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ABSTRACT

Recent few-shot learning algorithms have enabled models to quickly adapt to new
tasks based on only a few training samples. Previous few-shot learning works have
mainly focused on classification and reinforcement learning. In this paper, we
propose a method that focuses on regression tasks. Our model is based on the idea
that the degree of freedom of the unknown function can be significantly reduced
if it is represented as a linear combination of a set of sparsifying basis functions.
This enables using a few labelled samples to learn a good approximation of the
entire function. We design a Basis Function Learner network to encode the basis
functions for a task distribution, and a Weights Generator to generate the weight
vector for a novel task. We show that our model outperforms current state of the
art meta-learning methods in various regression tasks.

1 INTRODUCTION

Regression deals with the problem of learning a model relating a set of inputs to a set of outputs. The
learned model can be thought as function y = F (x) that gives a prediction y ∈ Rdy given input
x ∈ Rdx where dy and dx are dimensions of the output and input respectively. Typically, a regression
model is trained on a large number of data points to be able to provide accurate predictions for new
inputs. Recently, there have been a surge in popularity on few-shot learning methods (Vinyals et al.,
2016; Koch et al., 2015; Gidaris & Komodakis, 2018). Few-shot learning methods require only a few
examples from each task to be able to quickly adapt and perform well on a new task. These few-shot
learning methods in essence are learning to learn i.e. the model learns to quickly adapt itself to new
tasks rather than just learning to give the correct prediction for a particular input sample.

In this work, we propose a few shot learning model that targets few-shot regression tasks. Our model
takes inspiration from the idea that the degree of freedom of F (x) can be significantly reduced when
it is modeled a linear combination of sparsifying basis functions. Thus, with a few samples, we can
estimate F (x). The two primary components of our model are (i) the Basis Function Learner network
which encodes the basis functions for the distribution of tasks, and (ii) the Weights Generator network
which produces the appropriate weights given a few labelled samples. We evaluate our model on the
sinusoidal regression tasks and compare the performance to several meta-learning algorithms. We
also evaluate our model on other regression tasks, namely the 1D heat equation tasks modeled by
partial differential equations and the 2D Gaussian distribution tasks. Furthermore, we evaluate our
model on image completion as a 2D regression problem on the MNIST and CelebA data-sets, using
only a small subset of known pixel values. To summarize, our contributions for this paper are:

• We propose to address few shot regression by linear combination of a set of sparsifying
basis functions.

• We propose to learn these (continuous) sparsifying basis functions from data. Traditionally,
basis functions are hand-crafted (e.g. Fourier basis).

• We perform experiments to evaluate our approach using sinusoidal, heat equation, 2D
Gaussian tasks and MNIST/CelebA image completion tasks.
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Figure 1: An overview of our model as in meta-training. Our system learns the basis functions Φ
that can result in sparse representation for any task drawn from a certain task distribution. The basis
functions are encoded in the Basis Function Learner network. The system produces predictions for
a regression task by generating a weight vector, w for a novel task, using the Weights Generator
network. The prediction is obtained by taking a dot-product between the weight vector and learned
basis functions.

2 RELATED WORK

Regression problems has long been a topic of study in the machine learning and signal processing
community (Myers & Myers, 1990; Specht, 1991). Though similar to classification, regression
estimates one or multiple scalar values and is usually thought of as a single task problem. A single
model is trained to only perform regression on only one task. Our model instead reformulates the
regression problem as a few-shot learning problem, allowing for our model to be able to perform
regressions of tasks sampled from the same task distribution.

The success achieved by deep neural networks heavily relies on a large amount of data, especially
labelled ones. As labelling data is time-consuming and labor-intensive, learning from limited labelled
data is drawing more and more attention. A prominent approach is meta learning. Meta learning,
also referred as learning to learn, aims at learning an adaptive model across different tasks. Meta
learning has shown potential in style transfer (Zhang et al., 2019), visual navigation (Wortsman
et al., 2018), etc. Meta learning has also been applied to few-shot learning problems, which concerns
models that can learn from prior experiences to adapt to new tasks. Lake et al. (2011) proposed the
one-shot classification problem and introduced the Omniglot data set as a few-shot classification
data set, similar to MNIST (LeCun, 1998) for traditional classification. Since then, there has been a
surge of meta learning methods striving to solve few-shot problems. Some meta learning approaches
learn a similarity metric (Snell et al., 2017; Vinyals et al., 2016; Koch et al., 2015) between new test
examples with few-shot training samples to make the prediction. The similarity metric used here
can be Euclidean distance, cosine similarity or more expressive metric learned by relation networks
(Sung et al., 2018). On the other hand, optimization-based approaches learn how to optimize the
model directly. Finn et al. (2017) learned an optimal initialization of models for different tasks in the
same distribution, which is able to achieve good performance by simple gradient descent. Rusu et al.
(2019) learned how to perform gradient descent in the latent space to adapt the model parameters
more effectively. Ravi & Larochelle (2016) employed an LSTM to learn an optimization algorithm.
Generative models are also proposed to overcome the limitations resulted from few-shot setting
(Zhang et al., 2018; Hariharan & Girshick, 2017; Wang et al., 2018) .

Few-shot regression tasks are used among various few-shot leaning methods (Finn et al., 2017; Rusu
et al., 2019; Li et al., 2017). In most existing works, these experiment usually does not extend beyond
the sinusoidal and linear regression tasks.
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A prominent family of algorithms that tackles a similar problem as few-shot regression is Neural
Processes (Garnelo et al., 2018b;a; Kim et al., 2019). Neural Processes algorithms model the
distributions of the outputs of regression functions using Deep Neural Networks given pairs of
input-output pairs. Similar to Variational Autoencoders (Kingma & Welling, 2013), Neural Processes
employ a Bayesian approach in modelling the output distribution of regression function using an
encoder-decoder architecture. Our model on the other hand employs a deterministic approach where
we directly learn a set of basis functions to model the output distribution. Our model also does not
produce any latent vectors but instead produces predictions via a dot product between the learned
basis functions and weight vector. Our experiment results show that our model (based on sparse
linear combination of basis functions) compares favorably to Neural Processes (based on conditional
stochastic processes).

Our proposed sparse linear representation framework for few shot regression makes the few shot
regression problem appears to be similar to another research problem called dictionary learning (DL)
(Tosic & Frossard, 2011), which focuses on learning dictionaries of atoms that provide efficient
representations of some class of signals. However the differences between DL and our problem are
significant: Our problems are continuous rather than discrete as in DL, and we only observe a very
small percentage of samples. Detailed comparison with DL is discussed in the appendix.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

We first provide problem definition for few-shot regression. We aim at developing a model that
can rapidly regress to a variety of equations and functions based on only a few training samples.
We assume that each equation we would like to regress is a task Ti sampled from a distribution
p(T ). We train our model on a set of training tasks, Strain, and evaluate it on a separate set of
testing tasks, Stest. Unlike few-shot classification tasks, the tasks distribution p(T ) is continuous
for regression task in general. Each regression task is comprised of training samples Dtrain and
validation samples Dval, for both the training set Strain and testing set Stest, Dtrain is comprised
of K training samples and labels Dtrain = {(xkt ,ykt )|k = 1...K} while Dval is comprised of N
samples and labels Dval = {(xnp ,ynp )|n = 1...N}. The goal of few-shot regression is to regress the
entire, continuous output range of the equation given only the few points as training set.

3.2 FEW-SHOT REGRESSION VIA LEARNING SPARSIFYING BASIS FUNCTIONS

Here we discuss our main idea. We would like to model the unknown function y = F (x) given only
Dtrain = {(xkt ,ykt )|k = 1...K}. With small K, e.g. K = 10, this is an ill-posed task, as F (x) can
take any form. As stated before, we assume that each function we would like to regress is a task Ti
drawn from an unknown distribution p(T ).

To simplify discussion, we assume scalar input and scalar output. Our idea is to learn sparse
representation of the unknown function F (x), so that a few samples {(xkt , ykt )|k = 1...K} can
provide adequate information to approximate the entire F (x). Specifically, we model the unknown
function F (x) as a linear combination of a set of basis functions {φi(x)}:

F (x) =
∑
i

wiφi(x) (1)

Many handcrafted basis functions have been developed to expand F (x). For example, the Maclaurin
series expansion (Taylor series expansion at x = 0) uses {φi(x)} = {1, x, x2, x3, ...}:

F (x) = w0 + w1x+ w2x
2 + ... (2)

If F (x) is a polynomial, (2) can be a sparse representation, i.e. only a few non-zero, significant wi,
and most wi are zero or near zero. However, if F (x) is a sinusoid, it would require many terms to
represent F (x) adequately, e.g.:

sin(x) ≈ w1x+ w3x
3 + w5x

5 + w7x
7 + ...+ wMx

M (3)

In (3), M is large and M � K. Given only K samples {(xkt , ykt )|k = 1...K}, it is not adequate to
determine {wi} and model the unknown function. On the other hand, if we use the Fourier basis
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instead, i.e., {φi(x)} = {1, sin(x), sin(2x), ..., cos(x), cos(2x), ...}, clearly, we can obtain a sparse
representation: we can adequately approximate the sinusoid with only a few terms. Under Fourier
basis, there are only a few non-zero significant weights wi, and K samples are sufficient to estimate
the significant wi and approximate the function. Essentially, with a sparsifying basis {φi(x)}, the
degree of freedom of F (x) can be significantly reduced when it is modeled using (1), so that K
samples can well estimate F (x).

Our approach is to use the set of training tasks drawn from p(T ) to learn {φi(x)} that result in
sparse representation for any task drawn from p(T ). The set of {φi(x)} is encoded in the Basis
Function Learner Network that takes in x and outputs Φ(x) = [φ1(x), φ2(x), ..., φM (x)]T . In our
framework, Φ(x) is the same for any task drawn from p(T ), as it encodes the set of {φi(x)} that
can sparsely represent any task from p(T ). We further learn a Weights Generator Network to map
the K training samples of a novel task to a constant vector w = [w1, w2, ..., wM ]T . The unknown
function is modeled as wTΦ(x).

3.3 MODEL ARCHITECTURE

An overview of our model is depicted in Figure 1. Given a regression task T with Dtrain =
{(xkt ,ykt )|k = 1...K}, the model is tasked to approximate the function across the entire output. The
training samples, xkt ∈ Rdx first passed though the Basis Function Learner which is represented
as a network Φθ(x), parameterized by trainable parameters θ. The Basis Function Learner outputs
set of learned basis functions in the form of a vector, Φ(x) ∈ Rdφ , where dφ is the number of the
basis functions we would like the Basis Function Learner to learn.We represent the Basis Function
Learner as a series of fully connected layers followed by a ReLU non-linearity activation function
(Nair & Hinton, 2010).

The set of learned basis functions Φ(x), together with the labels ykt ∈ Rdy are then passed into
the Weights Generator. The Weights Generator, represented as a network Gψ(Φ(xkt ),ykt ), with
trainable parameters ψ, takes the input Φ(xkt ),ykt and outputs a weights vector wk for each training
sample of a regression task. The final weights vector, w for task T is then obtained by taking a mean
of the K weight vectors. The Weights Generator consists a series of B self attention blocks following
by a final fully connected layer to transform the output into the desired dimensions. We provide
architecture details of Weights Generator network in the appendix.

The model is then applied to make prediction for any input x. During meta-training, the validation
set Dval = {xnp ,ynp |n = 1...N} for a task T is given. The prediction is produced by taking a dot
product between task-specific weights vector, w and the set of learned basis functions:

ynpred = wTΦθ(x
n
p ) (4)

To train our model, we design a loss function L that consists of three terms. The first term is a
mean-squared error between the validation set labels ynp ∈ Dval and the predicted ynpred. We also
add two penalty terms on the weights vector w generated for each task. The first penalty term is
on the L1 norm of the generated weight vectors. This is to encourage the learned weight vectors to
be sparse in order to approximate the unknown function with a few significant basis functions. The
second penalty term is on the L2 norm of the generated weights vector. This is used to reduce the
variance of the estimated weights as commonly used in regression (Zou & Hastie (2005)). The full
loss function L is as follows:

Lθ,ψ =
1

N

∑
ynp∈Dval

(ynp − ynpred)
2 + λ1||wT ||1 + λ2||wT ||2 (5)

where λ1 and λ2 represents the weightage of the L1 and L2 terms respectively. Note that, it turns out
that our loss function for meta learning is is similar to that of the Elastic Net Regression (Zou & Hastie,
2005) with both L1 and L2 regularization terms. However, the difference is significant: Instead of
focusing on a single regression task as in (Zou & Hastie, 2005), we use this loss function to learn (i)
the parameter θ for the Basis Function Learner network, which encodes the sparsifying basis functions
for any task drawn from a task distribution, and (ii) the parameter ψ for the Weight Generator network,
which produces the weights for any novel task drawn from the same task distribution.
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Table 1: Mean-Squared Error results for the Sinusoidal Regression task as compared against other
methods. Lower is better.

Method 5-shot 10-shot 20-shot
MAML (Finn et al., 2017) 1.13± 0.18 0.77± 0.11 0.48± 0.08
Meta-SGD (Li et al., 2017) 0.90± 0.16 0.53± 0.09 0.31± 0.05
EMAML (small)(Yoon et al., 2018) 0.885± 0.117 0.615± 0.091 0.371± 0.048
EMAML (large) 0.783± 0.101 0.537± 0.079 0.307± 0.040
BMAML (small)(Yoon et al., 2018) 0.927± 0.116 0.735± 0.104 0.459± 0.058
BMAML (large) 0.878± 0.108 0.675± 0.094 0.442± 0.055
NP (Garnelo et al., 2018b) 0.640± 0.205 0.561± 0.234 0.421± 0.088
CNP (Garnelo et al., 2018a) 0.910± 0.234 0.630± 0.222 0.393± 0.145
ANP (Kim et al., 2019) 0.488± 0.188 0.216± 0.082 0.095± 0.068

Ours (small) 0.363± 0.018 0.169± 0.007 0.076± 0.004
Ours (large) 0.199± 0.010 0.062± 0.003 0.027± 0.002

4 EXPERIMENTS AND ANALYSIS

In this section we describe the experiments we ran and introduce the types of regression task used to
evaluate our method. For all of our experiments, we set the learning rate to 0.001 and use the Adam
Optimizer (Kingma & Ba, 2014) as the optimization method to preform stochastic gradient decent on
our model. We implement all our models using the Tensorflow (Abadi et al., 2016) library. In the
following subsections, we decribe each of experiments in more detail. We include the experiments on
the 1D Heat Equation and 2D Gaussian regression tasks in the appendix.

4.1 1D REGRESSION

For all 1D Regression tasks, the Basis Function Learner consists of two fully connected layers with
40 hidden units. For the loss function we set λ1 = 0.001 and λ2 = 0.0001.

Sinusoidal Regression. We first evaluate our model on the sinusoidal regression task which is a
few-shot regression task that is widely used by other few-shot learning methods as a few-shot learning
task to evaluate their methods on (Finn et al., 2017; Li et al., 2017; Rusu et al., 2019). The target
function is defined as y(x) = Asin(ωx + b), where amplitude A, phase b, frequency ω are the
parameters of the function. We follow the setup exactly as in (Li et al., 2017). We sample the each
parameters uniformly from range A ∈ [0.1, 5.0], b ∈ [0, π] and ω ∈ [0.8, 1.2]. We train our model
on tasks of batch size 4 and 60000 iterations for 5,10 and, 20 shot cases, where each training task
contains K ∈ {5, 10, 20} training samples and 10 validation samples. We compare our method
against recent few-shot learning methods including Meta-SGD (Li et al., 2017), MAML (Finn et al.,
2017), EMAML ,BMAML (Yoon et al., 2018) and the Neural Processes family of methods including
Neural Processes (Garnelo et al., 2018b) Conditional Neural Processes (Garnelo et al., 2018a) and
Attentive Neural Processes (Kim et al., 2019). We use the officially released code for these three
methods 1. We show the results in Table 1.

Table 2: Mean-Squared Error results for the alternative
Sinusoidal Regression Task. Lower is better.

Method Alt. Sinusoidal 1000 tasks
10 shot 5 shot

EMAML 1.524± 0.034 2.238± 0.045
BMAML 1.412± 0.033 2.157± 0.049
Ours 0.918± 0.051 2.389± 0.103
Ours(Ensemble) 0.630± 0.035 1.857± 0.081

We provide two variants our model in this
experimental setup. The two models differ
only in the size of the Weights Generator.
For the "small" model the Weights Gener-
ator consist of B = 1 self-attention blocks
followed by a fully connected layer of 40
hidden units. The self-attention block con-
sists of three parallel weight projections
of 40 dimensions followed by fully con-
nected layers of 80 and 40 hidden units
respectively. The "large" model consists

1https://github.com/deepmind/neural-processes
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of B = 3 self-attention blocks also followed by a fully connected layer of 40 hidden units. Each
self-attention block has weight projections of 64 dimensions followed by fully connected layers
of 128 and 64 hidden units respectively. Both MAML and Meta-SGD uses an architecture of 2
fully connected layers with 40 hidden units which is similar to the architecture of the Basis Learner
network, though both Meta-SGD and MAML both have additional optimization for individual tasks.
The Neural Process family of methods uses encoder archtecture of 4 fully connected layers with 128
hidden units and decoder architecture of 2 fully connected layers of 128 hidden units respectively
which is more similar in architecture our larger model.

Similarly, we also compare our methods against two variants of EMAML and BMAML. The "small"
model consist of 2 fully connected layers with 40 hidden units each while the "large" model consists
of 5 fully connected layers with 40 hidden units each. This is to ensure fair comparison as both
BMAML and EMAML lack a separate network to generate weight vectors but are ensemble methods
that aggregate results from Mp number of model instances. We set the number of model instances in
BMAML and EMAML to 10.

Alternative Sinusoidal Regression We also evaluate our method on another version of the sinusoidal
task as introduced by Yoon et al. (2018). The range of A remain the same while the range of b is
increased to [0, 2π] and the range of ω is increased to [0.5, 2.0]. An extra noise term, ε is also added
the function y(x). For noise ε, we sample it from distribution N ∼ (0, (0.01A)2). We also fix the
total number of our tasks used during training to 1000 as in (Yoon et al., 2018). For this experimental
setup we also include an ensemble version of our model where we train 10 separate instance of our
model on the same 1000 tasks and aggregate their results by taking a mean of the predictions. We
evaluate our model for both 10 shot and 5 shot cases and show the mean-squared error results in
Table 2. For this experimental setup, we calculate the mean-squared error from 10 randomly points
from 1000 advanced sinusoidal tasks.

Our results show that our method outperforms all recent few-shot regression methods in sinusoidal
tasks.

4.2 2D REGRESSION ON IMAGE DATA

We also tested our method on more challenging image data, as done in (Garnelo et al., 2018a;b;
Kim et al., 2019). We use MNIST (LeCun et al., 1998) and CelebA datasets (Liu et al., 2015) here
for qualitative and quantitative comparison. Each image can be regarded as a continuous function
f : R2 → Rdy , where dy = 1 if the image is gray-scale or or dy = 3 if it is RGB. The input
x ∈ R2 to f is the normalized coordinates of pixels and the output y ∈ Rdy is the normalized pixel
value. The size of the images is 28 × 28 in MNIST and rescaled to 32 × 32 in CelebA. During
meta-training, we randomly sample K points from 784(1024) pixels in one image as Dtrain and
another K points as Dval to form a regression task. In the meta-testing stage, the MSE is evaluated on
784(1024)−K pixels. 60,000(162,770) images are used for meta-training and 10,000 for meta-testing
for MNIST(CelebA) dataset.

We compare our methods with NP family: CNP (Garnelo et al., 2018a), NP(Garnelo et al., 2018b)
and ANP (Kim et al., 2019) for K = 50 and K = 100. Deeper network structure is adopted due
to the complexity of regression on image data. Namely, we use 5 fully connected layers with 128
hidden units in Basis Function Learner and 3 attention blocks in Weight Generator for our method.
The encoders and decoders in NP family are all MLPs including 4 fully connected layers with 128
hidden units. Thus, the comparison is fair in terms of network capacity. All the models are trained for
500 epochs with batch size 80. The MSE on 10,000 tasks from meta-testing set is reported with 95%
confidence interval, shown in Table 3. The top results are highlighted. It can be observed that our
method outperforms two of three NP methods and achieves MSE very close to most recent ANP. The
outputs of regression on CelebA image data are high-dimension predictions, which demonstrates the
effectiveness of our method in such challenging tasks. Note that ANP significantly improves upon NP
and CNP using cross-attention, which can potentially be applied to our method as well.

Figure 2 shows the qualitative results for testing images. Red pixels in the images denote points in
Dtrain. The comparison with methods from NP family is shown in the Figure 2a. The regression by
our method is clearly better than NP and CNP in 50-shot and 100-shot, which visually validates the
quantitative results above. The qualitative results on CelebA can be found in Figure 7 in Appendix.
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Table 3: Mean Square Error (×10−2) for 2D regression on image data.

Method MNIST CelebA
50-shot 100-shot 50-shot 100-shot

CNP (Garnelo et al., 2018a) 4.13±0.033 3.23±0.024 2.74±0.023 2.37±0.019
NP (Garnelo et al., 2018b) 4.14±0.030 3.26±0.024 2.51±0.019 2.15±0.017

ANP (Kim et al., 2019) 3.40±0.026 2.20±0.017 2.13 ±0.018 1.63±0.015
Ours 3.65±0.028 2.43±0.015 2.39±0.021 1.93±0.015

K=
50

GT NP CNP ANP Ours

K=
10

0

(a) Comparison with NP methods.

K=
50

GT S=10 S=20 S=30 S=40 S=50

K=
10

0

(b) Prediction with the first S largest weight parameters.

Figure 2: Qualitative results on MNIST image data.

4.3 ANALYSIS ON BASIS FUNCTIONS

In this subsection we provide some deeper analysis on the basis functions that are learned by our
method. In particular, we provide some further evidence to our claim that our method learns a set
of sparsifying basis functions that correspond to the regression tasks that we would like to model.
To demonstrate the sparsity of basis functions, we take only the S largest weights in terms of |w|
and their corresponding basis functions and illustrate the predicted regression function with the
combination of only the S weights and basis functions. We conduct this experiment on both the
sinusoidal regression task and the more difficult image completion task and show these S-weights
predictions in Figures 3 and 2b respectively.

The figures illustrate that our method is able to produce a good prediction of the regression function
with only a fraction of the full set learned basis function (40 for the sinusoidal task, 128 for the
MNIST image completion task). This demonstrates the sparsity of Φ(x) as most of the prediction is
carried out by just a small number of basis functions. This also demonstrates that our method is able
to force most of the information of F (x) to be contained in a few terms. Therefore, using K samples
to estimate the weights of these few important terms could achieve a good approximation of F (x).

4.4 ABLATION STUDIES

In this subsection we detail some ablation studies on our model to test the validity of certain design
choices of our model. In particular we focus on the effects of the addition of self-attention operations
in the Weights Generator and also the effects of using different penalty terms on our loss function.

Table 4: Comparison of Models with and without
Self-Attention on 10-shot Sinusoidal Regression

10-shot

Without Attention 0.163± 0.003
With Attention 0.062± 0.003

To test out the effects of adding the self-
attention operations to our model, we conduct
a simple experiment where we replace the self
attention operations in the self-attention block
with just a single fully connected layer of equal
dimensions as the self-attention weight projec-
tion. Essentially, this reduces the Weights Gen-
erator to be just a series of fully connected layers
with residual connections and layer normalization. We compare the simpler model performance on
the sinusoidal regression task as specified in Table 1 with our original model and show the results
in Table 4. The results show that adding the self-attention operations do improve our methods
performance on the 1D sinusoidal regression task.

We also conducted experiments to test the effects of the different penalty terms on the the generated
weights vector. In this ablation study, we compared our models trained using different variants of the
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Figure 3: Top S-weights predictions for sinusoidal tasks

loss function we presented in Equation 5. Similar to the previous study, we evaluate them on their
performance on the sinusoidal regression task as specified in Table 1. The variants we tested out
are: (i) Loss function with only the L1-norm penalty term ; (ii) Loss function with only the L2-norm
penalty term (iii) Loss function with both L1 and L2-norm penalty terms. To demonstrate the sparsity
of the weights vectors of each variant, we also show the a breakdown of the magnitude of the learned
weight vectors over 100 sinusoidal tasks. We group the weight vectors into three groups : |w| less
than 0.02 to indicate weights that are near zero, |w| between 0.02 and 1 and weights with magnitude
more than 1. We show the results of the different variants in Table 5. We also present histograms of
the magnitude of the learned weight vectors in Figure 4

The results do show that the combination of both L1 and L2 penalty terms do ultimately give the best
performance for the sinusoidal regression task. In terms of sparsity, the model trained with only the
L1 loss term do gives the highest percentage of sparse weights though we found the model with both
L1 and L2 terms do give a better performance while still maintaining a relatively high percentage of
near zero weights.

5 CONCLUSION
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Figure 4: Histogram of magnitude of learned
weight over 100 Sinusoidal tasks.

We propose a few-shot meta learning system
that focuses exclusively on regression tasks. Our
model is based on the idea of linear represen-
tation of basis functions. We design a Basis
Function Learner network to encode the basis
functions for the entire task distribution. We
also design a Weight generator network to gen-
erate the weights from the K training samples
of a novel task drawn from the same task distri-
bution. We show that our model has competitive
performance in in various few short regression
tasks.

Table 5: Comparison of models trained using different penalty for 10-shot Sinusoidal Regression.

Penalty 10-shot Percentage of Weight, w by Magnitude
|w| < 0.02 0.02 <= |w| < 1.0 |w| >= 1.0

L1 only 0.083± 0.004 62.45 32.925 4.625
L2 only 0.073± 0.004 41.1 43.575 15.325
L1 + L2 0.062± 0.003 46.1 41.75 12.15
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A VISUALIZATION OF SINUSOIDAL BASIS FUNCTIONS
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Figure 5: Illustration of all the non-zero basis functions that are learnt by our method on the sinusoidal
regression task by order of magnitude.

In this section we illustrate all of the individual non-zero basis functions learned by our model for
the sinusoidal task. These functions are shown Figure 5. Note that out of 40 of the basis functions,
only 22 of the learned basis functions are non-zero functions, further demonstrating that indeed our
method is forcing the model to learn a set of sparse functions to represent the tasks. Furthermore, it
can be seen that the learned basis functions all correspond to the different "components" of sinusoidal
function: most of the learned functions seem to represent possible peaks, or troughs if multiplied
with a negative weight at various regions of the input range whereas the top four basis function seem
to model the more complicated periodic nature of the sinusoidal functions.

B ADDITIONAL ANALYSIS ON LEANED BASIS FUNCTIONS

Adding on to the experiments in Section 4.3, we also illustrate what happens when do the exact
opposite. We take the prediction using the full set of weight vectors/basis function and study the
effect of the prediction when we remove certain basis function from the prediction. Similar to the
previous experiment, we remove the basis function by order of magnitude starting with the basis
function with the largest corresponding |w|. we conduct this experiment on the sinusoidal regression
task and illustrate the results in Figure 6.
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Figure 6: Reduced predictions for sinusoidal tasks

Similarly, this study also demonstrates the importance of certain basis functions as removing them
caused the prediction the change drastically. In particular, notice that for sinusoidal task, removing
just 4 of the most important basis functions resulted in a less accurate prediction than using just 10 of
the most important basis functions.

C DETAILS ON THE WEIGHTS GENERATOR NETWORK ARCHITECTURE

Here we provide more details on the architecture of the Weights Generator Network. As mentioned
previously in Section 3.3. The Weights Generator Network consists of a series of self attention blocks
followed by a final fully connected layer. We define a self attention block as such: An attention block
consists of a self attention operation on the input of self attention block. Following the self-attention
operation, the resultant embedding is further passed through two fully connected layers. A residual
connection (He et al., 2016) from the output of the self-attention operation to the output of the second
fully connected layer. Finally, resultant embedding of the residual connection is then passed though
a a layer normalization operation (Ba et al., 2016). Note that the input of the first self attention
block will always be the input to the Weights Generator network, (Φ(xkt ),ykt ) whereas the inputs to
subsequent attention blocks are the outputs of the previous attention block.

For the self-attention operation, the input is transformed into query, key and value vectors though
their respective weight projections. These query, key and value vectors, Q, K and V then go through
a scaled dot-product self-attention operation as introduced by (Vaswani et al., 2017):

Att(Q,K, V ) = softmax(
QKT

√
dk

)V, (6)

D ADDITIONAL REGRESSION EXPERIMENTS

1D Heat Equation. We also evaluate our method on another 1D Regression task, the 1D heat
Equation task, we define it as such: Consider a 1-dimensional rod of length L with both of its ends
connected to heat sinks, i.e. the temperature of the ends will always be fixed at 0K unless a heat
source is applied at the end. a constant point heat source is then applied to a random point s on the
rod such the the heat point source will always have a temperature of 1.0K. We would like the model
the temperature u(x, t) at each point of the rod a certain time t after applying the heat source until
the temperature achieves equilibrium throughout the rod. The temperature at each point x after time t
is given by the heat equation:

∂u

∂t
= k

∂2u

∂x2

For our experiments, we set L to be 5 and randomly sample K points of range [0, 5] on the heat
equation curve. We fix the total number of tasks used during training to 1000 and evaluate our model
on both 10 shot and 5 shot cases, similar to the experimental setup for the Advanced Sinusoidal
tasks. We also compare our results to both EMAML and BMAML on this regrssion task and add an
ensemble version of method for comparison.The results of our evaluation is presented in Table 6.

2D Gaussian. We also evaluated our method on the for the 2D Gaussian regression tasks. For this
task, we train our model to predict the probability distribution function of a two-dimensional Gaussian
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Table 6: Mean-Squared Error results for the 1D Heat Equation Regression Task.

Method 1D Heat Equation 1000 tasks
10 shot 5 shot

EMAML (Finn et al., 2017; Yoon et al., 2018) (1.02± 0.03)× 10−2 (1.49± 0.03)× 10−2

BMAML (Yoon et al., 2018) (1.74± 0.04)× 10−2 (1.81± 0.04)× 10−2

Ours (6.32± 0.53)× 10−3 (8.30± 0.56)× 10−3

Ours(Ensemble) (5.13± 0.13)× 10−3 (7.09± 0.16)× 10−3

Table 7: Mean-Squared Error results for the 2D Gaussian Regression Task.

Method 2D Gaussian 1000 tasks
10 shot 20 shot 50 shot

EMAML (2.67± 0.17)× 10−3 (2.44± 0.13)× 10−3 (2.16± 0.89)× 10−3

BMAML (2.26± 0.15)× 10−3 (2.16± 0.09)× 10−3 (1.48± 0.07)× 10−3

Ours (1.70± 0.36)× 10−3 (1.14± 0.21)× 10−3 (7.83± 0.96)× 10−4

Ours(Ensemble) (1.46± 0.11)× 10−3 (0.97± 0.10)× 10−3 (6.09± 0.67)× 10−4

distribution. We train our model from Gaussian distribution task with mean ranging from (−2,−2) to
(2, 2) and standard deviation of range [0.1, 2]. We fix the standard deviation to be of the same value
in both directions. Similar to the heat equation, we use the same setup as the Advanced Sinusoidal
task and compare our methods to EMAML and BMAML. We evaluate our model on 10, 20 and 50
shot case. The results of our evaluation is presented in Table 7.

Qualitative results on CelebA datasets.We provide the qualitative results on CelebA datasets in
Figure 7. We note that the RGB images are complex 2D functions. We choose them to evaluate so
that we can see the results more directly, not to compare with image inpainting methods, which is
also mentioned in (Garnelo et al., 2018a). The results in Figure 7a are consistent with Figure 2a. The
regression results from our method are visually better than NP and CNP. The predictions using first S
largest weights are shown in Figure 7b. The 2D image function is usually predicted with less than 50
weights, which suggests that the information of the 2D function is kept in several terms.

E COMPARISON WITH DICTIONARY LEARNING

Our proposed sparse linear representation framework for few shot regression makes the few shot
regression problem appears to be similar to another research problem called dictionary learning (DL),
which focuses on learning dictionaries of atoms that provide efficient representations of some class
of signals (Tosic & Frossard, 2011). However the differences between DL and our problem are
significant: Our problems are continuous rather than discrete as in DL, and we only observe a very
small percentage of samples.

Specifically, for a given y ∈ Rn, the goal of DL is to learn the dictionary (n by M ) Φ for some
sparse w:

y = Φw (7)

In typical DL, the entire y is given. Also, M > n for an overcomplete dictionary (Figure 8).

In few shot regression, the goal is to predict the entire continuous function y = F (x). Therefore,
viewing this as the setup in (7), n is infinite. Moreover, only a few (K) samples of y is given:
ykt = F (xkt ). The locations of the given samples (xkt ) are different for different y (different task).
Therefore, our problem is significantly different and more difficult than DL. Typical DL algorithms
solve (7) and return Φ, which is a n by M matrix of finite dimensions (the dictionary). In our setup,
the basis matrix Φ has infinite entries, and Φ is encoded by the proposed Basis Function Learner
network.
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Figure 7: Qualitative results on CelebA image data.
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15


	Introduction
	Related Work
	Proposed Method
	Problem Formulation
	Few-shot regression via learning sparsifying basis functions
	Model Architecture

	Experiments and Analysis
	1D Regression
	2D regression on image data
	Analysis on Basis Functions
	Ablation Studies

	Conclusion
	Visualization of Sinusoidal Basis Functions
	Additional Analysis on Leaned Basis Functions
	Details on the Weights Generator Network Architecture
	Additional Regression Experiments
	Comparison with dictionary learning

