Algorithm 1 Early Termination Method
Input: Meta-knowledge D, data set D, model m, performance of best model mmax so far ymax.
Output: Learning curve.

1: for l← 1 . . . L do
2: Train m on d for a step and observe a further part of the learning curve yt.
3: if max1≤i≤l yi > ymax then
4: continue
5: else if p (m > mmax) ≤ δ then
6: return y
7: return y

3.1 RANKING MODEL TO LEARN ACROSS DATA SETS

We have defined the prediction of our model in Equation (1). It depends on the outcome of the
function f which takes a model representation x as input. The information contained in this rep-
resentation depends on the task at hand. Since we will consider Neural Architecture Search, the
representation consists of three different parts. First, the partial learning curve y1, . . . , yl. Second,
the description of the model’s architecture which is a sequence of strings representing the layers it is
comprised of. Third, a data set ID to indicate on which data set the corresponding architecture and
learning curve was trained and observed.

We model f using a neural network and use special layers to process the different parts of the
representation. The learned representation for the different parts are finally concatenated and fed to
a fully connected layer. The architecture is visualized in Figure 2. We will now describe the different
components in detail.

Learning curve component A convolutional neural network is used to process the partial learning
curve. We consider up to four different convolutional layers with different kernel sizes. The exact
number depends on the length of the learning curve since we consider no kernel sizes larger than the
learning curve length. Each convolution is followed by a global max pooling layer and their outputs
are concatenated. This results in the learned representation for the learning curve.

Architecture component For our learning curve prediction we use architectures of the popular
NASNet search space (Zoph et al., 2018). We use the most common configuration which consists
of two cells and every cell of five blocks. This results into 40 choices to be made which is encoded
as a sequence of integers. Please refer to Zoph et al. (2018) for further details regarding the search
space. We learn an embedding for every choice. An LSTM takes this embedding and generates the
architecture embedding.

3



Under review as a conference paper at ICLR 2020

f(x)

Fully Connected Layer

max
pool

conv
k=3

y1, y2, . . . , yn

max
pool

conv
k=2

max
pool

conv
k=4

LSTM

Embedding

Architecture

Embedding

Data Set ID

Figure 2: LCRankNet has three different components, each dealing with one type of input: partial
learning curve, architecture encoding and data set ID.

Data set component As we intend to learn from learning curves of other data sets, we include
data set embeddings as one of the components. Every data set has its own embedding and it will be
used whenever a learning curve observed on this data set is selected. If the data set is new, then the
corresponding embedding is initialized at random. As the model observes more learning curves from
this data set, it improves the data set embedding. The embedding helps us to model data-set-specific
peculiarities in order to adjust the ranking if necessary.

Technical details During the development process, we found that the architecture component
leads to instabilities during training. To avoid this, we regularize the output of the LSTM layer by
using it as an input to an autoregressive model, similar to a sequence-to-sequence model (Sutskever
et al., 2014) that recreates the original description of the architecture. In addition, we use the at-
tention mechanism (Bahdanau et al., 2015) to facilitate this process. All parameters of the layers
in f are trained jointly by means of Adam (Kingma & Ba, 2015) by minimizing a weighted lin-
ear combination of the ranking loss (Equation (2)) and the reconstruction loss with respect to its
parameters.

4 EXPERIMENTS

In this section, we first discuss how to create the meta-knowledge and then analyze our model in
terms of learning curve ranking and the ability to use it as a way to accelerate Neural Architecture
Search. Finally, we examine its individual components and behavior in certain scenarios.

4.1 META-KNOWLEDGE

We compare our method to similar methods on five different data sets: CIFAR-10, CIFAR-100,
Fashion-MNIST, Quickdraw, and SVHN. We use the original train/test splits if available. Quickdraw
has a total of 50 million data points and 345 classes. To reduce the training time, we select a subset
of this data set. We use 100 different randomly selected classes and choose 300 examples per class
for the training split and 100 per class for the test split. 5,000 random data points of the training data
set serve as validation split for all data sets.

To create the meta-knowledge, we choose 200 architectures per data set at random from the NASNet
search space (Zoph et al., 2018) such that we train a total of 1,000 architectures. We would like to
point out that these are 1,000 unique architectures, there is no architecture that has been trained

4



Under review as a conference paper at ICLR 2020

0 10 20 30
Seen Learning Curve (%)

0.00

0.25

0.50

0.75

Sp
ea

rm
an

 C
or

re
la

tio
n CIFAR-10

0 10 20 30
Seen Learning Curve (%)

0.0

0.5

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n CIFAR-100

0 10 20 30
Seen Learning Curve (%)

0.25

0.00

0.25

0.50

Sp
ea

rm
an

 C
or

re
la

tio
n Fashion-MNIST

0 10 20 30
Seen Learning Curve (%)

0.00

0.25

0.50

0.75

Sp
ea

rm
an

 C
or

re
la

tio
n Quick, Draw!

0 10 20 30
Seen Learning Curve (%)

0.25

0.00

0.25

0.50

Sp
ea

rm
an

 C
or

re
la

tio
n SVHN

0 10 20 30
Seen Learning Curve (%)

0.4

0.2

0.0

0.2

0.4

0.6

Sp
ea

rm
an

 C
or

re
la

tio
n

SVHN

Baker et al.
Chandrashekaran
Domhan et al.
LCRankNet

Figure 3: The x-axis indicates the length observed of the learning curve. We report the mean of
ten repetitions. The shaded area is the standard deviation. Our method LCRankNet outperforms its
competitors on all data sets.

on several different data sets. Each architecture is trained for 100 epochs with stochastic gradient
descent and cosine learning rate schedule without restart (Loshchilov & Hutter, 2017).

We use standard image preprocessing and augmentation: for every image, we first subtract the
channel mean and then divide by the channel standard deviation. Images are padded by a margin of
four pixels and randomly cropped back to the original dimension. For all data sets but SVHN we
apply random horizontal flipping. Additionally, we use Cutout (DeVries & Taylor, 2017).

The following experiments are conducted in a leave-one-data-set-out cross-validation. That means
when considering one data set, all meta-knowledge but the one for this particular data set is used as
meta-knowledge.

4.2 RANKING PERFORMANCE

First, we analyze the quality of the learning curve rankings by different learning curve prediction
methods. In this experiment we choose 50 different learning curves at random as a test set. Five
random learning curves are used as a training set for every repetition. Each learning curve predic-
tion method ranks the 50 architectures by observing the partial learning curve whose length varies
from 0 to 30 percent of the final learning curve. We repeat the following experiment ten times and
report the mean and standard deviation of the correlation between the true and the predicted rank-
ing in Figure 3. As a correlation metric, we use Spearman’s rank correlation coefficient. Thus,
the correlation is 1 for a perfect ranking and 0 for an uncorrelated, random ranking. Our method
LCRankNet shows for all data sets better performance. If there are no or only very short partial
learning curves available, our method shows the biggest difference to the existing methods. The rea-
son for this is a combination of the consideration of the network architecture together with additional
meta-knowledge. We analyze the impact of each component in detail in Section 4.5.

The method of Chandrashekaran & Lane (2017) consistently shows the second best results and in
some cases can catch up to the results of our method. The method of Baker et al. (2018) stands
out due to the high standard deviation. It is by far the method with the smallest squared error on
test. However, the smallest changes in the prediction lead to a significantly different ranking, which
explains the high variance in their results. The method of Domhan et al. (2015) requires a minimum
length of the learning curve to make predictions. Accordingly, we observe rank correlation values
starting from a learning curve length of 4%.

5



Under review as a conference paper at ICLR 2020

Table 1: Results obtained by the different methods on five different data sets. For both metrics the
smaller, the better. Regret reported in percent, time in GPU hours.

Method CIFAR-10 CIFAR-100 Fashion
Regret Time Regret Time Regret Time

No Early Termination 0.00 1023 0.00 1021 0.00 1218
Domhan et al. (2015) 0.56 346 0.82 326 0.00 460
Baker et al. (2018) 0.00 89 0.00 77 0.00 129
Chandrashekaran & Lane (2017) 0.62 30 0.00 35 0.28 41
LCRankNet 0.22 20 0.00 11 0.10 19

Method Quickdraw SVHN
Regret Time Regret Time

No Early Termination 0.00 1045 0.00 1485
Domhan et al. (2015) 0.44 331 0.28 471
Baker et al. (2018) 0.00 107 0.00 241
Chandrashekaran & Lane (2017) 0.30 82 0.06 164
LCRankNet 0.00 28 0.10 74

Learning Curve Length (%)

0 20 40 60 80 100

Va
lid

at
io

n 
Er

ro
r

0.05
0.10
0.15
0.20
0.25
0.30
0.35

0

50

100

150

0 20 40 60 80 100
Learning Curve Length (%)

0.1

0.2

0.3

Va
lid

at
io

n 
Er

ro
r

Figure 4: LCRankNet is speeding up architecture search for SVHN. Difference between learning
curves is small, making this the hardest task.

4.3 ACCELERATING RANDOM NEURAL ARCHITECTURE SEARCH

In this experiment, we demonstrate the utility of learning curve predictors in the search for net-
work architectures. For the sake of simplicity we accelerate a random search in the NASNet search
space (Zoph et al., 2018).

The random search samples 200 models and trains each of them for 100 epochs to obtain the final
accuracy. In the end, the best of all these models is returned. Now each learning curve predictor
iterates over these sampled architectures in the same order and determines at every third epoch
if the training should be aborted. The current best model discovered after iterating over all 200
architectures is returned as the best model for this learning curve predictor. The goal of the methods
is to minimize the regret compared to a random search without early stopping and at the same time
reduce the computational effort.

One of our observations is that Domhan et al. (2015)’s method underestimates performance when
the learning curve is short. As a result, the method ends each training process early after only a
few epochs. Therefore, we follow the recommendation of Domhan et al. (2015) and do not end
processes before we have seen the first 30 epochs. We summarize the results in Table 1. Our first
observation is that all methods accelerate the search with little regret. Here we define regret as the

6



Under review as a conference paper at ICLR 2020

0 25 50 75 100
Learning Curve Length (%)

0.0

0.2

0.4

0.6

Va
lid

at
io

n 
Ac

cu
ra

cy

m
mmax

p(m > mmax)

0 25 50 75 100
Learning Curve Length (%)

0.0

0.2

0.4

0.6

0.8

Va
lid

at
io

n 
Ac

cu
ra

cy

0 25 50 75 100
Learning Curve Length (%)

0.2

0.4

0.6

0.8

Va
lid

at
io

n 
Ac

cu
ra

cy

0 25 50 75 100
Learning Curve Length (%)

0.0

0.2

0.4

0.6

0.8

Va
lid

at
io

n 
Ac

cu
ra

cy
Figure 5: Analysis of the predicted probability of LCRankNet with growing learning curve length.
The plots in the top row show examples for correct decisions by LCRankNet. The bottom row shows
two examples where it’s decision was wrong.

difference between the accuracy of the model found by the random search and the accuracy of the
model found by one of the methods. Not surprisingly, Domhan et al. (2015)’s method takes up most
of the time, as it requires significantly longer learning curves to make its decision. In addition, we
can confirm the results of Baker et al. (2018); Chandrashekaran & Lane (2017), both of which report
better results than Domhan et al. (2015). Our method requires the least amount of time for each data
set. For CIFAR-100 we do not observe any regret, but a reduction of the time by a factor of 100.
In some cases we observe an insignificantly higher regret than some of the other methods. In our
opinion, the time saved makes up for it.

In Figure 4 we visualize the random search for SVHN. As you can see, many curves not only have
similar behavior but also similar accuracy. For this reason, it is difficult to decide whether to discard
a model safely, which explains the increased runtime.

4.4 LCRANKNET PREDICTION ANALYSIS

We saw in the previous selection that LCRankNet does not perform perfectly. There are cases where
its regret is greater than zero or where the search time is higher which indicates that early stopping
was applied later than maybe possible. In this section we try to shed some light on the decisions
made by the model and try to give the reader some insight of the model’s behavior.

We provide four example decisions of LCRankNet in Figure 5. The plots in the top row show cases
where LCRankNet made a correct decision, the plots in the bottom row are examples for incorrect
decisions.

In both of the correct cases (top row), LCRankNet assigns a higher probability to begin with, using
meta-knowledge. However, in the top left case it becomes evident after only very few epochs that
mmax is consistently better than m such that the probability p (m > mmax) reduces sharply to values
close to zero which would correctly stop training early on. The case in the top right plot is more
tricky. The probability is increasing until a learning curve length of 12% as the learning curve seem
to indicate that m is better than mmax. However, the learning curve of mmax approaches the values
of m and then the probability decreases and training is stopped early.

We continue now with the discussion of the two examples in the bottom row which LCRankNet
false terminated early which cause a regret higher than zero in Table 1. In the bottom left we show
an example where sometimes m is better for a longer period and sometimes mmax. This is arguable
a very difficult problem and it is hard to predict which curve will eventually be better. However,

7



Under review as a conference paper at ICLR 2020

0 10 20 30
Seen Learning Curve (%)

0.0

0.5

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n CIFAR-10

0 10 20 30
Seen Learning Curve (%)

0.0

0.5

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n CIFAR-100

0 10 20 30
Seen Learning Curve (%)

0.2
0.0
0.2
0.4
0.6

Sp
ea

rm
an

 C
or

re
la

tio
n Fashion-MNIST

0 10 20 30
Seen Learning Curve (%)

0.25
0.00
0.25
0.50
0.75

Sp
ea

rm
an

 C
or

re
la

tio
n Quick, Draw!

0 10 20 30
Seen Learning Curve (%)

0.25
0.00
0.25
0.50

Sp
ea

rm
an

 C
or

re
la

tio
n SVHN

0 10 20 30
Seen Learning Curve (%)

0.4
0.2
0.0
0.2
0.4
0.6

Sp
ea

rm
an

 C
or

re
la

tio
n

SVHN

Proposed Configuration
Architecture only
Proposed Configuration with L2-Loss
Proposed Configuration w/o Metadata
Learning Curve only
Learning Curve only w/o Metadata

Figure 6: Analysis of the different components of LCRankNet. Every single component, metadata,
consideration of the learning curve and architecture description, is vital.

LCRankNet shows a reasonable behavior. As the learning curve of m is consistently worse than
mmax in the segment from 15% to 42%, the probability is decreasing. Starting from a length of
57%, where m shows superior performance than mmax for several epochs, the probability starts to
raise. From learning curve length of 70% onwards, both the learning curves are very close and the
difference in the final accuracy is only 0.0022. The example visualized in the bottom right plot is
a very interesting one. The learning curve of mmax is consistently better than or almost equal to m
up to the very end. Towards the end, learning curves are getting very close. In fact, from learning
curve length 63% onwards, the maximum difference between m and mmax per epoch is only 0.008.
Hence, in the beginning it seems like a trivial decision to reject m. However, eventually m turns out
to be better than mmax.

In conclusion, deciding whether one model will be better than another one based on a partial learning
curve is a challenging task. A model that turns out to be (slightly) better than another one can be
dominated consistently for most of the learning curve. This makes it not only a very challenging
problem for automated methods but for human experts as well.

4.5 ANALYSIS OF LCRANKNET’S COMPONENTS

We briefly mentioned before which components of our learning curve ranker have an essential in-
fluence on its quality. We would like to deepen the analysis at this point and compare the configu-
ration we have proposed with different variants in Figure 6. We consider variants with and without
metadata, architecture description or learning curve consideration. In addition, we compare our
configuration trained with pairwise ranking loss to one trained with a pointwise ranking loss.

One of the most striking observations is that the metadata is essential for the model. This is not
surprising since in particular the learning of architecture embedding needs sufficient data. Sufficient
data is not available in this setup, so we observe a much higher variance for these variants. Even
the variant that only considers the learning curve benefits from additional meta-knowledge. But
even this is not surprising, since stagnating learning processes show similar behavior regardless of
the data set. Using the meta-knowledge, both components achieve good results on their own. It
can be clearly seen that these components are orthogonal to one another. The variant, which only
considers the architecture, shows very good results for short learning curves. If only the learning
curve is considered, the results are not very good at first, but improve significantly with the length
of the learning curve. A combination of both methods ultimately leads to our method and further
improves the results. Finally, we compare the use of a pointwise ranking loss (L2 loss) versus a
pairwise ranking loss. Although our assumption was that the latter would have to be fundamentally
better, since it optimizes the model parameters directly for the task at hand, in practice this does not
necessarily seem to be the case. Especially for short learning curves, the simpler method achieves
better results. However, once the learning curve is long enough, the pairwise ranking loss pays off.

8



Under review as a conference paper at ICLR 2020

5 CONCLUSION

In this paper we present LCRankNet, a method to automatically terminate unpromising model con-
figurations early. The two main novelties of the underlying model are that it is able to consider
learning curves from other data sets and that it uses a pairwise ranking loss. The former allows to
predict for relatively short, and in extreme cases even without, learning curves. The latter directly
allows to model the probability that one configuration is better than the another. We analyze our
method on five different data sets against three alternatives. In an experiment to optimize network
architectures, we obtain the fastest results. In the best case, LCRankNet is 100 times faster without
sacrificing accuracy. We also examine the components and predictions of our method to give the
reader a better understanding of the design choices and functionalities.

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1409.0473.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture
search using performance prediction. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings,
2018. URL https://openreview.net/forum?id=HJqk3N1vG.

Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Gregory N. Hullender. Learning to rank using gradient descent. In Machine Learn-
ing, Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn, Ger-
many, August 7-11, 2005, pp. 89–96, 2005. doi: 10.1145/1102351.1102363. URL https:
//doi.org/10.1145/1102351.1102363.

Akshay Chandrashekaran and Ian R. Lane. Speeding up hyper-parameter optimization by extrapo-
lation of learning curves using previous builds. In Machine Learning and Knowledge Discovery
in Databases - European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22,
2017, Proceedings, Part I, volume 10534 of Lecture Notes in Computer Science, pp. 477–492.
Springer, 2017.

Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. CoRR, abs/1708.04552, 2017. URL http://arxiv.org/abs/1708.04552.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparam-
eter optimization of deep neural networks by extrapolation of learning curves. In Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pp. 3460–3468. AAAI Press, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve predic-
tion with bayesian neural networks. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017. URL
https://openreview.net/forum?id=S11KBYclx.

Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011. ISBN 978-3-
642-14266-6. doi: 10.1007/978-3-642-14267-3. URL https://doi.org/10.1007/
978-3-642-14267-3.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=Skq89Scxx.

9

http://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=HJqk3N1vG
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1102351.1102363
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=S11KBYclx
https://doi.org/10.1007/978-3-642-14267-3
https://doi.org/10.1007/978-3-642-14267-3
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx


Under review as a conference paper at ICLR 2020

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neu-
ral networks. In Advances in Neural Information Processing Systems 27: Annual Con-
ference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pp. 3104–3112, 2014. URL http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=r1Ue8Hcxg.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transfer-
able architectures for scalable image recognition. In 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pp. 8697–8710, 2018. doi: 10.1109/CVPR.2018.00907. URL http:
//openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_
Transferable_Architectures_CVPR_2018_paper.html.

10

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html

	Introduction
	Related work
	Learning curve ranking
	Ranking model to learn across data sets

	Experiments
	Meta-knowledge
	Ranking performance
	Accelerating random neural architecture search
	LCRankNet prediction analysis
	Analysis of LCRankNet's components

	Conclusion

