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ABSTRACT

Implementing correct method invocation is an important task for software devel-
opers. However, this is challenging work, since the structure of method invocation
can be complicated. In this paper, we propose InvocMap, a code completion tool
allows developers to obtain an implementation of multiple method invocations
from a list of method names inside code context. InvocMap is able to predict
the nested method invocations which their names didnt appear in the list of input
method names given by developers. To achieve this, we analyze the Method In-
vocations by four levels of abstraction. We build a Machine Translation engine to
learn the mapping from the first level to the third level of abstraction of multiple
method invocations, which only requires developers to manually add local vari-
ables from generated expression to get the final code. We evaluate our proposed
approach on six popular libraries: JDK, Android, GWT, Joda-Time, Hibernate,
and Xstream. With the training corpus of 2.86 million method invocations ex-
tracted from 1000 Java Github projects and the testing corpus extracted from 120
online forums code snippets, InvocMap achieves the accuracy rate up to 84 in F1-
score depending on how much information of context provided along with method
names, that shows its potential for auto code completion.

1 INTRODUCTION

Writing code is a challenge for non-experienced software developers. To write the code that imple-
ments a specific task in a programming language, developers need to remember the syntax of that
language and be familiar with how to implement method invocations. While the syntax of the lan-
guage is easier to learn since it contains a permanent set of words in the vocabulary, implementing
Method Invocations (MI)s is more challenging due to the following reasons. First of all, develop-
ers need to remember the structure and the combination of invocations depending on their purpose.
Secondly, the implementation of method invocation is also depending on the surrounding context
of the code. Thus, the code developed by non-experience developers may be in the risks of being
semantic error.

To help developers with interacting and analyzing by a given Java source code snippet, Java Devel-
opment Tool (JDT) library defines a list of Abstract Syntax Tree (AST) Node types (Eclipse, 2019).
With the list of these AST Node types, JDT is able to interact with the structure of each elements
inside the source code. MI, which is defined as sub-type of Expression, is one of the fundamental
AST Nodes that developers need to implement. MI has been used to make Application Programming
Interface (API) calls from other libraries or from other methods inside a Java project. The structure
of a syntactically correct MI contains method name, receiver and the list of arguments which could
be empty. Since receiver and arguments are types of expression (Eclipse, 2019), the structure of an
MI could be complicated as a deep AST tree. The reason for this issue is that expression can be
composed by different types of AST Node including MI.

An example of a complicated MI is shown in Listing 1. Within this Listing, the outside MI contains
four nested MI in its implementation. Additionally, there are five positions that requires local vari-
ables inside the expression. Type casting to integer is embedded to this MI to provide a semantically
correct MI. This MI is used along with other calculated MIs inside the body of method, providing
the a specific surrounding context for this MI. Without doubt, the outer method name set is just
one word while the respected MI is a deep AST tree.
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The representation of MI also relies on code context. Consider examples 2A and
2B on Listing 2 and Listing 3. These Listings show the implementation of API
android.content.Intent.getBooleanExtra(). Although 2 MIs share the same in-
formation about context of using the same local variable Intent and the false boolean
literal, they are differ in the structure of AST. Since the MI in Listing 2 associates with
the action of add or remove an application package from an android device, the MI on
Listing 3 associates with actions of network status checking. The difference in contexts
brings 2 MIs, which represents in 2 static Field Accesses Intent.EXTRA REPLACING and
ConnectivityManager.EXTRA NO CONNECTIVITY.

Listing 1: Example in An-
droid (2019a)

1 p u b l i c vo id s e t O f f s e t s ( i n t
n e w H o r i z o n t a l O f f s e t , i n t
n e w V e r t i c a l O f f s e t ) {

2 . . .
3 i f ( mView != n u l l ) {
4 . . .
5 i n v a l i d a t e R e c t f .

o f f s e t (−x o f f s e t
, −y o f f s e t ) ;

6 i n v a l i d a t e R e c t . s e t ( (
i n t ) Math . f l o o r
(
i n v a l i d a t e R e c t f
. l e f t ) , ( i n t )
Math . f l o o r (
i n v a l i d a t e R e c t f
. t o p ) , ( i n t )
Math . c e i l (
i n v a l i d a t e R e c t f
. r i g h t ) , ( i n t )
Math . c e i l (
i n v a l i d a t e R e c t f
. bot tom ) ) ;

7 . . .

Listing 2: Example 2A in An-
droid (2019b)

1 p u b l i c vo id onRece ive ( C o n t e x t
c o n t e x t , I n t e n t i n t e n t ) {

2 . . .
3 i f ( ( I n t e n t .

ACTION PACKAGE REMOVED .
e q u a l s ( a c t i o n ) | |

4 I n t e n t . ACTION PACKAGE
5 ADDED . e q u a l s ( a c t i o n )

)
6 && ! i n t e n t .

g e t B o o l e a n E x t r a
( I n t e n t .
EXTRA REPLACING
, f a l s e ) ) {

7 . . .

Listing 3: Example 2B in An-
droid (2019c)

1 p u b l i c vo id onRece ive ( C o n t e x t
c o n t e x t , I n t e n t i n t e n t ) {

2 . . .
3 i f ( a c t i v e N e t w o r k == n u l l ) {
4 . . .
5 } e l s e i f ( a c t i v e N e t w o r k .

ge tType ( ) ==
networkType ) {

6 mNetworkUnmetered = f a l s e
;

7 mNetworkConnected = !
i n t e n t .
g e t B o o l e a n E x t r a (
C o n n e c t i v i t y M a n a g e r
.
EXTRA NO CONNECTIVITY
, f a l s e ) ;

8 . . .

From the examples above, we recognize that implementing an effective method invocation requires
strong background and experiences of developers. Even two MIs that belong to the same API and
share the same context of local variables and literal still have ambiguous in the way of implemen-
tation like Listing 2 and Listing 3. These challenges hinders the ability of writing a appropriate MI
and as well as developers need to spend time to remember or identify the correct structure of AST
in MI for software development.

With this work, we want to tackle this problem by providing InvocMap, a code completion tool
for helping developers to achieve the implementation of method invocation efficiently. InvocMap
accepts input as a sequence of method names inside the code environment of a method declaration,
then produce the output as the list of ASTs as translation results for each input method names.
The generated ASTs will only require developers to input information about local variables and
literals in order to obtain the complete code. For instance, in Listing 2, developer can write the
list of method names including the name getBooleanExtra. The output for the suggestion
will be #.getBooleanExtra( Intent.EXTRA REPLACING,#), which can be completed
manually by a variable of type android.content.Intent in the first "#" and a boolean literal
in the second "#".

Statistical Machine Translation (SMT) is a well-known approach in Natural Language Processing
(NLP) for translating between languages (Green et al., 2014). For taking advantage from SMT,
we propose a direction of code completion for Method Invocation by a Statistical approach, which
learn the translation from the abstract information of MIs to the their detail information, which are
represented by AST with complicate structure. First and foremost, we analyze the information inside
a typical MI. We divide the MI by four levels of abstraction. We also define information of context
for each MI which can help to predict the AST structure. Next, we build an SMT engine specified
for our work to infer from the very abstract layer of MI, means Method Name, to the third level of
MI, which is an AST tree that requires to be fulfill by local variables and literals. In order to evaluate
our approach, we do experiments to check the accuracy of our code completion technique in two
data sets collected from Github and from online forums. Resources of this paper can be found in
(InvocMap, 2019). This research has following contributions:
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Figure 1: Overview Approach of InvocMap

1. Designing a strategy for classifying Method Invocation by levels of abstraction, from very
abstract to details level.

2. Designing rules for extracting code tokens for representing abstract level and details level
for various types of AST nodes.

3. Proposing an algorithm for visiting a method invocation inside the code environment to
abstract and encode their structure in AST as an object for statistical learning.

4. Building a SMT system for learning from the context of code environment, including MIs
from large scale Github high quality projects. This SMT system is able to predict the
sequences of AST structure given sequences of method name and context.

2 APPROACH

We summarize the engines inside InvocMap on Figure 1. From the perspective of developers, In-
vocMap provides a plugin inside with Java code editor to allow them to write a single or multiple
method names inside the code environment. Starting with this input, InvocMap translates each
method names to respective ASTs. These ASTs reflect the complex structure of method invocations
which might be inconvenient for developers to remember. They are abstracted at level 3 in our def-
inition. That means they only require developers to add local variables, local methods or literals to
obtain the final code. We will discuss about MI at level 3 of abstraction in the next section. The abil-
ity of inferring ASTs for code completion relies on the Statistical Translation module. The training
process is done by the Statistical Learning module. This module learns information from the data
extracted from large scale Github code corpus (Github, 2019). In general, our statistical approach
takes advantages of the knowledge of implementing MIs from experienced developers, representing
it by a machine learning model to help non-experienced developers in retrieving effective imple-
mentation of MIs. Both the source code at developers side and code corpus are analyzed to extract
sequences of tokens by the Train AST Visitor and Test AST Visitor modules we developed. Inside
these visitors, we handle each AST Node types by functions of module Context Extractor and MI
Abstractor, which we discuss in next sections.

2.1 LEVELS OF MI ABSTRACTION IN INVOCMAP

Definition 1 Level 1 of abstraction of a method invocation is the information about method name
of that method invocation.

Definition 2 Level 2 of abstraction of a method invocation is the information about type (or signa-
ture) of that method invocation.

Definition 3 Level 3 of abstraction of a method invocation is the Abstract Syntax Tree of that method
invocation with abstracted place holder for local variables, local methods and literal.

Definition 4 Level 4 of abstraction of a method invocation is the complete Abstract Syntax Tree of
that method invocation.
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(a) Example of AST Level3 instance

(b) Example of inference from method name to MI
at level 3 for code snippet in Nexus (2019)

(c) Example of source and target language

Figure 2: Representations of AST Level3

Definition 5 Local Context of a method invocation is the information about types of local entities
and suggested terms. Local entities are local variables, local method invocations and literals inside
the MI. The suggested terms are the words that appeared inside the MI.‘

Along with 4 levels of abstraction in MI, we have the definition of local context provided for each
MI. An example of 4 levels is shown in Figure 2(a). In this code snippet, we have level 1 as
method name println. The level 2 of abstraction brings us information about type, which is
java.io.PrintStream.println.The level 4 is the final source code which is compile-able.
The level 3 is the AST that is having places which are local entities are abstracted by their type
information. In the implementation, we represent this AST in level 3 by 4 fields: the code with
abstracted places for local entities, the list of types of required arguments to add to get level 4,
the list of imported APIs and the type of MI. These 4 fields will make an unique identification for
the expression, which will serve as a representative token for the AST. Therefore, developers could
know which types of local variables to obtain the final code along with the set of imported APIs
when they receive an AST at level 3 of abstraction. In our work, we focus on the inference from
level 1 to level 3 by translation. We will use information of local context to help developers who
already remember what variables should run inside the MI and some words inside the MI to better
retrieve the AST of implementation. In Figure 2(a), we see 2 local entities, including the string
literal "index" and the integer variable i. The suggested terms can be "System" and "+" sign.

2.2 LEVELS OF ABSTRACTION FOR OTHER AST NODES

Definition 6 Level 1 of abstraction of other AST Nodes is the information about the Partial Qualified
Name (PQN) of type of those nodes.

Definition 7 Level 2 of abstraction of other AST Nodes is the information about Fully Qualified
Name (FQN) of type of those nodes.

In the context of this work, we call other AST Nodes as all kinds of AST except the MI that are
defined in Eclipse (2019). According to definitions of Phan et al. (2018), an example is the API
java.io.File. In this API, we have File as PQN while we have java.io.File as FQN.

2.3 SOURCE AND TARGET TOKENS EXTRACTION

Other AST Nodes tokens. We extract information about other AST Nodes to provide useful context
for MIs prediction. In the source language, we extract all tokens of level 1 of abstraction for each
AST Node, and extract all tokens in level 2 of that AST Node to put into target language. The
implementation of the extraction is the Context Extractor module, which is called inside Train AST
Visitor and Test AST Visitor.
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MI tokens. There are two types of information we want to embed for MI: the mapping between
method name and the AST along with the information relate to local context. For the first type of
information, the source language will store information about token as level 1 of abstraction of MI,
while the target language stores information about level 3 of abstraction of MI. Besides, information
about local context will be stored by level 1 of abstraction in the source and level 2 of abstraction in
the target language. A sequence of tokens for MI in Figure 2(a) is shown in Figure 2(c).

2.4 METHOD INVOCATION ABSTRACTION

Listing 4: Algorithm for Method Invocation
Abstraction

1 AST Level3 a b s t r a c t M e t h o d I n v o c a t i o n (
2 mi : M e t h o d I n v o c a t i o n ,
3 d i c t i o n a r y A S T : Set<AST Level3>,
4 v i s i t o r : I n v o c A b s t r a c t V i s i t o r ) {
5 AST Level3 r e s u l t =new AST Level3 ( mi ) ;
6 v i s i t o r . r e s u l t = r e s u l t ;
7
8 / / v i s i t r e c e i v e r i f e x i s t
9 E x p r e s s i o n r e c e i v e r E x p r = g e t R e c e i v e r ( mi ) ;

10 i f ( r e c e i v e r E x p r n o t n u l l )
11 v i s i t o r . v i s i t ( r e c e i v e r E x p r ) ;
12
13 / / add method name and open p a r e n t h e s i s
14 r e s u l t . s t r C o d e . append ( getMethodName ( mi ) +” ( ” ) ;
15
16 / / v i s i t c o n t e n t o f arguments
17 E x p r e s s i o n [ ] l i s t A r g u m e n t s = ge tPa rams ( mi ) ;
18 f o r each E x p r e s s i o n a rgExpr i n l i s t A r g u m e n t s :
19 v i s i t o r . v i s i t ( a rgExpr ) ;
20
21 / / add c l o s e p a r e n t h e s i s
22 r e s u l t . s t r C o d e . append ( ” ) ” ) ;
23
24 / / s e t uniqueId
25 s e t U n i q u e I d ( r e s u l t , d i c t i o n a r y A S T ) ;
26
27 re turn r e s u l t ;
28 }

Listing 5: Definition of AST Level3 and In-
vocAbstractVisitor

1 c l a s s AST Level3 {
2 / / F i e l d s t o s t o r e AST in l e v e l 3
3 s t r C o d e : S t r i n g ;
4 / / Other i n f o r m a t i o n s
5 l i s t A r g u m e n t s : L i s t<Type>;
6 s e t I m p o r t e d A P I s : Set<Type>;
7 s t r S i g n a t u r e : Type ;
8 / / i d i s c r e a t e d by t h e uniqueness o f 4 o t h e r

f i e l d s
9 u n i q u e I d : S t r i n g ;

10
11 }
12 c l a s s I n v o c A b s t r a c t V i s i t o r ex tends ASTVis i to r{
13 r e s u l t : AST leve l3 ;
14 . . .
15 void v i s i t ( ASTNode node ) {
16 / / I f v i s i t l o c a l e n t i t y , a b s t r a c t t h e p l a c e
17 i f ( i s L o c a l E n t i t y ( node ) ) {
18 r e s u l t . s t r C o d e . append ( ” # ” ) ;
19 r e s u l t . l i s t A r g u m e n t s . append ( ge tType ( node ) ) ;
20 }
21 e l s e {
22 / / v i s i t s t r u c t u r e and upda te r e s u l t
23 v i s i t S t r u c t u r e ( node ) ;
24 }
25 / / Add t y p e o f node t o s e t o f i m p o r t e d APIs
26 r e s u l t . s e t I m p o r t e d A P I s . add ( ge tType ( node ) ) ;
27 }
28 }

We get information about level 3 of abstraction in MI by proposing an algorithm in Listings 4 and
5. The abstractMethodInvocation() function is invoked when the Train AST Visitor or
Test AST Visitor visit a MI and return the abstraction in level 3 by an instance of AST Level3 class.
This function will use the child class of ASTVisitor called InvocAbstractVisitor defined in Listing
5 (line #12). This visitor will visit each element inside the MI, check and abstract if the element is
a local entity. This visitor also stores other information about the code of AST, the list of required
types for each local entities and the set of imported APIs. The handling strategy for each types of
AST Node inside the MI is implemented in the visitStructure() function in Listing 5(#23).
After visiting and abstracting of MI to an AST Level3, this object is checked by the first four fields
defined in Listing 5(#1-#10) to see if its exist in the dictionary or not. If yes, it will have the id of
the existing object in the dictionary. Otherwise, it will generate a new unique id and will be added to
the dictionary. The dictionary stores information about abstraction at layer 3 of MIs in the training
step. An example of AST Level3 object is shown in Figure 2(a).

2.5 STATISTICAL MACHINE TRANSLATION

To learn the mapping between source and target language, we apply the SMT (Green et al. (2014)).
SMT was built from two models: the language model and the translation model.

Language Model (LM). LM is used to predict the next token given a sequence of previous tokens
(Koehn et al., 2003). The more comprehensive corpus of target language we have, the higher quality
of prediction the LM achieves. LM had been used widely in Software Engineering (SE) researches
(Hindle et al., 2012; Hellendoorn et al., 2015; Liu, 2016) with potential results. The most basic
LM in NLP is uni-gram LM, which calculates the probability of each word based on the number
of the appearance of that word in the corpus. This LM provides drawbacks that it doesn’t take
into account the history of how a word was used in a sequence from training data. Here we use
the n-gram language model, which proposed by Jurafsky & Martin (2009). Assume that we have
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Table 1: Corpus, configurations and RQ3 result

(a) Corpus

Library Pairs
JDK 820386
GWT 170435
Joda-Time 91072
Android 312822
Hibernate 149887
Xstream 159170

(b) Configurations

Meaning / Example

Config 1 Only method name
println

Config 2 method name and variables
println 10 5

Config 3
method name, variables and
some suggested words
println 10 + 5

Expected System.out.println(#+#)
Params: int and int

(c) RQ 3 result

Num 1-10 11-20 21-50 50-100 >100
of mapping
Percentage 12.30% 4.20% 5.96% 4.90% 72.64%
Accuracy Prec Prec Prec Prec Prec
GWT 96.58% 86.83% 88.71% 86.89% 86.59%
Joda-Time 93.38% 89.64% 76.19% 69.43% 74.11%
JDK 98.14% 96.02% 95.26% 91.92% 89.06%
Android 96.24% 92.51% 90.63% 89.08% 82.58%
Hibernate 92.61% 87.60% 87.50% 85.47% 78.98%
Xstream 97.78% 91.01% 78.81% 81.02% 80.80%
Total 96.47% 93.07% 92.05% 89.41% 87.68%

m tokens in the target language AST1, ..., ASTm, the probability provided by LM is shown in the
above equation of Equations 1.

PLM [AST1, ..., ASTm] =

m∏
i=1

P [ASTi|ASTi−n, ..., ASTi−1]

Dbest = argmaxD(p(S|D) ∗ PLM (D)))

(1)

Translation Model. This model calculates the probability of a phrase from source language that
can be translated to a phrase in a target language. If we have a sentence D as the translated result of
sentence S as tokens in the source language, the selection of D as the best candidate is calculated by
the below equation in Equations 1. Since we infer from method names to MIs which are consistent
in order, we don’t apply the reordering probability in the translation model.

3 EVALUATION

Data Preparation. To do the evaluation, we select corpus on six well-known libraries. They are
Java Development Kit (JDK), Android, GWT, Joda-Time, Hibernate, and XStream. These libraries
were selected to generate the corpus for other research works (Phan et al. (2018); Subramanian et al.
(2014)). To generate corpus, we select 1000 highest stars Java projects from Github (Github (2019)),
which have most files used APIs from libraries in Table 1a. For each Java project, InvocMap parses
each Java source files by an the Train ASTVisitor module on Figure 1. The number of pairs respected
to each method body we collect is shown in Table 1a.

Training and Testing Configuration. To train the SMT model, we use a high-end computer with
core-i7 Intel processor and use 32 GB of memory. We apply our solution using Phrasal Green et al.
(2014). We allocate Phrasal with phrase length equals to 7. The total training time requires about 6
hours. For testing, we evaluate the ability of translation from a sequence of method names to ASTs
in level 3 of abstraction. We simulate 3 configurations sequences of method names regarding to
its local context defined in Table 1b. We can see the local context provided for method names is
increasing from configurations at level 1 to level 3. At level 1, the input for translation contains only
method names with the code context in the source language for translation. It simulates the case that
developers write a list of method names inside the code environment. At level 2, information about
partial class name of types of local entities is attached along with each method names. This case
simulates the case developers remember and write method name and local variables they remember
as part of the MI, but they don’t remember the structure of AST. At level 3, each method names in
the source language will be attached the information about local entities and half of words appeared
inside the MI. This case simulates the case that developers remember some words inside the MI
along with local entities.

Metrics. Information about tokens of method name and MI can be recognized by the annotation
#identifier in the source, and the expected results can be recognized by prefix "E-Total" of
tokens in the target. We use Precision and Recall as 2 metrics for the evaluation. Out of Vocabulary
(OOV) result is the case that the method name token does not in the corpus (Out of Source - OOS)
or the expected AST in level 3 does not appear in the target corpus (Out of Target - OOT).

6



Under review as a conference paper at ICLR 2020

Table 2: Intrinsic Evaluation Result on Github projects and Extrinsic Evaluation Result on Online
Forum Code

Intrinsic Evaluation with Configuration 1 Extrinsic Evaluation with Configuration 1
Library Correct OOVoc Total Pre Rec F1 Cor OOV Total Pre Rec F1
GWT 39635 31522 93475 63.98% 55.70% 59.55% 58 9 102 62.37% 86.57% 72.50%
Joda-Time 27364 1743 39715 72.06% 94.01% 81.59% 36 17 75 62.07% 67.92% 64.86%
JDK 1053330 394317 1988644 66.07% 72.76% 69.25% 115 44 250 55.83% 72.33% 63.01%
Android 471347 54316 617416 83.71% 89.67% 86.58% 51 13 106 54.84% 79.69% 64.97%
Hibernate 53319 38877 117501 67.82% 57.83% 62.43% 125 40 226 67.20% 75.76% 71.23%
Xstream 4671 3019 9382 73.41% 60.74% 66.48% 44 14 64 88.00% 75.86% 81.48%
Total 1649666 523794 2866133 70.43% 75.90% 73.06% 429 137 823 62.54% 75.80% 68.53%

Intrinsic Evaluation with Configuration 2 Extrinsic Evaluation with Configuration 2
GWT 53042 31522 93475 85.62% 62.72% 72.40% 88 9 102 94.62% 90.72% 92.63%
Joda-Time 29028 1743 39715 76.45% 94.34% 84.45% 53 17 75 91.38% 75.71% 82.81%
JDK 1347221 394359 1988644 84.50% 77.36% 80.77% 177 44 250 85.92% 80.09% 82.90%
Android 470725 54321 617416 83.60% 89.65% 86.52% 85 13 106 91.40% 86.73% 89.01%
Hibernate 63275 38881 117501 80.48% 61.94% 70.00% 138 40 226 74.19% 77.53% 75.82%
Xstream 5145 3019 9382 80.86% 63.02% 70.83% 49 14 64 98.00% 77.78% 86.73%
Total 1968436 523845 2866133 84.04% 78.98% 81.43% 590 137 823 86.01% 81.16% 83.51%

Intrinsic Evaluation with Configuration 3 Extrinsic Evaluation with Configuration 3
GWT 55510 31522 93475 89.60% 63.78% 74.52% 89 9 102 95.70% 90.82% 93.19%
Joda-Time 31394 1743 39715 82.68% 94.74% 88.30% 55 17 75 94.83% 76.39% 84.62%
JDK 1435424 394359 1988644 90.04% 78.45% 83.84% 174 44 250 84.47% 79.82% 82.08%
Android 498708 54321 617416 88.57% 90.18% 89.36% 82 13 106 88.17% 86.32% 87.23%
Hibernate 65860 38881 117501 83.77% 62.88% 71.84% 146 40 226 78.49% 78.49% 78.49%
Xstream 5516 3019 9382 86.69% 64.63% 74.05% 50 14 64 100.00% 78.13% 87.72%
Total 2092412 523845 2866133 89.33% 79.98% 84.40% 596 137 823 86.88% 81.31% 84.00%

3.1 RESEARCH QUESTION (RQ) 1: HOW INVOCMAP CAN PERFORM TO PREDICT THE
IMPLEMENTATION WITH INTRINSIC DATA?

We split the pairs of our parallel corpus for training and testing. We get 10% of the data for testing
and the other with training and do ten-fold cross-validation to test the ability of prediction on our
full data set. In total, there are 2.86 Million of MIs collected from 1000 projects from Github Github
(2019). The evaluation result for intrinsic data is shown in Table 2. We show that from configuration
1 to configuration 3, the F1 score increases from 73.06% to 84.4%. This seems to be feasible, since
the fact that if we provide more local context information along with method names, the ability to
predict correctly AST in level 3 for the translation model is better. We see one observation is that
the number of Out of Vocabulary expressions are higher in percentage, cause decreasing in recall
compare to the research work that applied Machine Translation for inferring Fully Qualified Name
from incomplete code (Phan et al. (2018)). This is reasonable, since our work requires to infer the
MI in level 3 of abstraction, which contains detail structure compared to output of Phan et al. (2018),
which only infers the type information of MI.

We study an example in the Intrinsic Evaluation in Figure 2(b). This example is a function col-
lected from Nexus (2019) from our corpus. The testing for intrinsic evaluation simulates the case
developers input only println inside the code environment, the output of this case will be the
implementation of java.io.PrintWriter.println() function. We can see that the sur-
rounding code is useful to infer the correct expression. If we do not have the context information,
which means developer input println in an empty method, the translated result will return the
most popular MI, System.out.println().

3.2 RQ2: HOW WELL INVOCMAP CAN PERFORM TO PREDICT THE IMPLEMENTATION WITH
EXTRINSIC DATA?

To do this experiment, we collect the data as code snippets from Online Forums (StackOverflow,
2019; ProgramCreek, 2019; GeeksForGeeks, 2019). A Software Engineer who has 5 years of ex-
perience in Java programming was hired to collect code snippets from 120 posts in Online Forums,
with 20 posts for each library in Table 1a. The result for extrinsic evaluation is shown in Table 2. We
see that with level 1, since the case that only method names are provided in the source language, our
approach stills predict correctly 68.5% in F1-score. With the configuration levels that developers
add more information, the F1-score increases to 84%. For each library, we achieved the highest
accuracy on GWT and lowest on Hibernate with input as detail information like configuration 3.
This result seems reasonable, since Hibernate is a bigger library compared to GWT but it is not as
popular as JDK, causes the variety of ASTs for APIs in this library.
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3.3 RQ3: HOW WELL INVOCMAP CAN PERFORM TO PREDICT AMBIGUOUS METHOD
NAMES?

In this evaluation, we analyze the relation of the expression prediction result relates to the number
of mapping of each method name from the parallel corpus. We use data collected for the Intrinsic
Evaluation with configuration 3. The result, which is shown in Table 1c, reveals that from the
number of method name that has more than 100 mappings in the parallel corpus are about 72% of
the total data. It proves the complexity of kinds of implementation for each method names. The total
precision tends to decrease from 96.47 % to 87.68% from low to high number of mappings, means
that the prediction is still acceptable although the method names are too ambiguous.

4 RELATED WORKS

Machine Learning has been applied widely in Software Engineering applications Allamanis et al.
(2018). Generating code by machine learning is an interesting but also confront challenges. There
is a research by Barone & Sennrich (2017) shows that the inference of code from documentation by
machine translation achieved very low accuracy results on both SMT and Neural Machine Trans-
lation (NMT) models learned from practical large scale code corpus. There are two reasons cause
to this challenge. First, large scale code corpus contains noise data Pascarella & Bacchelli (2017).
Second, the structure of AST Node is complicate for a machine translation system to learn about
the syntactically correct of generated code as shown in Barone & Sennrich (2017). Gu et al. (2016)
propose an approach to achieve the implementation from in natural language description. However,
the output of their tool consists only sequence of APIs which is in level 2 of our abstraction for MIs.
In our work, we target the inference of MI in level 3 with the ability of complex AST structure of
MIs.
There are several other inputs to get the complete code in other researches. Nguyen et al. (2015) de-
rive the code in C# language from code in Java language by machine translation. (Gvero & Kuncak,
2015; Gu et al., 2016) generate the code from natural language descriptions. In these works, they
consider the textual description as the full information for the inference. We consider our code gen-
eration problem in a different angle, which we take advantage of the surrounding context along with
the textual description of method name in our work. Nguyen et al. (2012) propose a graph based
code completion tool that suggest the full code snippet when developers are writing an incomplete
code. This work focuses on completing the code from a part of the code. We propose an inference
from the skeleton of method invocations, which is in form of sequence of method names, to the
implementation of method invocations.

CONCLUSION

In this work, we proposed InvocMap, a SMT engine for inferring the ASTs of method invocations
from a list of method names and code context. By the evaluation on corpus collected from Github
projects and online forums, we demonstrated the potential of our approach for auto code completion.
A major advantage of InvocMap is that it is built on the idea of abstracting method invocations by
four different levels. We provided an algorithm to achieve AST of method invocations for the method
invocations inference. As future works, we will work on extending the SMT model to support inputs
from multiple natural language descriptions of multiple method invocations, along with investigation
of machine learning techniques for improving the accuracy.
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