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ABSTRACT

Uncertainty estimation and ensembling methods go hand-in-hand. Uncertainty
estimation is one of the main benchmarks for assessment of ensembling perfor-
mance. At the same time, deep learning ensembles have provided state-of-the-art
results in uncertainty estimation. In this work, we focus on in-domain uncertainty
for image classification. We explore the standards for its quantification and point
out pitfalls of existing metrics. Avoiding these pitfalls, we perform a broad study
of different ensembling techniques. To provide more insight in the broad com-
parison, we introduce the deep ensemble equivalent (DEE) and show that many
sophisticated ensembling techniques are equivalent to an ensemble of very few
independently trained networks in terms of the test log-likelihood.

1 INTRODUCTION

Deep neural networks (DNNs) have become one of the most popular families of machine learning
models. The predictive performance of DNNs for classification is often measured in terms of accu-
racy. However, DNNs have been shown to yield inaccurate and unreliable probability estimates, or
predictive uncertainty (Guo et al., 2017). This has brought considerable attention to the problem of
uncertainty estimation with deep neural networks.

There are many faces to uncertainty estimation. Different desirable uncertainty estimation properties
of a model require different settings and metrics to capture them. Out-of-domain uncertainty of
the model is measured on data that does not follow the same distribution as the training dataset
(out-of-domain data). Out-of-domain data can include images corrupted with rotations or blurring,
adversarial attacks (Szegedy et al., 2013) or data points from a completely different dataset. The
model is expected to be resistant to data corruptions and to be more uncertain on out-of-domain data
than on in-domain data. This setting was explored in a recent study by (Ovadia et al., 2019). On
the contrary, in-domain uncertainty of the model is measured on data taken from the training data
distribution, i.e. data from the same domain. In this case, a model is expected to provide correct
probability estimates: it should not be overconfident in the wrong predictions, and should not be too
uncertain about the correct predictions.

Ensembles of deep neural networks have become a de-facto standard for uncertainty estimation and
improving the quality of deep learning models (Hansen & Salamon, 1990; Krizhevsky et al., 2009;
Lakshminarayanan et al., 2017). There are two main directions in the field of training ensembles of
DNNs: training stochastic computation graphs and obtaining separate snapshots of neural network
weights. Methods based on the paradigm of stochastic computation graphs introduce noise over
weights or activations of deep learning models. When the model is trained, each sample of the noise
corresponds to a member of the ensemble. During test time, the predictions are averaged across
the noise samples. These methods include (test-time) data augmentation, dropout (Srivastava et al.,
2014; Gal & Ghahramani, 2016), variational inference (Blundell et al., 2015; Kingma et al., 2015;
Louizos & Welling, 2017), batch normalization (Ioffe & Szegedy, 2015; Teye et al., 2018; Atanov
et al., 2019), Laplace approximation (Ritter et al., 2018) and many more. Snapshot-based methods
aim to obtain sets of weights for deep learning models and then to average the predictions across
these weights. The weights can be trained independently (e.g., deep ensembles (Lakshminarayanan
et al., 2017)), collected on different stages of a training trajectory (e.g., snapshot ensembles (Huang
et al., 2017) and fast geometric ensembles (Garipov et al., 2018)), or obtained from a sampling pro-
cess (e.g., MCMC-based methods (Welling & Teh, 2011; Zhang et al., 2019)). These two paradigms
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can be combined. Some works suggest construction of ensembles of stochastic computation graphs
(Tomczak et al., 2018), while others make use of the collected snapshots to construct a stochastic
computation graph (Wang et al., 2018; Maddox et al., 2019).

In this paper, we focus on assessing the quality of in-domain uncertainty estimation. We show
that many common metrics in the field are either not comparable across different models or fail to
provide a reliable ranking, and then address some of stated pitfalls. Following that, we perform
a broad evaluation of modern DNN ensembles on CIFAR-10/100 and ImageNet datasets. To aid
interpretatability, we introduce the deep ensemble equivalent score that essentially measures the
number of “independent” models in an ensemble of DNNs. We draw a set of conclusions with regard
to ensembling performance and metric reliability to guide future research practices. For example, we
find that methods specifically designed to traverse different “optima” of the loss function (snapshot
ensembles and cyclical SGLD) come close to matching the performance of deep ensembles while
methods that only explore the vicinity of a single “optimum” (Dropout, FGE, K-FAC Laplace and
variational inference) fall far behind.

2 SCOPE OF THE PAPER AND RELATED WORK

We use standard benchmark problems of image classification as it is a common setting in papers
on learning ensembles of neural networks. There are other practically relevant settings where the
correctness of probabilistic estimates can be a priority. These settings include, but are not limited
to, regression, image segmentation, language modelling (Gal, 2016), active learning (Settles, 2012)
and reinforcement learning (Buckman et al., 2018; Chua et al., 2018).

We focus on in-domain uncertainty, as opposed to out-of-domain uncertainty. Out-of-domain un-
certainty includes detection of inputs that come from a completely different domain or have been
corrupted by noise or adversarial attacks. This setting has been thoroughly explored by (Ovadia
et al., 2019).

We only consider methods that are trained on clean data with simple data augmentation. Some other
methods use out-of-domain data (Malinin & Gales, 2018) or more elaborate data augmentation
e.g., mixup (Zhang et al., 2017), adversarial training (Lakshminarayanan et al., 2017) to improve
accuracy, robustness and uncertainty.

We use conventional training procedures. We use the stochastic gradient descent (SGD) and use
batch normalization (Ioffe & Szegedy, 2015), both being the de-facto standards in modern deep
learning. We refrain from using more elaborate optimization techniques including works on super-
convergence (Smith & Topin, 2019) and stochastic weight averaging (Izmailov et al., 2018). These
techniques can be used to drastically accelerate training and improve the predictive performance.
Because of that, we do not not comment on the training time of different ensembling methods since
the use of more efficient training techniques would render such a comparison obsolete.

A number of related works study ways of approximating and accelerating prediction in ensembles.
The distillation mechanism allows to approximate the prediction of an ensemble by a single neural
network (Hinton et al., 2015; Balan et al., 2015), whereas fast dropout (Wang & Manning, 2013) and
deterministic variational inference (Wu et al., 2018) allow to approximate the predictive distribution
of specific stochastic computation graphs. We measure the raw power of ensembling techniques
without these approximations.

All of the aforementioned alternative settings are orthogonal to the scope of this paper and are
promising points of interest for further research.

3 PITFALLS OF IN-DOMAIN UNCERTAINTY ESTIMATION

No single metric measures all desirable properties of uncertainty estimates obtained with a model.
Because of this, the community has used different metrics that aim to measure the quality of uncer-
tainty estimation, e.g. the Brier score (Brier, 1950), log-likelihood (Quinonero-Candela et al., 2005),
different calibration metrics (Guo et al., 2017; Nixon et al., 2019), performance of misclassification
detection (Malinin & Gales, 2018), and threshold–accuracy curves (Lakshminarayanan et al., 2017).
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We consider a classification problem with a dataset that consists of N training and n testing
pairs (xi, y

∗
i ) ∼ p(x, y), where xi is an object and y∗i ∈ {1, . . . , C} is a discrete class la-

bel. A probabilistic classifier maps an object xi into a predictive distribution p̂(y |xi). The
predictive distribution p̂(y |xi) of deep neural networks is usually defined as a softmax function
p̂(y |x) = Softmax(z(x)/T ), where z(x) is a vector of logits and T is a scalar parameter standing
for the temperature of the predictive distribution. The maximum probability maxc p̂(y = c |xi) is
called a confidence of a classifier p̂ on object xi. The indicator function is denoted by I[·] throughout
the text.

3.1 LOG-LIKELIHOOD AND BRIER SCORE

The average test log-likelihood LL = 1
n

∑n
i=1 log p̂(y = y∗i |xi) is a popular metric for measuring

the quality of in-domain uncertainty of deep learning models. It directly penalizes high probability
scores assigned to incorrect labels and low probability scores assigned to the correct labels y∗i .

LL is sensitive to the temperature T . The temperature that has been learned during training can be
far from optimal for the test data. However, a nearly optimal temperature can be found post-hoc
by maximizing the log-likelihood on validation data. This approach is called temperature scaling
or calibration (Guo et al., 2017). Despite its simplicity, temperature scaling results in a marked
improvement in the LL.

While ensembling techniques tend to have better temperature than single models, the default choice
of T = 1 is still sub-optimal. Comparing the LL with sub-optimal temperatures—that is often the
case—can produce an arbitrary ranking of different methods.

Comparison of the log-likelihood should only be performed at the optimal temperature.

Empirically, we demonstrate that the overall ordering of methods and also the best ensembling
method according to the LL can vary depending on temperature T . While this applies to most
ensembling techniques (see Appendix C), this effect is most noticeable on experiments with data
augmentation on ImageNet (Figure 1). We will call the log-likelihood at the optimal temperature
the calibrated log-likelihood. We show how to obtain an unbiased estimate of the calibrated log-
likelihood without a held-out validation set in Section 3.5.

LL also demonstrates a high correlation with accuracy (ρ > 0.86), that in case of calibrated LL
becomes even stronger (ρ > 0.95). That suggest that while (calibrated) LLmeasures the uncertainty
of the model, it still significantly depends on the accuracy and vice versa. A model with higher
accuracy would likely have a higher log-likelihood even if the quality of its uncertainty is lower in
some respects. See Appendix C for more details.

Brier score Brier score BS = 1
n

1
C

∑n
i=1

∑C
c=1(I[y∗i = c] − p̂(y = c |xi))2 has been known

for a long time as a metric for verification of predicted probabilities (Brier, 1950). Similarly to the
log-likelihood, the Brier score penalizes low probabilities assigned to correct predictions and high
probabilities assigned to wrong ones. It is also sensitive to the temperature of the softmax distri-
bution and behaves similarly to the log-likelihood. While these metrics are not strictly equivalent,
they show a high empirical correlation for a wide range of models on CIFAR-10, CIFAR-100 and
ImageNet datasets (see Appendix A).

3.2 MISCLASSIFICATION DETECTION

Detection of wrong predictions of the model, or misclassifications, is a popular downstream prob-
lem aiding in assessing the quality of in-domain uncertainty. Since misclassification detection is
essentially a binary classification problem, some papers measure its quality using conventional met-
rics for binary classification such as AUC-ROC and AUC-PR (Malinin & Gales, 2018; Cui et al.,
2019; Możejko et al., 2018). These papers use an uncertainty criterion like confidence or predictive
entropyH[p̂(y |xi)] as a prediction score.

While these metrics can be used to assess the misclassification detection performance of a single
model, they cannot be used to directly compare misclassification performance across different mod-
els. Correct and incorrect predictions are specific for every model, therefore, every model induces
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Figure 1: The average log-likelihood of dif-
ferent ensembles before (solid lines) and af-
ter (dashed lines) temperature scaling (TS) on
ResNet50 on ImageNet dataset. Without TS
test-time data augmentation causes worse log-
likelihood of plain deep ensembles, while TS
makes deep ensembles with test-time augmenta-
tion superior.
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Figure 2: Thresholded adaptive calibration error
(TACE) is highly sensitive to the threshold and
the number of bins and does not provide a stable
ranking for different methods. TACE is reported
for VGG16BN model on CIFAR-100 dataset and
is evaluated at the optimal temperature.

its own binary classification problem. The induced problems can differ significantly from each other
since different models produce different confidences and misclassify different objects.

AUCs for misclassification detection can not be directly compared between different models.

While comparing AUCs is incorrect in this setting, it is correct to compare these metrics in many
out-of-domain data detection problems. In that case, both objects and targets of induced binary
classification problems remain fixed for all models. Note however that this condition still usually
breaks down in the problem of detection of adversarial attacks since different models generally have
different inputs after an adversarial attack.

3.3 CLASSIFICATION WITH REJECTION

Accuracy-confidence curves are another way to measure the performance of misclassification detec-
tion. These curves measure the accuracy on the set of objects with confidence maxc p̂(y = c |xi)
above a certain threshold τ (Lakshminarayanan et al., 2017) and ignoring or rejecting the others.

The main problem with accuracy-confidence curves is that they rely too much on calibration and the
actual values of confidence. Models with different temperatures have different numbers of objects
at each confidence level which does not allow for a meaningful comparison. To overcome this
problem, one can switch from thresholding by the confidence level to thresholding by the number of
rejected objects. The corresponding curves are then less sensitive to temperature scaling and allow to
compare the rejection ability in a more meaningful way. Such curves have been known as accuracy-
rejection curves (Nadeem et al., 2009). In order to obtain a scalar metric for easy comparisons, one
can compute the area under this curve, resulting in AU-ARC (Nadeem et al., 2009).

3.4 CALIBRATION METRICS

Informally speaking, a probabilistic classifier is calibrated if any predicted class probability is equal
to the true class probability according to the underlying data distribution (see (Vaicenavicius et al.,
2019) for formal definitions). Any deviation from perfect calibration is called miscalibration. For
brevity, we will use p̂i,c to denote p̂(y = c |xi) in the current section.

Expected Calibration Error (ECE) (Naeini et al., 2015) is a metric that estimates model miscalibra-
tion by binning the assigned probability scores and comparing them to average accuracies inside
these bins. Assuming Bm denotes the m-th bin and M is overall number of bins, the ECE is defined
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as follows:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| , (1)

where acc(B) = |B|−1
∑
i∈B I[arg maxc p̂i,c = y∗i ] and conf(B) = |B|−1

∑
i∈B p̂i,y∗i .

A recent line of works on measuring calibration in deep learning (Nixon et al., 2019; Vaicenavicius
et al., 2019) outline several problems of the ECE score. Firstly, ECE is a biased estimate of the
true calibration. Secondly, ECE-like scores cannot be optimized directly since they are minimized
by a model with constant uniform predictions, making the infinite temperature T = +∞ its global
optimum. Thirdly, ECE only estimates miscalibration in terms of the maximum assigned probability
whereas practical applications may require the full predicted probability vector to be calibrated.
Finally, biases of ECE on different models may not be equal, rendering the miscalibration estimates
incompatible.

Thresholded Adaptive Calibration Error (TACE) was proposed as a step towards solving some of
these problems (Nixon et al., 2019). TACE disregards all predicted probabilities that are less than
a certain threshold (hence thresholded), chooses the bin locations adaptively so that each bin has
the same number of objects (hence adaptive), and estimates miscalibration of probabilties across all
classes in the prediction (not just the top-1 predicted class as in ECE). Assuming that BTA

m denotes
them-th thresholded adaptive bin andM is the overall number of bins, TACE is defined as follows:

TACE =
1

CM

C∑
c=1

M∑
m=1

|BTA
m |
n

∣∣objs(BTA
m , c)− conf(BTA

m , c)
∣∣ , (2)

where objs(BTA, c) = |BTA|−1
∑
i∈BTA I[y∗i = c] and conf(BTA, c) = |BTA|−1

∑
i∈BTA p̂i,c.

Although TACE does solve several problems of ECE and is useful for measuring calibration of a
specific model, it still cannot be used as a reliable criterion for comparing different models. Theory
suggests that it is still a biased estimate of true calibration with different bias for each model. In
practice, TACE is sensitive to its two parameters, the number of bins and the threshold, and does not
provide a consistent ranking of different models which is shown in Figure 2.

3.5 TEMPERATURE SCALING AND TEST-TIME CROSS-VALIDATION

There are two common ways to perform temperature scaling using a validation set when training on
datasets that only feature public training and test sets (e.g. CIFARs). The public training set might
be divided into a smaller training set and validation set, or the public test set can be split into test
and validation parts (Guo et al., 2017; Nixon et al., 2019). The problem with the first method is that
the resulting models cannot be directly compared with all the other models that have been trained on
the full training set. The second approach, however, provides an unbiased estimate of metrics such
as log-likelihood and Brier score but introduces more variance.

In order to reduce the variance of the second approach, we perform a “test-time cross-validation”.
We randomly divide the test set into two equal parts, then compute metrics for each half of the test
set using the temperature optimized on another half. We repeat this procedure five times and average
the results across different random partitions to reduce the variance of the computed metrics.

4 A STUDY OF ENSEMBLING & DEEP ENSEMBLE EQUIVALENT

In this paper we consider the following ensembling techniques: deep ensembles (Lakshminarayanan
et al., 2017), snapshot ensembles (SSE by (Huang et al., 2017)), fast geometric ensembling (FGE by
(Garipov et al., 2018)), SWA-Gaussian (SWAG by (Maddox et al., 2019)), cyclical SGLD (cSGLD
by (Zhang et al., 2019)), variational inference (VI by (Blundell et al., 2015)), dropout (Srivastava
et al., 2014) and test-time data augmentation (Krizhevsky et al., 2009). These techniques were
chosen to cover a diverse set of approaches keeping their predictive performance in mind.

All these techniques can be summarized as distributions qm(ω) over some parameters ω of computa-
tion graphs zω(x), wherem stands for the technique. During testing, one can average the predictions
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across parameters ω ∼ qm(ω) to approximate the predictive distribution

p̂(yi |xi) ≈
∫
p(yi |xi, ω)qm(ω) dω ' 1

K

K∑
k=1

p(yi |xi, ωk), ωk ∼ qm(ω) (3)

For example, a deep ensemble of S networks can be represented in this form as a mixture of S
Dirac’s deltas qDE(ω) = 1

S

∑S
s=1 δ(ω − ωs), centered at independently trained snapshots ωs. Simi-

larly, a Bayesian neural network with a fully-factorized Gaussian approximate posterior distribution
over the weight matrices and convolutional kernels ω is represented as qVI(ω) = N (ω |µ,diag(σ2)),
µ and σ2 being the optimal variational means and variances respectively.

If one considers data augmentation as a part of the computational graph, it can be parameterized
by the coordinates of the random crop and the flag for whether to flip the image horizontally or
not. Sampling from the corresponding qaug(ω) would generate different ways to augment the data.
However, as data augmentation is present by default during the training of all othe mentioned ensem-
bling techniques, it is suitable to study it in combination with these methods and not as a separate
ensembling technique. We perform such an evaluation in Section 4.3.

Typically, the approximation (equation 3) requires K independent forward passes through a neural
network, making the test-time budget directly comparable across all methods.

4.1 DEEP ENSEMBLE EQUIVALENT

Most ensembling techniques under consideration are either bounded to a single mode, or provide
positively correlated samples. Deep ensembles, on the other hand, is a simple technique that pro-
vides independent samples from different modes of the loss landscape, which can intuitively result
in a better ensemble. Therefore deep ensembles can be considered as a strong baseline for per-
formance of other ensembling techniques given a fixed test-time budget. Instead of comparing the
values of uncertainty estimation metrics directly, we ask the following question aiming to introduce
perspective and interpretability in our comparison:

What number of independently trained networks combined yields the same performance
as a particular ensembling method?

Following insights from the previous sections, we use the calibrated log-likelihood (CLL) as the
main measure of uncertainty estimation performance of the ensemble. We define the Deep Ensemble
Equivalent (DEE) for an ensembling method m and its upper and lower bounds as follows:

DEEm(k) = min
{
l ∈ R, l ≥ 1

∣∣∣CLLmean
DE (l) ≥ CLLmean

m (k)
}
, (4)

DEE
upper
lower
m (k) = min

{
l ∈ R, l ≥ 1

∣∣∣CLLmean
DE (l)∓ CLLstd

DE(l) ≥ CLLmean
m (k)

}
, (5)

where CLLmean
m (l) and CLLstd

m (l) are the mean and the standard deviation of the calibrated log-
likelihood achieved by an ensembling method m with l samples. We compute CLLmean

DE (l) and
CLLstd

DE(l) for natural numbers l ∈ N>0 and use linear interpolation to define them for real values
l ≥ 1. In the following plots we report DEEm(k) for different methods m with different numbers
of samples k, and shade the area between the respective lower and upper bounds DEElower

m (k) and
DEEupper

m (k).

4.2 EXPERIMENTS

We compute the deep ensemble equivalent (DEE) of various ensembling techniques for four popular
deep architectures: VGG16 (Simonyan & Zisserman, 2014), PreResNet110/164 (He et al., 2016),
and WideResNet28x10 (Zagoruyko & Komodakis, 2016) on CIFAR-10/100 datasets (Krizhevsky
et al., 2009), and ResNet50 (He et al., 2016) on ImageNet dataset (Russakovsky et al., 2015). We
use PyTorch (Paszke et al., 2017) for implementation of these models, building upon available public
implementations. Our implementation closely matches the quality of methods that has been reported
in original works. Technical details on training, hyperparameters and implementations can be found
in Appendix D. We plan to make all computed metrics, source code and trained models publicly
available.
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Figure 3: The deep ensemble equivalent for CIFAR10, CIFAR100 and ImageNet datasets averaged
across different deep convolutional architectures. Area between the corresponding averaged lower
and upper bounds of DEE is shaded. Note that the Deep Ensembles approximately correspond to
the identity function, while other methods are divided into three groups, as discussed in Section 4.2.

As one can see on Figure 3, ensembling methods clearly fall into three categories. SSE and cSGLD
outperform all other techniques except deep ensembles and enjoy a near-linear scaling of DEE with
the number of samples. The investigation of weight-space trajectories of cSGLD and SSE (Huang
et al., 2017; Zhang et al., 2019) suggests that these methods can efficiently explore different modes
of the loss landscape. In terms of deep ensemble equivalent, these methods do not saturate unlike
other methods that are bound to a single mode. More verbose results are presented in Appendix E.

In our experiments SSE typically outperforms cSGLD. This is mostly due to the fact that SSE
has a much larger training budget. The cycle lengths and learning rates of SSE and cSGLD are
comparable, however, SSE collects one snapshot per cycle while cSGLD collects three snapshots.
This makes samples from SSE less correlated with each other while increasing the training budget.
Both SSE and cSGLD can be adjusted to obtain a different trade-off between the training budget and
the DEE-to-samples ratio. We reused the schedules provided in the original papers (Huang et al.,
2017; Zhang et al., 2019).

Being more “local” methods, FGE and SWAG perform worse than SSE and cSGLD, but still sig-
nificantly outperform “single-snapshot” methods like dropout, K-FAC Laplace approximation and
variational inference. We hypothesize that by covering a single mode with a set of snapshots, FGE
and SWAG provide a better fit for the local geometry than methods based on stochastic computation
graphs. This implies that the performance of FGE and SWAG should be achievable by methods
that approximate the geometry of a single mode. However, one might need more elaborate poste-
rior approximations and better inference techniques in order to match the performance of FGE and
SWAG by training a stochastic computation graph end-to-end (as opposed to SWAG that constructs
a stochastic computation graph post-hoc).

4.3 DATA AUGMENTATION IMPROVES ENSEMBLES

Data augmentation is a time-honored technique that is widely used in deep learning, and is a crucial
component for training modern DNNs. Test-time data augmentation have been used for a long
time to improve the performance of convolutional networks. For example, multi-crop evaluation
has long been a standard procedure for the ImageNet challenge (Simonyan & Zisserman, 2014;
Szegedy et al., 2015; He et al., 2016). It, however, is not very popular in the literature on ensembling
techniques in deep learning. In this section, we study the effect of test-time data augmentation on
the aforementioned ensembling techniques.

We report the results on combination of ensembles and test-time data augmentation for CIFAR-10 in
Table 1 (see Appendix G for results on CIFAR-100 and ImageNet). We sample one augmentation for
each member of the ensemble to leave the test-time budget the same. Unsurprisingly, it consistently
improves most ensembling methods. However, when combined with test-time data augmentation,
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Model cSGLD Deep ensemble FGE K-FAC-L Single model SSE SWAG FFG VI Dropout

ResNet110 0.115 vs 0.111↓ 0.106 vs 0.105↓ 0.121 vs 0.121≈ 0.147 vs 0.130↓ 0.150 vs 0.129↓ 0.106 vs 0.106≈ 0.126 vs 0.126↓ 0.142 vs 0.130↓
ResNet164 0.110 vs 0.108↓ 0.100 vs 0.100≈ 0.115 vs 0.115≈ 0.142 vs 0.127↓ 0.144 vs 0.124↓ 0.104 vs 0.104≈ 0.116 vs 0.116≈ 0.141 vs 0.128↓
VGG16 0.147 vs 0.146↓ 0.138 vs 0.139↑ 0.150 vs 0.150≈ 0.200 vs 0.164↓ 0.229 vs 0.170↓ 0.137 vs 0.138↑ 0.152 vs 0.152≈ 0.184 vs 0.160↓ 0.226 vs 0.171↓
WideResNet 0.099 vs 0.100↑ 0.090 vs 0.094↑ 0.102 vs 0.102≈ 0.120 vs 0.111↓ 0.124 vs 0.113↓ 0.101 vs 0.101≈ 0.117 vs 0.117≈ 0.118 vs 0.111↓

Table 1: Negative calibrated log-likelihood for CIFAR10, w/o vs with test-time data augmentation.

“single-snapshot” methods like variational-inference, K-FAC Laplace and dropout start to perform
very similarly to an augmented version of a single model. On CIFAR-10/100 the performance of
powerful ensembles (deep ensembles, SSE, cSGLD, FGE and SWAG) is not affected by test-time
augmentation, whereas on ImageNet we see a clear improvement across all methods. This is likely
due to the fact that CIFAR images are small thus making data augmentation quite limited, whereas
images from ImageNet allow for a large amount of diverse crops.

Interestingly, test-time data augmentation on ImageNet improves accuracy but decreases the (uncal-
ibrated) log-likelihood of the deep ensembles (Figure 1, Table REF). It breaks the nearly optimal
temperature of deep ensembles and requires temperature scaling to show the actual performance of
the method, as discussed in Section 3.1. We show that test-time data augmentation with temper-
ature scaling significantly improves predictive uncertainty of ensembling methods and should be
considered as a baseline for them. It is a striking example that highlights the importance of tempera-
ture scaling. Our experiments demonstrate that ensembles may be severely miscalibrated by default
while still providing superior predictive performance after calibration.

5 DISCUSSION

We have explored the field of in-domain uncertainty estimation and performed an extensive evalua-
tion of modern ensembling techniques. Our main findings can be summarized as follows:

• Temperature scaling is a must even for ensembles. While ensembles generally have bet-
ter calibration out-of-the-box, they are not calibrated perfectly and can benefit from the
procedure. Comparison of log-likelihoods of different ensembling methods without tem-
perature scaling might not provide a fair ranking especially if some models happen to be
miscalibrated.

• Many common metrics for measuring in-domain uncertainty are either unreliable (ECE and
analogues) or cannot be used to compare different methods (AUC-ROC, AUC-PR for mis-
classification detection; accuracy-confidence curves). In order to perform a fair comparison
of different methods, one needs to be cautious of these pitfalls.

• Many popular ensembling techniques require dozens of samples for test-time averaging, yet
are essentially equivalent to a handful of independently trained models. Deep ensembles
dominate other methods given a fixed test-time budget. The results indicate in particu-
lar that exploration of different modes in the loss landscape is crucial for good predictive
performance.

• Methods that are stuck in a single mode are unable to compete with methods that are de-
signed to explore different modes of the loss landscape. Would more elaborate posterior
approximations and better inference techniques shorten this gap?

• Test-time data augmentation is a surprisingly strong baseline for in-domain uncertainty
estimation and can significantly improve other methods without increasing training time or
model size since data augmentation is usually already present during training.

Our takeaways are aligned with the take-home messages of (Ovadia et al., 2019) that relate to in-
domain uncertainty estimation. We also observe a stable ordering of different methods in our experi-
ments, and observe that deep ensembles with few members outperform methods based on stochastic
computation graphs.

A large number of unreliable metrics inhibits a fair comparison of different methods. Because of this,
we urge the community to aim for more reliable benchmarks in the numerous setups of uncertainty
estimation.
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A CORRELATION OF LOG-LIKELIHOOD AND BRIER SCORES
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(a) CIFAR-100 dataset |ρ| = 0.986
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(b) CIFAR-100 dataset |ρ| = 0.974
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(c) ImageNet dataset |ρ| = 0.999

Figure 4: The average log-likelihood vs the Brier score on a test dataset for different ensemble
methods on CIFAR-10 (a) and CIFAR-10 (b) and ImageNet (c) datasets. While not being equivalent,
these metrics demonstrate a strong linear correlation. The correlation coefficient is denoted as ρ.

B LOG-LIKELIHOOD VS. CALIBRATED LOG-LIKELIHOOD

10
0

10
1

10
2

# samples

0.30

0.25

0.20

0.15

Lo
g-

Li
ke

lih
oo

d

VGG16 CIFAR10

cSGLD
Deep ensemble
Dropout
FGE
K-FAC-L

Single model
SSE
SWAG
FFG VI

10
0

10
1

10
2

# samples

0.26

0.24

0.22

0.20

0.18

0.16

0.14

C
al

ib
ra

te
d 

Lo
g-

Li
ke

lih
oo

d

VGG16 CIFAR10

cSGLD
Deep ensemble
Dropout
FGE
K-FAC-L

Single model
SSE
SWAG
FFG VI

10
0

10
1

10
2

# samples

0.25

0.20

0.15

0.10

Lo
g-

Li
ke

lih
oo

d

ResNet110 CIFAR10

cSGLD
Deep ensemble
FGE
K-FAC-L

Single model
SSE
SWAG
FFG VI

10
0

10
1

10
2

# samples

0.250

0.225

0.200

0.175

0.150

0.125

0.100

C
al

ib
ra

te
d 

Lo
g-

Li
ke

lih
oo

d

ResNet110 CIFAR10

cSGLD
Deep ensemble
FGE
K-FAC-L

Single model
SSE
SWAG
FFG VI

10
0

10
1

10
2

# samples

0.25

0.20

0.15

0.10

Lo
g-

Li
ke

lih
oo

d

ResNet164 CIFAR10

cSGLD
Deep ensemble
FGE
K-FAC-L

Single model
SSE
SWAG
FFG VI

10
0

10
1

10
2

# samples

0.250

0.225

0.200

0.175

0.150

0.125

0.100

C
al

ib
ra

te
d 

Lo
g-

Li
ke

lih
oo

d

ResNet164 CIFAR10

cSGLD
Deep ensemble
FGE
K-FAC-L

Single model
SSE
SWAG
FFG VI

10
0

10
1

10
2

# samples

0.225

0.200

0.175

0.150

0.125

0.100

Lo
g-

Li
ke

lih
oo

d

WideResNet CIFAR10

cSGLD
Deep ensemble
Dropout
FGE
K-FAC-L

Single model
SSE
SWAG
FFG VI

10
0

10
1

10
2

# samples

0.18

0.16

0.14

0.12

0.10

C
al

ib
ra

te
d 

Lo
g-

Li
ke

lih
oo

d

WideResNet CIFAR10

cSGLD
Deep ensemble
Dropout
FGE
K-FAC-L

Single model
SSE
SWAG
FFG VI

(a) CIFAR-10
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Figure 5: A side-by-side comparison of log-likelihood and calibrated log-likelihood on CIFAR-10
(a) and CIFAR-100 (b) datasets. On CIFAR-10, the performance of one network becomes close to
dropout, variational inference (vi), and K-FAC Laplace approximation (kfacl) on all models except
VGG. On CIFAR-100 on WideResNet and VGG deep ensembles move to the first position in the
ranking after calibration. See Section 3.1 for details on the calibrated log-likelihood.
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C CORRELATION OF ACCURACY AND LOG-LIKELIHOOD
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(a) CIFAR-10, ρ = 0.869
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(b) CIFAR-10, ρ = 0.962
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(c) CIFAR-100, ρ = 0.882
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(d) CIFAR-100, ρ = 0.956
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(e) ImageNet, ρ = 0.992
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(f) ImageNet, ρ = 0.995

Figure 6: Log-likelihood vs accuracy for different ensembles before (a, c, e) and after (b, d, f)
calibration. Both plain log-likelihood and especially calibrated log-likelihood are highly correlated
with accuracy.

D EXPERIMENTAL DETAILS

Implementations of deep ensembles, SWA, SWAG, FGE and K-FAC Laplace are heavily based on
the original PyTorch implementations of SWA1 and SWAG 2. Implementations of cyclical MCMC
and Snapshot Ensembles are based on the original implementation of cyclical MCMC 3. Implemen-
tations of all architectures are based on torchvision.models4.

1github.com/timgaripov/swa
2github.com/wjmaddox/swa_gaussian
3github.com/ruqizhang/csgmcmc/tree/master/experiments
4https://pytorch.org/docs/stable/torchvision/models.html
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Model lrinit epochs wd

VGG 0.05 400 5e-4
PreResNet110 0.1 300 3e-4
PreResNet164 0.1 300 3e-4
WideResNet28x10 0.1 300 5e-4

Table 2: Hyperparameters of various models trained on CIFARs

Implied probabilistic model Conventional neural networks for classification are usually trained
using the average cross-entropy loss function with weight decay regularization hidden inside an
optimizer in a deep learning framework like PyTorch. The actual underlying optimization problem
can be written as follows:

L(w) = − 1

N

N∑
i=1

log p̂(y∗i |xi, w) +
λ

2
‖w‖2 → min

w
, (6)

where {(xi, y∗i )}Ni=1 is the training dataset of N objects xi with corresponding labels y∗i , λ is the
weight decay scale and p̂(y∗i = j |xi, w) denotes the probability that a neural network with param-
eters w assigns to class j when evaluated on object xi.

The cross-entropy loss defines a likelihood function p(y∗ |x,w) and weight decay regularization, or
L2 regularization, corresponds to a certain Gaussian prior distribution p(w). The whole optimization
objective then corresponds to maximum a posteriori inference in the following probabilistic model:

p(y∗, w |x) = p(y∗ |x,w)p(w), (7)

log p(y∗ |x,w) = log

N∏
i=1

p(y∗i |xi, w) =

N∑
i=1

log p̂(y∗i |xi, w), (8)

log p(w) =
−Nλ

2
‖w‖2 + const ⇐⇒ p(w) = N

(
w
∣∣ 0, (Nλ)−1I

)
(9)

As many of the considered methods are probabilistic in nature, we use the same probabilistic model
for all of them. We use the SoftMax-based likelihood for all models, and use the fully-factorized
zero-mean Gaussian prior distribution with variances σ2 = (Nλ)−1, where the number of objects
N and the weight decay scale λ are dictated by the particular datasets and neural architectures, as
defined in the following paragraph. In order to make the result comparable across all ensembling
techniques, we use the same prababilistic model for all methods, choosing fixed weight decay pa-
rameters for each architecture.

Conventional networks On CIFAR-10/100 datasets all networks were trained by SGD optimizer
with batch size of 128, momentum 0.9 and model-specific parameters i.e., initial learning rate
(lrinit), weight decay (wd), and number of optimization epoch (epoch). The specific hyperpa-
rameters are shown in Table 2. The models used a unified learning rate scheduler that is shown
in equation 10. All models have been trained using data augmentation that consists of horizontal
flips, random crop of size 32 with padding 4. The standard data normalization has also been applied.
Weight decays, initial learning rates, and the learning rate scheduler were taken from (Garipov et al.,
2018) paper. Compared with hyperparameters of (Garipov et al., 2018), the number of optimization
epochs has been increased since we found that all models were underfitted. While original WideRes-
Net28x10 includes number of dropout layers with p = 0.3 and 200 training epoch, in this setting we
find that WideResNet28x10 underfits, and requires a longer training. Thus, we used p = 0, effec-
tively it does not affect the final performance of the model in our experiments, but reduces training
time.

lr(i) =


lrinit, i ∈ [0, 0.5 · epochs]
lrinit · (1.0− 0.99 ∗ (i/epochs− 0.5)/0.4), i ∈ [0.5 · epochs, 0.9 · epochs]
lrinit · 0.01, otherwise

(10)

On ImageNet dataset we used ResNet50 examples with a default hyperparameters from PyTorch
examples 5. Specifically SGD optimizer with momentum 0.9, batch size of 256, initial learning

5github.com/pytorch/examples/tree/ee964a2/imagenet
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rate 0.1, and with decay 1e-4. The training also includes data augmentation random crop of size
224×224, horizontal flips, and normalization, and learning rate scheduler lr = lrinit ·0.1epoch//30,
where // denotes integer division. We only deviated from standard parameters by increasing the
number of training epochs from 90 to 130. Or models achived top-1 error of 23.81 ± 0.15 that
closely matches accuracy of the ResNet50 probided by PyTorch which is 23.85 6. Training of one
model on a single NVIDIA Tesla V100 GPU takes approximately 5.5 days.

Deep Ensembles Deep ensembles (Lakshminarayanan et al., 2017) average the predictions across
networks trained independently starting from different initializations. To obtain Deep Ensemble
we repeat the procedure of training standard networks 128 times for all architectures on CIFAR-
10 and CIFAR-100 datasets (1024 networks over all) and 50 times for ImageNet dataset. Every
single member of Deep Ensembles were actually trained with exactly the same hyperparameters as
conventional models of the same arhitecture.

Dropout The binary dropout (or MC dropout) (Srivastava et al., 2014; Gal & Ghahramani, 2016)
is one of the most known ensembling techniques. It puts a multiplicative Bernoulli noise with param-
eter p over activations of ether fully-connected or convolutional layer, averaging predictions of the
network w.r.t. the noise during test. The dropout layers have been applied to VGG, and WideRes-
Net networks on CIFAR-10 and CIFAR-100 datasets. For VGG the dropout has been applied to
fully-connected (fc) layers with p = 0.5, overall two dropout layers, one before the first fc-layer and
one before the second one. While original version of VGG for CIFARs (Zagoruyko, 2015) exploits
more dropout layers, we observed that any additional dropout layer deteriorates the performance on
the model in ether deterministic or stochastic mode. For WideResNet network we applied dropout
consistently with the original paper (Zagoruyko & Komodakis, 2016) with p = 0.3. The dropout
usually increases the time to convergence, thus, VGG and WideResNet networks with dropout was
trained for 400 epoch instead of 300 epoch for deterministic case. The all other hyperparameters
was the same as in case of conventional models.

Variational Inference The VI approximates a true posterior distribution p(w |Data) with a
tractable variational approximation qθ(w), by maximizing so-called variational lower bound L
(eq. 11) w.r.t. parameters of variational approximation θ. We used fully-factorized Gaussian ap-
proximation q(w), and Gaussian prior distribution p(w).

L(θ) = Eq log p(y∗ |x,w)−KL(qθ(w) || p(w))→ max
θ

(11)

q(w) = N (w |µ, diag(σ2)) p(w) = N(w | 0, diag(σ2
p)), where σ2

p = (N · wd)−1 (12)

In the case of such a prior p(w) the probabilistic model remains consistent with conventional training
which corresponds to MAP inference in the same probabilistic model. We used variational inference
for both convolutional and fully-connected layers, where variances of the weights was parameterized
by log σ. For fully-connected layers we applied the LRT (Kingma et al., 2015).

While variational inference provide a theoretical grounded way to approximate a true posterior,
on practice, it tends to underfit deep learning models (Kingma et al., 2015). The following tricks
are applied to deal with it: pre-training (Molchanov et al., 2017) or equivalently annealing of β
(Sønderby et al., 2016), scaling down β (Kingma et al., 2015; Ullrich et al., 2017).

Consistently with the practical tricks we use a pre-training, specifically, we initialize µ with a snap-
shot of the weights of pretrained conventional model, and initialize log σ with model-specific con-
stant log σinit. The KL-divergence – except the term that corresponds to a weight decay – was scaled
on model specific parameter β. The weigh decay term was implemented as a part of the optimizer.
We used a fact that KL-divergence between two Gaussian distributions can be rewritten as two terms
one of which is equal to wd regularization.

On CIFAR-10 and CIFAR-100 we used β 1e-4 for VGG, ResNet100 and ResNet164 networks, and
β 1e-5 for WideResNet. The initialization of log-variance log σinit was set to −5 for all models.
Parameters µ were optimized with conventional SGD (with the same parameters as conventional
networks, except initial learning rate lrinit that was set to 1e-3). We used a separate Adam optimizer
with constant learning rate 1e-3 to optimize log-variances of the weights log σ. The training was held

6pytorch.org/docs/stable/torchvision/models.html
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for 100 epochs, that corresponds to 400 epochs of training (including pre-training). On ImageNet
we used β = 1e-3, lrinit = 0.01, log σinit = −6, and held training for a 45 epoch form a per-trained
model.

K-FAC Laplace The Laplace approximation uses the curvature information of the appropriately
scaled loss function to construct a Gaussian approximation to the posterior distribution. Ideally,
one would use the Hessian of the loss function as the covariance matrix and use the maximum a
posteriori estimate wMAP as the mean of the Gaussian approximation:

log p(w |x, y∗) = log p(y∗ |x,w) + log p(w) + const (13)

wMAP = arg max
w

log p(w |x, y∗); Σ = −∇∇ log p(w |x, y∗) (14)

p(w |x, y∗) ≈ N (w |wMAP ,Σ) (15)

In order to keep the method scalable, we use the Fisher Information Matrix as an approximation
to the true Hessian (Martens & Grosse, 2015). For K-FAC Laplace, we use the whole dataset to
construct an approximation to the empirical Fisher Information Matrix, and use the π correction to
reduce the bias (Ritter et al., 2018; Martens & Grosse, 2015). Following (Ritter et al., 2018), we
find the optimal noise scale for K-FAC Laplace on a held-out validation set by averaging across five
random initializations. We then reuse this scale for networks trained without a hold-out validation
set. We report the optimal values of scales in Table 3. Note that the optimal scale is different
depending on whether we use test-time data augmentation or not. Since the data augmentation also
introduces some amount of additional noise, the optimal noise scale for K-FAC Laplace with data
augmentation is lower.

Snapshot Ensembles Snapshot Ensembles (SSE) (Huang et al., 2017) is a simple example of an
array of methods which collect samples from a training trajectory of a network in weight space to
construct an ensemble. Samples are collected in a cyclical manner: each cycle learning rate goes
from a large value to near-zero and weights snapshot is taken at the end of the cycle. SSE uses SGD
with a cosine learning schedule defined as follows:

α(t) =
α0

2

(
cos

(
π mod (t− 1, dT/Me)

dT/Me

)
+ 1

)
, (16)

where α0 is the initial learning rate, T is the total number of training iterations and M is the number
of cycles.

On CIFAR-10/100 parameters from the original paper are reused, length of cycle is 40 epochs, max-
imum learning rate is 0.2, batch size is 64. On ResNet50 on ImageNet we used hyperparameters
from the original paper which are 45 epoch per cycle, maximum learning rate 0.1, and cosine sched-
uler of learning rate (eq. 16). All other parameters are equal to the ones as were used conventional
networks.

Cyclical SGLD Cyclical Stochastic Gradient Langevin Dynamics (cSGLD) (Zhang et al., 2019)
is a state-of-the-art ensembling method for deep neural networks pertaining to stochastic Markov
Chain Monte Carlo family of methods. It bears similarity to SSE, e.g. it employs SGD with a
learning rate schedule described with the equation 16 and training is cyclic in the same manner. Its
main differences from SSE are introducing gradient noise and capturing several snapshots per cycle,
both of which aid in sampling from posterior distribution over neural network weights efficiently.

Some parameters from the original paper are reused: length of cycle is 50 epochs, maximum learning
rate is 0.5, batch size is 64. Number of epochs with gradient noise per cycle is 3 epochs. This was
found to yield much higher predictive performance and better uncertainty estimation compared to
the original paper choice of 10 epochs for CIFAR-10 and 3 epochs for CIFAR-100.

Finally, cyclical Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) which reportedly has
marginally better performance compared with cyclical SGLD (Zhang et al., 2019) could not be
reproduced with a wide range of values of SGD momentum term. Because of this, we only include
cyclical SGLD in our benchmark.

FGE Fast Geometric Ensembling (FGE) is an ensembling method that is similar to SSE in that it
collects samples from a training trajectory of a network in weight space to construct an ensemble.
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Optimal noise scale
Architecture CIFAR10 CIFAR10-aug CIFAR100 CIFAR100-aug

VGG16BN 0.042 0.042 0.100 0.100
PreResNet110 0.213 0.141 0.478 0.401
PreResNet164 0.120 0.105 0.285 0.225
WideResNet28x10 0.022 0.018 0.022 0.004

Table 3: Optimal noise scale for K-FAC Laplace for different datasets and architectures. For
ResNet50 on ImageNet, the optimal scale found was 2.0 with test-time augmentation and 6.8 with-
out test-time augmentation.

Its main differences from SSE are pretraining, a short cycle length and a piecewise-linear learning
rate schedule

α(i) =

{
(1− 2t(i))α1 + 2t(i)α2 0 < t(i) ≤ 1

2

(2− 2t(i))α2 + (2t(i)− 1)α1
1
2
< t(i) ≤ 1

. (17)

Original hyperparameters are reused. Model pretraining is done with SGD for 160 epochs according
to the standard learning rate schedule described in equation 10 with maximum learning rates from
Table 2. After that, a desired number of FGE cycles is done with one snapshot per cycle collected.
Learning rate in a cycle is changed with parameters α1 = 1e − 2, α2 = 5e − 4, cycle length of 2
epochs for VGG and α1 = 5e− 2, α2 = 5e− 4, cycle length of 4 epochs for other networks. Batch
size is 128.

SWAG SWA-Gaussian (SWAG) (Maddox et al., 2019) is an ensembling method based on fitting
a Gaussian distribution to model weights on the SGD training trajectory and sampling from this
distribution to construct an ensemble.

Like FGE, SWAG has a pretraining stage which is done according to the standard learning rate
schedule described in equation 10 with maximum learning rates from Table 2. After that, training
continues with a constant learning rate of 1e-2 for all models except for PreResNet110 and PreRes-
Net164 on CIFAR-100 where it continues with a constant learning rate of 5e-2 in accordance with
the original paper. Rank of the empirical covariance matrix which is used for estimation of Gaussian
distribution parameters is set to be 20.
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Figure 7: The deep ensemble equivalent of various ensembling techniques on CIFAR-10. Solid
lines: mean DEE for different methods and architectures. Area between DEElower and DEEupper is
shaded. Lines 2–4 correspond to DEE based on other metrics, defined similarly to the log-likelihood-
based DEE. Note that while the actual scale of DEE varies from metric to metric, the ordering of
different methods and the overall behaviour of the lines remain the same.
SSE outperforms deep ensembles on CIFAR-10 on the WideResNet architecture. It possibly indi-
cates that the cosine learning rate schedule of SSE is more suitable for this architecture than the
piecewise-linear learning rate schedule used in deep ensembles. We will change the learning rate
schedule on WideResNets to a more suitable option in further revisions of the paper.
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Figure 8: The deep ensemble equivalent of various ensembling techniques on CIFAR-100. Solid
lines: mean DEE for different methods and architectures. Area between DEElower and DEEupper is
shaded. Lines 2–4 correspond to DEE based on other metrics, defined similarly to the log-likelihood-
based DEE. Note that while the actual scale of DEE varies from metric to metric, the ordering of
different methods and the overall behaviour of the lines remain the same.
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Figure 9: The deep ensemble equivalent of various ensembling techniques on ImageNet. Solid
lines: mean DEE for different methods and architectures. Area between DEElower and DEEupper

is shaded. Columns 2–4 correspond to DEE based on other metrics, defined similarly to the log-
likelihood-based DEE. Note that while the actual scale of DEE varies from metric to metric, the
ordering of different methods and the overall behaviour of the lines remain the same.

F METRIC VALUES

Error (%) on CIFAR10 dataset (100 samples)

Model cSGLD* Deep ensemble* FGE* K-FAC Laplace* Single model* SSE* SWAG* FFG VI* Dropout*

ResNet110 3.83±0.02 3.51±0.01 4.11±0.08 4.78±0.08 4.71±0.16 3.47±0.10 4.09±0.08 4.67±0.12
ResNet164 3.66±0.06 3.31±0.02 3.87±0.14 4.60±0.09 4.47±0.12 3.37±0.05 3.86±0.07 4.50±0.05
VGG16 4.84±0.04 4.48±0.05 4.99±0.11 5.80±0.19 6.07±0.20 4.54±0.05 5.04±0.06 5.79±0.13 5.94±0.11
WideResNet 3.19±0.04 2.82±0.02 3.34±0.06 3.83±0.16 3.71±0.10 3.27±0.10 3.75±0.06 3.66±0.16

cLog-LikeLihood on CIFAR10 dataset (100 samples)

Model cSGLD* Deep ensemble* FGE* K-FAC Laplace* Single model* SSE* SWAG* FFG VI* Dropout*

ResNet110 -0.115±0.001 -0.106±0.000 -0.121±0.001 -0.147±0.003 -0.150±0.003 -0.106±0.001 -0.126±0.005 -0.142±0.002
ResNet164 -0.110±0.002 -0.100±0.000 -0.115±0.001 -0.142±0.004 -0.144±0.003 -0.104±0.001 -0.116±0.002 -0.141±0.002
VGG16 -0.147±0.003 -0.138±0.000 -0.150±0.002 -0.200±0.008 -0.229±0.005 -0.137±0.001 -0.152±0.001 -0.184±0.001 -0.226±0.003
WideResNet -0.099±0.002 -0.090±0.000 -0.102±0.001 -0.120±0.003 -0.124±0.003 -0.101±0.002 -0.117±0.002 -0.118±0.002

cBrier on CIFAR10 dataset (100 samples)

Model cSGLD* Deep ensemble* FGE* K-FAC Laplace* Single model* SSE* SWAG* FFG VI* Dropout*

ResNet110 0.057±0.001 0.052±0.000 0.060±0.001 0.071±0.001 0.071±0.002 0.052±0.001 0.062±0.002 0.069±0.001
ResNet164 0.054±0.001 0.049±0.000 0.057±0.001 0.068±0.001 0.068±0.001 0.051±0.000 0.057±0.001 0.068±0.001
VGG16 0.072±0.002 0.066±0.000 0.074±0.001 0.089±0.002 0.096±0.002 0.067±0.000 0.075±0.001 0.087±0.001 0.094±0.001
WideResNet 0.048±0.001 0.044±0.000 0.050±0.000 0.057±0.002 0.057±0.001 0.050±0.001 0.057±0.001 0.055±0.001

cAURC on CIFAR10 dataset (100 samples)

Model cSGLD* Deep ensemble* FGE* K-FAC Laplace* Single model* SSE* SWAG* FFG VI* Dropout*

ResNet110 0.0037±0.00 0.0032±0.00 0.0041±0.00 0.0051±0.00 0.0054±0.00 0.0035±0.00 0.0043±0.00 0.0049±0.00
ResNet164 0.0035±0.00 0.0031±0.00 0.0039±0.00 0.0049±0.00 0.0053±0.00 0.0034±0.00 0.0038±0.00 0.0049±0.00
VGG16 0.0051±0.00 0.0046±0.00 0.0053±0.00 0.0076±0.00 0.0109±0.00 0.0045±0.00 0.0054±0.00 0.0076±0.00 0.0116±0.00
WideResNet 0.0031±0.00 0.0029±0.00 0.0031±0.00 0.0040±0.00 0.0043±0.00 0.0031±0.00 0.0037±0.00 0.0039±0.00

Table 4: The joint table of results for CIFAR10. Note that std of deep ensembles is underestimated
since we are choosing 100 random samples from a subset of approx. 130 independently trained
networks.
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Error (%) on CIFAR100 dataset (100 samples)

Model cSGLD* Deep ensemble* FGE* K-FAC Laplace* Single model* SSE* SWAG* FFG VI* Dropout*

ResNet110 18.07±0.16 16.94±0.04 19.19±0.21 22.14±0.29 22.57±0.21 18.24±0.27 20.28±0.21 21.83±0.13
ResNet164 17.13±0.18 16.52±0.06 18.36±0.13 21.03±0.38 21.42±0.32 17.63±0.17 19.33±0.24 20.71±0.09
VGG16 21.15±0.11 20.49±0.08 22.16±0.23 25.70±0.38 26.22±0.32 21.03±0.10 22.38±0.25 25.38±0.24 26.15±0.16
WideResNet 16.29±0.10 15.70±0.05 17.12±0.16 19.43±0.21 19.21±0.26 17.10±0.22 18.71±0.31 19.20±0.28

cLog-LikeLihood on CIFAR100 dataset (100 samples)

Model cSGLD* Deep ensemble* FGE* K-FAC Laplace* Single model* SSE* SWAG* FFG VI* Dropout*

ResNet110 -0.630±0.002 -0.595±0.001 -0.661±0.004 -0.812±0.010 -0.848±0.009 -0.651±0.002 -0.684±0.008 -0.795±0.002
ResNet164 -0.606±0.005 -0.574±0.001 -0.637±0.004 -0.772±0.007 -0.815±0.011 -0.629±0.005 -0.654±0.004 -0.760±0.001
VGG16 -0.749±0.004 -0.745±0.001 -0.800±0.002 -1.050±0.008 -1.122±0.015 -0.751±0.003 -0.796±0.003 -0.975±0.004 -1.117±0.004
WideResNet -0.583±0.004 -0.570±0.001 -0.596±0.003 -0.789±0.006 -0.796±0.012 -0.614±0.005 -0.678±0.011 -0.749±0.006

cBrier on CIFAR100 dataset (100 samples)

Model cSGLD* Deep ensemble* FGE* K-FAC Laplace* Single model* SSE* SWAG* FFG VI* Dropout*

ResNet110 0.256±0.002 0.241±0.000 0.269±0.002 0.311±0.004 0.319±0.003 0.258±0.001 0.281±0.003 0.307±0.000
ResNet164 0.244±0.002 0.232±0.000 0.260±0.001 0.296±0.003 0.305±0.004 0.250±0.002 0.269±0.001 0.292±0.000
VGG16 0.293±0.001 0.286±0.000 0.307±0.001 0.357±0.003 0.371±0.004 0.291±0.001 0.307±0.002 0.348±0.001 0.369±0.002
WideResNet 0.230±0.001 0.222±0.000 0.240±0.001 0.281±0.003 0.280±0.003 0.240±0.002 0.262±0.003 0.274±0.003

cAURC on CIFAR100 dataset (100 samples)

Model cSGLD* Deep ensemble* FGE* K-FAC Laplace* Single model* SSE* SWAG* FFG VI* Dropout*

ResNet110 0.0421±0.00 0.0382±0.00 0.0456±0.00 0.0607±0.00 0.0648±0.00 0.0426±0.00 0.0496±0.00 0.0593±0.00
ResNet164 0.0388±0.00 0.0359±0.00 0.0429±0.00 0.0556±0.00 0.0600±0.00 0.0402±0.00 0.0455±0.00 0.0534±0.00
VGG16 0.0528±0.00 0.0508±0.00 0.0570±0.00 0.0779±0.00 0.0855±0.00 0.0518±0.00 0.0572±0.00 0.0741±0.00 0.0857±0.00
WideResNet 0.0343±0.00 0.0324±0.00 0.0364±0.00 0.0498±0.00 0.0499±0.00 0.0366±0.00 0.0439±0.00 0.0476±0.00

Table 5: The joint table of results for CIFAR100. Note that std of deep ensembles is underestimated
since we are choosing 100 random samples from a subset of approx. 130 independently trained
networks.

Error (%) on ImageNet dataset for different number of samples

Model (# samples) Deep ensemble FGE K-FAC-L Single model SSE FFG VI

ResNet50 (7 samples) 21.01±0.0485 23.59 24.04±0.1230 23.81±0.1526 21.96 23.76±0.0660
ResNet50 (40 samples) 20.64±0.0290 23.29 23.80±0.0113 23.81±0.1526 23.69±0.0198
ResNet50 (50 samples) 20.63±0.0000 23.82±0.0269 23.81±0.1526 23.69±0.0297

cLog-Likelihood on ImageNet dataset for diferent number of samples

Model (# samples) Deep ensemble* FGE K-FAC-L Single model SSE FFG VI

ResNet50 (7 samples) -0.813±0.0008 -0.918 -0.950±0.0130 -0.938±0.0046 -0.852 -0.925±0.0004
ResNet50 (40 samples) -0.789±0.0005 -0.907 -0.937±0.0043 -0.938±0.0046 -0.920±0.0000
ResNet50 (50 samples) -0.788±0.0000 -0.936±0.0015 -0.938±0.0046 -0.920±0.0002

cBrier on ImageNet dataset for diferent number of samples

Model (# samples) Deep ensemble FGE K-FAC-L Single model* SSE FFG VI

ResNet50 (7 samples) 0.297±0.0002 0.327 0.335±0.0028 0.331±0.0015 0.309 0.329±0.0002
ResNet50 (40 samples) 0.292±0.0002 0.324 0.331±0.0007 0.331±0.0015 0.328±0.0000
ResNet50 (50 samples) 0.291±0.0000 0.331±0.0002 0.331±0.0015 0.328±0.0000

cAURC on ImageNet dataset for diferent number of samples

Model (# samples) Deep ensemble FGE K-FAC-L Single model SSE FFG VI

ResNet50 (7 samples) 0.0582±0.00 0.0684±nan 0.0714±0.00 0.0701±0.00 0.0619±nan 0.0688±0.00
ResNet50 (40 samples) 0.0565±0.00 0.0673±nan 0.0703±0.00 0.0701±0.00 0.0685±0.00
ResNet50 (50 samples) 0.0564±0.00 0.0702±0.00 0.0701±0.00 0.0684±0.00

Table 6: The joint table of results for ImageNet. Note that std of deep ensembles is underesti-
mated since we are choosing 50 random samples from a subset of approx. 60 independently trained
networks.
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G METRIC VALUES WITH TEST-TIME AUGMENTATION

Error (%) on CIFAR10 dataset before and after data augmentation (100 samples)

Model cSGLD Deep ensemble FGE K-FAC-L Single model SSE SWAG FFG VI Dropout

ResNet110 3.83 vs 3.64↓ 3.51 vs 3.44↓ 4.11 vs 4.11≈ 4.78 vs 4.17↓ 4.71 vs 4.13↓ 3.47 vs 3.47≈ 4.09 vs 4.09≈ 4.67 vs 4.25↓
ResNet164 3.66 vs 3.43↓ 3.31 vs 3.29↓ 3.87 vs 3.87≈ 4.60 vs 4.08↓ 4.47 vs 3.92↓ 3.37 vs 3.37≈ 3.86 vs 3.86≈ 4.50 vs 4.05↓
VGG16 4.84 vs 4.88↑ 4.48 vs 4.62↑ 4.99 vs 4.99≈ 5.80 vs 5.17↓ 6.07 vs 5.27↓ 4.54 vs 4.68↑ 5.04 vs 5.04≈ 5.79 vs 5.26↓ 5.94 vs 5.35↓
WideResNet 3.19 vs 3.22↑ 2.82 vs 2.92↑ 3.34 vs 3.34≈ 3.83 vs 3.50↓ 3.71 vs 3.51↓ 3.27 vs 3.27≈ 3.75 vs 3.69↓ 3.66 vs 3.47↓

Negative cLog-Likelihood on CIFAR10 dataset before and after data augmentation (100 samples)

Model cSGLD Deep ensemble FGE K-FAC-L Single model SSE SWAG FFG VI Dropout

ResNet110 0.115 vs 0.111↓ 0.106 vs 0.105↓ 0.121 vs 0.121≈ 0.147 vs 0.130↓ 0.150 vs 0.129↓ 0.106 vs 0.106≈ 0.126 vs 0.126↓ 0.142 vs 0.130↓
ResNet164 0.110 vs 0.108↓ 0.100 vs 0.100≈ 0.115 vs 0.115≈ 0.142 vs 0.127↓ 0.144 vs 0.124↓ 0.104 vs 0.104≈ 0.116 vs 0.116≈ 0.141 vs 0.128↓
VGG16 0.147 vs 0.146↓ 0.138 vs 0.139↑ 0.150 vs 0.150≈ 0.200 vs 0.164↓ 0.229 vs 0.170↓ 0.137 vs 0.138↑ 0.152 vs 0.152≈ 0.184 vs 0.160↓ 0.226 vs 0.171↓
WideResNet 0.099 vs 0.100↑ 0.090 vs 0.094↑ 0.102 vs 0.102≈ 0.120 vs 0.111↓ 0.124 vs 0.113↓ 0.101 vs 0.101≈ 0.117 vs 0.117↓ 0.118 vs 0.111↓

cBrier on CIFAR10 dataset before and after data augmentation (100 samples)

Model cSGLD Deep ensemble FGE K-FAC-L Single model SSE SWAG FFG VI Dropout

ResNet110 0.057 vs 0.055↓ 0.052 vs 0.051↓ 0.060 vs 0.060≈ 0.071 vs 0.063↓ 0.071 vs 0.062↓ 0.052 vs 0.052≈ 0.062 vs 0.062≈ 0.069 vs 0.064↓
ResNet164 0.054 vs 0.053↓ 0.049 vs 0.049≈ 0.057 vs 0.057≈ 0.068 vs 0.062↓ 0.068 vs 0.059↓ 0.051 vs 0.051≈ 0.057 vs 0.057≈ 0.068 vs 0.062↓
VGG16 0.072 vs 0.072≈ 0.066 vs 0.068↑ 0.074 vs 0.074≈ 0.089 vs 0.077↓ 0.096 vs 0.080↓ 0.067 vs 0.068↑ 0.075 vs 0.075≈ 0.087 vs 0.078↓ 0.094 vs 0.080↓
WideResNet 0.048 vs 0.049↑ 0.044 vs 0.046↑ 0.050 vs 0.050≈ 0.057 vs 0.053↓ 0.057 vs 0.053↓ 0.050 vs 0.050≈ 0.057 vs 0.056≈ 0.055 vs 0.053↓

cAURC on CIFAR10 dataset before and after data augmentation (100 samples)

Model cSGLD Deep ensemble FGE K-FAC-L Single model SSE SWAG FFG VI Dropout

ResNet110 0.0037 vs 0.0036↓ 0.0032 vs 0.0033↑ 0.0041 vs 0.0041↑ 0.0051 vs 0.0044↓ 0.0054 vs 0.0045↓ 0.0035 vs 0.0035≈ 0.0043 vs 0.0043≈ 0.0049 vs 0.0044↓
ResNet164 0.0035 vs 0.0035≈ 0.0031 vs 0.0032↑ 0.0039 vs 0.0039≈ 0.0049 vs 0.0043↓ 0.0053 vs 0.0042↓ 0.0034 vs 0.0034≈ 0.0038 vs 0.0038≈ 0.0049 vs 0.0043↓
VGG16 0.0051 vs 0.0052↑ 0.0046 vs 0.0046≈ 0.0053 vs 0.0053≈ 0.0076 vs 0.0059↓ 0.0109 vs 0.0069↓ 0.0045 vs 0.0046↑ 0.0054 vs 0.0054≈ 0.0076 vs 0.0059↓ 0.0116 vs 0.0068↓
WideResNet 0.0031 vs 0.0031↑ 0.0029 vs 0.0030↑ 0.0031 vs 0.0031≈ 0.0040 vs 0.0036↓ 0.0043 vs 0.0038↓ 0.0031 vs 0.0031≈ 0.0037 vs 0.0038↑ 0.0039 vs 0.0036↓

Table 7: Results before and after data augmentation on CIFAR10.

Error (%) on CIFAR100 dataset (100 samples)

Model cSGLD Deep ensemble FGE K-FAC-L Single model SSE SWAG FFG VI Dropout

ResNet110 18.07 vs 17.66↓ 16.94 vs 16.82↓ 19.19 vs 19.19≈ 22.14 vs 20.99↓ 22.57 vs 21.05↓ 18.24 vs 18.24≈ 20.28 vs 20.28≈ 21.83 vs 20.84↓
ResNet164 17.13 vs 16.94↓ 16.52 vs 16.26↓ 18.36 vs 18.36≈ 21.03 vs 20.18↓ 21.42 vs 20.00↓ 17.63 vs 17.63≈ 19.33 vs 19.33≈ 20.71 vs 20.02↓
VGG16 21.15 vs 21.03↓ 20.49 vs 20.67↑ 22.16 vs 22.16≈ 25.70 vs 23.57↓ 26.22 vs 24.10↓ 21.03 vs 21.03≈ 22.38 vs 22.38≈ 25.38 vs 23.71↓ 26.15 vs 23.98↓
WideResNet 16.29 vs 16.25↓ 15.70 vs 15.75↑ 17.12 vs 17.12≈ 19.43 vs 18.93↓ 19.21 vs 18.62↓ 17.10 vs 17.10≈ 18.71 vs 18.48↓ 19.20 vs 18.86↓

Negative cLog-Likelihood on CIFAR100 dataset before and after data augmentation (100 samples)

Model cSGLD Deep ensemble FGE K-FAC-L Single model SSE SWAG FFG VI Dropout

ResNet110 0.630 vs 0.616↓ 0.595 vs 0.591↓ 0.661 vs 0.661≈ 0.812 vs 0.766↓ 0.848 vs 0.768↓ 0.651 vs 0.651≈ 0.684 vs 0.684≈ 0.795 vs 0.749↓
ResNet164 0.606 vs 0.595↓ 0.574 vs 0.574≈ 0.637 vs 0.637≈ 0.772 vs 0.740↓ 0.815 vs 0.743↓ 0.629 vs 0.629≈ 0.654 vs 0.654≈ 0.760 vs 0.729↓
VGG16 0.749 vs 0.741↓ 0.745 vs 0.753↑ 0.800 vs 0.800≈ 1.050 vs 0.909↓ 1.122 vs 0.936↓ 0.751 vs 0.750↓ 0.796 vs 0.796≈ 0.975 vs 0.892↓ 1.117 vs 0.942↓
WideResNet 0.583 vs 0.581↓ 0.570 vs 0.574↑ 0.596 vs 0.596≈ 0.789 vs 0.747↓ 0.796 vs 0.736↓ 0.614 vs 0.614≈ 0.678 vs 0.672↓ 0.749 vs 0.721↓

cBrier on CIFAR100 dataset before and after data augmentation (100 samples)

Model cSGLD Deep ensemble FGE K-FAC-L Single model SSE SWAG FFG VI Dropout

ResNet110 0.256 vs 0.251↓ 0.241 vs 0.240↓ 0.269 vs 0.269≈ 0.311 vs 0.296↓ 0.319 vs 0.296↓ 0.258 vs 0.258≈ 0.281 vs 0.281≈ 0.307 vs 0.294↓
ResNet164 0.244 vs 0.241↓ 0.232 vs 0.233≈ 0.260 vs 0.260≈ 0.296 vs 0.286↓ 0.305 vs 0.284↓ 0.250 vs 0.250≈ 0.269 vs 0.269≈ 0.292 vs 0.282↓
VGG16 0.293 vs 0.293↓ 0.286 vs 0.290↑ 0.307 vs 0.307≈ 0.357 vs 0.327↓ 0.371 vs 0.336↓ 0.291 vs 0.291≈ 0.307 vs 0.308≈ 0.348 vs 0.328↓ 0.369 vs 0.334↓
WideResNet 0.230 vs 0.230≈ 0.222 vs 0.224↑ 0.240 vs 0.240≈ 0.281 vs 0.271↓ 0.280 vs 0.267↓ 0.240 vs 0.240≈ 0.262 vs 0.260↓ 0.274 vs 0.268↓

cAURC on CIFAR100 dataset before and after data augmentation (100 samples)

Model cSGLD Deep ensemble FGE K-FAC-L Single model SSE SWAG FFG VI Dropout

ResNet110 0.0421 vs 0.0406↓ 0.0382 vs 0.0378↓ 0.0456 vs 0.0456≈ 0.0607 vs 0.0557↓ 0.0648 vs 0.0559↓ 0.0426 vs 0.0426≈ 0.0496 vs 0.0496≈ 0.0593 vs 0.0550↓
ResNet164 0.0388 vs 0.0379↓ 0.0359 vs 0.0358↓ 0.0429 vs 0.0429≈ 0.0556 vs 0.0522↓ 0.0600 vs 0.0523↓ 0.0402 vs 0.0402↓ 0.0455 vs 0.0456≈ 0.0534 vs 0.0507↓
VGG16 0.0528 vs 0.0524↓ 0.0508 vs 0.0514↑ 0.0570 vs 0.0570↑ 0.0779 vs 0.0646↓ 0.0855 vs 0.0682↓ 0.0518 vs 0.0516↓ 0.0572 vs 0.0572↑ 0.0741 vs 0.0654↓ 0.0857 vs 0.0676↓
WideResNet 0.0343 vs 0.0344↑ 0.0324 vs 0.0330↑ 0.0364 vs 0.0364≈ 0.0498 vs 0.0471↓ 0.0499 vs 0.0454↓ 0.0366 vs 0.0366≈ 0.0439 vs 0.0433↓ 0.0476 vs 0.0456↓

Table 8: Results before and after data augmentation on CIFAR100.

Model (# samples) Deep ensemble FGE K-FAC-L Single model SSE FFG VI

ResNet50 (7 samples) 21.01 vs 20.66↓ 23.59 vs 21.61↓ 24.04 vs 21.97↓ 23.81 vs 21.97↓ 21.96 vs 21.29↓ 23.76 vs 22.07↓
ResNet50 (40 samples) 20.64 vs 19.40↓ 23.29 vs 20.75↓ 23.80 vs 21.14↓ 23.81 vs 21.08↓ 23.69 vs 21.20↓
ResNet50 (50 samples) 20.63 vs 19.36↓ 23.82 vs 21.04↓ 23.81 vs 21.06↓ 23.69 vs 21.11↓
Model (# samples) Deep ensemble FGE K-FAC-L Single model SSE FFG VI

ResNet50 (7 samples) 0.813 vs 0.817↑ 0.918 vs 0.863↓ 0.950 vs 0.877↓ 0.938 vs 0.872↓ 0.852 vs 0.843↓ 0.925 vs 0.877↓
ResNet50 (40 samples) 0.789 vs 0.742↓ 0.907 vs 0.798↓ 0.937 vs 0.812↓ 0.938 vs 0.808↓ 0.920 vs 0.807↓
ResNet50 (50 samples) 0.788 vs 0.739↓ 0.936 vs 0.808↓ 0.938 vs 0.805↓ 0.920 vs 0.804↓
Model (# samples) Deep ensemble FGE K-FAC-L Single model SSE FFG VI

ResNet50 (7 samples) 0.297 vs 0.296↓ 0.327 vs 0.309↓ 0.335 vs 0.313↓ 0.331 vs 0.312↓ 0.309 vs 0.304↓ 0.329 vs 0.314↓
ResNet50 (40 samples) 0.292 vs 0.278↓ 0.324 vs 0.294↓ 0.331 vs 0.299↓ 0.331 vs 0.298↓ 0.328 vs 0.299↓
ResNet50 (50 samples) 0.291 vs 0.278↓ 0.331 vs 0.299↓ 0.331 vs 0.298↓ 0.328 vs 0.298↓
Model (# samples) Deep ensemble FGE K-FAC-L Single model SSE FFG VI

ResNet50 (7 samples) 0.0582 vs 0.0603↑ 0.0684 vs 0.0653↓ 0.0714 vs 0.0666↓ 0.0701 vs 0.0665↓ 0.0619 vs 0.0630↑ 0.0688 vs 0.0669↓
ResNet50 (40 samples) 0.0565 vs 0.0546↓ 0.0673 vs 0.0600↓ 0.0703 vs 0.0616↓ 0.0701 vs 0.0613↓ 0.0685 vs 0.0614↓
ResNet50 (50 samples) 0.0564 vs 0.0544↓ 0.0702 vs 0.0614↓ 0.0701 vs 0.0611↓ 0.0684 vs 0.0612↓

Table 9: Results before and after data augmentation on ImageNet.
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