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ABSTRACT

We propose an algorithm combining calibrated prediction and generalization
bounds from learning theory to construct confidence sets for deep neural networks
with PAC guarantees—i.e., the confidence set for a given input contains the true
label with high probability. We demonstrate how our approach can be used to
construct PAC confidence sets on ResNet for ImageNet, and on a dynamics model
the half-cheetah reinforcement learning problem.

1 INTRODUCTION

A key challenge facing deep neural networks is that they do not produce reliable confidence esti-
mates, which are important for applications such as safe reinforcement learning (Berkenkamp et al.,
2017), guided exploration (Malik et al., 2019), and active learning (Gal et al., 2017).

We consider the setting where the test data follows the same distribution as the training data (i.e., we
do not consider adversarial examples designed to fool the network (Szegedy et al., 2014)); even in
this setting, confidence estimates produced by deep neural networks are notoriously unreliable (Guo
et al., 2017). One intuition for this shortcoming is that unlike traditional supervised learning al-
gorithms, deep learning models typically overfit the training data (Zhang et al., 2017). As a con-
sequence, the confidence estimates of deep neural networks are flawed even for test data from the
training distribution since, by construction, they overestimate the likelihood of the training data.

A promising approach to addressing this challenge is temperature scaling (Platt et al., 1999). This
approach takes as input a trained neural network fφ̂(y | x)—i.e., whose parameters φ̂ have already
been fit to a training dataset Ztrain—which produces unreliable probabilities fφ̂(y | x). Then, this
approach rescales these confidence estimates based on a validation dataset Zval to improve their
“calibration”. More precisely, this approach fits confidence estimates of the form

fφ̂,τ (y | x) ∝ exp(τ log fφ̂(y | x)),

where τ ∈ R>0 is a temperature scaling parameter that is fit based on Zval. The goal is to choose
τ to minimize calibration error, which roughly speaking measures the degree to which the reported
error rate differs from the actual error rate.

The key insight is that in the temperature scaling approach, only a single parameter T is fit to the
validation data—thus, unlike fitting the original neural network, the temperature scaling algorithm
comes with generalization guarantees based on traditional statistical learning theory.

Despite the improved generalization guarantees, these confidence estimates still do not come with
theoretical guarantees. We are interested in producing confidence sets that satisfy statistical guar-
antees while being as small as possible. Given a test input x ∈ X , a confidence set CT (x) ⊆ Y
(parameterized by T ∈ R>0) should contain the true label y for at least a 1− ε fraction of cases:

P(x,y)∼D[y ∈ CT (x)] ≥ 1− ε.
Since we are fitting a parameter T to based on Zval, we additionally incur a probability of fail-
ure due to the randomness in Zval. In other words, given ε, δ ∈ R>0, we aim to obtain probably
approximately correct (PAC) confidence sets CT (x) ⊆ Y satisfying the guarantee

PZval∼Dn

(
P(x,y)∼D(y ∈ CT (x)) ≥ 1− ε

)
≥ 1− δ.

Indeed, techniques from statistical learning theory (Vapnik, 1999) can be used to do so (Vovk, 2013).
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Table 1: ImageNet images with varying ResNet confidence set sizes. The confidence set sizes are
on the top. The true label is on the left-hand side. Incorrectly labeled images are boxed in red.

Contributions. We propose an algorithm combining calibrated prediction and statistical learning
theory to construct PAC confidence sets for deep neural networks (Section 3). We propose instan-
tiations of this framework in the settings of classification, regression, and learning models for rein-
forcement learning (Section 4). Finally, we evaluate our approach on two benchmarks: ResNet (He
et al., 2016) for ImageNet (Russakovsky et al., 2015), and on a probabilistic dynamics model (Chua
et al., 2018) learned for the half-cheetah environment (Brockman et al., 2016) (Section 5). Examples
of ImageNet images with different sized ResNet confidence sets are shown in Figure 1. As can be
seen, our confidence sets become larger and the images become more challenging to classify.

Related work. There has been work on constructing confidence sets with theoretical guarantees.
Oftentimes, these guarantees are asymptotic rather than finite sample (Steinberger & Leeb, 2016;
2018). Alternatively, there has been work focused on predicting confidence sets with a given ex-
pected size (Denis & Hebiri, 2017).

More relatedly, there has been recent work on obtaining PAC guarantees. For example, there has
been some work specific prediction tasks such as binary classification (Lei, 2014; Wang & Qiao,
2018). There has also been work in the setting of regression (Lei et al., 2018; Barber et al., 2019).
However, in this case, the confidence sets are fixed in size—i.e., they do not depend on the input
x (Barber et al., 2019). Furthermore, they make stability assumptions about the learning algorithm
(though they achieved improved rates by doing so) (Lei et al., 2018; Barber et al., 2019).

The most closely related work is on conformal prediction (Papadopoulos, 2008; Vovk, 2013). Like
our approach, this line of work provides a way to construct confidence sets from a given confidence
predictor, and provided PAC guarantees for the validity of these confidence sets. Indeed, with some
work, our generalization bound Theorem 1 can be shown to be equivalent to Theorem 1 in Vovk
(2013). In contrast to their approach, we proposed to use calibrated prediction to construct confi-
dence predictors that can suitably be used with deep neural networks. Furthermore, our approach
makes explicit the connections to temperature scaling and as well as to generalization bounds from
statistical learning theory (Vapnik, 1999). In addition, unlike our paper, they do not explicitly pro-
vide an efficient algorithm for constructing confidence sets. Finally, we also propose an extension
to the case of learning models for reinforcement learning.

Finally, we build on a long line of work on calibrated prediction, which aims to construct “cal-
ibrated” probabilities (Murphy, 1972; DeGroot & Fienberg, 1983; Platt et al., 1999; Zadrozny &
Elkan, 2001; 2002; Naeini et al., 2015; Kuleshov & Liang, 2015). Roughly speaking, probabilities
are calibrated if events happen at rates equal to the predicted probabilities. This work has recently
been applied to obtaining confidence estimates for deep neural networks (Guo et al., 2017; Kuleshov
et al., 2018; Pearce et al., 2018), including for learned models for reinforcement learning (Malik
et al., 2019). However, these approaches do not come with PAC guarantees.

2



Under review as a conference paper at ICLR 2020

2 PAC CONFIDENCE SETS

Our goal is to estimate confidence sets that are as small as possible, while simultaneously ensuring
that they are probably approximately correct (PAC) (Valiant, 1984). Essentially, a confidence set is
correct if it contains the true label. More precisely, let X be the inputs and Y be the labels, and let
D be a distribution over Z = X × Y . A confidence set predictor is a function C : X → 2Y such
that C(x) ⊆ Y is a set of labels; we denote the set of all confidence set predictors by C. For a given
example (x, y) ∼ D, we say C is correct if y ∈ C(x). Then, the error of C is

L(C) = P(x,y)∼D[y 6∈ C(x)]. (1)
Finally, consider an algorithm A that takes as input a validation set Zval ⊆ Z consisting of n i.i.d.
samples (x, y) ∼ D, and outputs a confidence set predictor Ĉ. Given ε, δ ∈ R>0, we say that A is
probably approximately correct (PAC) if

PZval∼Dn

[
L(Ĉ) > ε where Ĉ = A(Zval)

]
< δ. (2)

Our goal is to design an algorithm A that satisfies (2) while constructing confidence sets C(x) that
are as “small in size” as possible on average. The size of C(x) depends on the domain. For classifi-
cation, we consider confidence sets that are arbitrary subsets of labels C(x) ⊆ Y = {1, ..., Y }, and
we measure the size by |C(x)| ∈ N—i.e., the number of labels in C(x). For regression, we consider
confidence sets that are intervals C(x) = [a, b] ⊆ Y = R, and we measure size by b − a—i.e., the
length of the predicted interval. Note that there is an intrinsic tradeoff between satisfying (2) and
average size of C(x)—larger confidence sets are more likely to satisfy (2).

3 PAC ALGORITHM FOR CONFIDENCE SET CONSTRUCTION

Our algorithm is formulated in the empirical risk framework. Typically, this framework refers to
empirical risk minimization. In our setting, such an algorithm would take as input (i) a parametric
family of confidence set predictors C = {Cθ | θ ∈ Θ}, where Θ is the parameter space, and (ii) a
training set Zval ⊆ Z of n i.i.d. samples (x, y) ∼ D, and output the confidence set predictor Cθ̂,
where θ̂ minimizes the empirical risk:

θ̂ = arg min
θ∈Θ

L̂(Cθ;Zval) where L̂(C;Zval) =
1

n

∑
(x,y)∈Zval

I[y 6∈ C(x)].

Here, I[φ] ∈ {0, 1} is the indicator function, and the empirical risk L̂ in an estimate of the confidence
set error (1) based on the validation set Zval.

However, our algorithm does not minimize the empirical risk. Rather, recall that our goal is to
minimize the size of the predicted confidence sets given a PAC constraint on the true risk L(θ̂)
based on the given PAC parameters ε, δ ∈ R>0 and the number of available validation samples
n = |Zval|. Thus, the risk shows up as a constraint in the optimization problem, and the objective is
instead to minimize the size of the predicted confidence sets:

θ̂ = arg min
θ∈Θ

S(θ) subj. to L̂(Cθ;Zval) ≤ α. (3)

At a high level, the value α = α(n, ε, δ) ∈ R>0 is chosen to enforce the PAC constraint, and is based
on generalization bounds from statistical learning theory (Valiant, 1984). Furthermore, following the
temperature scaling approach (Platt et al., 1999), the parameter space Θ is chosen to be as small as
possible (in particular, one dimensional) to enable good generalization. Finally, our choice of size
metric S follows straightforwardly based on our choice of parameter space. In the remainder of this
section, we describe the choices of (i) parameter space Θ, (ii) size metric S(θ), and (iii) confidence
level α(n, ε, δ) in more detail, as well as how to solve (3) given these choices.

3.1 CHOICE OF PARAMETER SPACE Θ

Probability forecasters. Our construction of the parameteric family of confidence set predictors
Cθ assumes given a probability forecaster f : X → PY , where PY is a space of probability dis-
tributions over Y . Given such an f , we use f(y | x) to denote the probability of label y under
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Algorithm 1 Algorithm for solving (3).

procedure ESTIMATECONFIDENCESETPREDICTOR(Ztrain, Z
′
train, Zval)

Estimate φ̂, τ̂ using (4) and (5), respectively
Compute α(n, ε, δ) according to (8) by enumerating k ∈ {0, 1, ..., n}
Let k∗ = n · α(n, ε, δ) (note that k ∈ {0, 1, ..., n})
Sort (x, y) ∈ Zval in ascending order of fφ̂,τ̂ (y | x)

Let (xk∗+1, yk∗+1) be the (k∗ + 1)st element in the sorted Zval

Solve (3) by choosing T̂ = − log fφ̂,τ̂ (yk∗+1 | xk∗+1)

Return CT̂ : x 7→ {y ∈ Y | fφ̂,τ̂ (y | x) ≥ e−T̂ }
end procedure

distribution f(x). Intuitively, f(y | x) should be the probability (or probability density) that y is
the true label for a given input x—i.e., f(y | x) ≈ P(X,Y )∼D[Y = y | X = x]. For example, in
classification, we can choose PY to be the space of categorical distributions over Y , and f may be
a neural network whose last layer is a softmax layer with |Y| outputs. Then, f(y | x) = f(x)y .
Alternatively, in regression, we can choose PY to be the space of Gaussian distributions, and f may
be a neural network whose last layer outputs the values (µ, σ) ∈ R×R>0 of a Gaussian distribution.
Then, f(y | x) = N (x;µ(x), σ(x)2), where (µ(x), σ(x)) = f(x), and N (·;µ, σ2) is the Gaussian
density function with mean µ and variance σ2.

Training a probability forecaster. To train a probability forecaster, we use a standard approach to
calibrated prediction that combines maximum likelihood estimation with temperature scaling. First,
we consider a parametric model family F = {fφ | φ ∈ Φ}, where Φ is the parameter space. Note
that Φ can be high-dimensional—e.g., the weights of a neural network model. Given a training set
Ztrain ⊆ Z of m i.i.d. samples (x, y) ∼ D, the maximum likelihood estimate (MLE) of φ is

φ̂ = arg min
φ∈Φ

`(φ;Ztrain) where `(φ;Ztrain) = −
∑

(x,y)∈Ztrain

log fφ(y | x). (4)

We could now use fφ̂ as the probability forecaster. However, the problem with directly using φ̂ is that

because φ̂ may be high-dimensional, it often overfits the training data Ztrain. Thus, the probabilities
are typically overconfident compared to what they should be.

To reduce their confidence, we use the temperature scaling approach to calibrate the predicted
probabilities (Platt et al., 1999; Guo et al., 2017). Intuitively, this approach is to train an MLE
estimate using exactly the same approach used to train φ̂, but using a single new parameter τ ∈ R>0.
The key idea is that this time, the model family is based on the parameters φ̂ from (4). In other words,
the “shape” of the probabilities forecast by fφ̂ are preserved, but their exact values are shifted.

More precisely, consider the model family F ′ = {fφ̂,τ | τ ∈ R>0}, where

fφ̂,τ (y | x) ∝ exp
(
τ log fφ̂(y | x)

)
.

Then, we have the following MLE for τ :

τ̂ = arg min
τ∈R>0

`′(τ ;Z ′train) where `′(τ ;Z ′train) = −
∑

(x,y)∈Z′train

log fφ̂,τ (y | x). (5)

Note that τ̂ is estimated based on a second training set Z ′train. Because we are only fitting a single
parameter, this training set can be much smaller than the training set Ztrain used to fit φ̂.

Parametric family of confidence set predictors. Finally, given a probability forecaster f , We
consider one dimensional parameter space Θ = R>0; in an analogy to the temperature scaling
technique for calibrated prediction, we denote this parameter by T ∈ Θ. In particular, we assume
given a confidence probability predictor f , and consider

CT (x) = {y ∈ Y | f(y | x) ≥ e−T }.
In other words, CT (x) is the set of y with high probability given x according to f .
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3.2 CHOICE OF SIZE METRIC S(T )

To choose the size metric S(T ), we note that for our chosen parametric family of confidence set
predictors, smaller values correspond to uniformly smaller confidence sets—i.e.,

T ≤ T ′ ⇒ ∀x. CT (x) ⊆ CT ′(x).

Thus, we can simply choose the size metric to be

S(T ) = T. (6)

This choice minimizes the size of the confidence sets produced by our algorithm.

3.3 CHOICE OF CONFIDENCE LEVEL α(n, ε, δ)

Naive approach based on VC generalization bound. A naive approach to choosing α(n, ε, δ) is
to do so based on the VC dimension generalization bound (Vapnik, 1999). It is not hard to show
that the problem of estimating T̂ is equivalent to a binary classification problem, and that the VC
dimension of Θ for this problem is 1. Thus, the VC dimension bound implies that for all T ∈ Θ,

PZval∼Dn

[
L(CT ) ≤ L̂(CT ;Zval) +

√
log(2n) + 1− log(δ/4)

n

]
≥ 1− δ. (7)

The details of this equivalence are given in Appendix A. Then, suppose we choose

α(n, ε, δ) = ε−
√

log(2n) + 1− log(δ/4)

n
.

With this choice, for the solution T̂ of (3) with α = α(n, ε, δ), the constraint in (3) ensures that
L̂(CT̂ ;Zval) ≤ α(n, ε, δ). Together with the VC generalization bound (7), we have

PZval∼Dn

[
L(CT̂ ) > ε

]
< δ,

which is exactly desired the PAC constraint on our predicted confidence sets.

Direct generalization bound. It turns out that since we can actually get better choices of α by
directly bounding the generalization error. For instance, in the realizable setting (i.e., we always
have L̂(CT̂ ;Zval) = 0), we can get rates of O(1/ε) instead of O(1/ε2) (Kearns & Vazirani, 1994).
We can achieve these rates by choosing α = 0, but then, the PAC guarantees we obtain may actually
be stronger than desired (i.e., for ε′ < ε). Intuitively, we can directly prove a bound that interpolates
between the realizable setting and the VC generalization bound. In particular, we have:
Theorem 1. For any ε ∈ [0, 1], n ∈ N>0, and k ∈ {0, 1, ..., n}, we have

PZval∼Dn

[
L(CT̂ ) > ε

]
≤

k∑
i=0

(
n

i

)
εi(1− ε)n−i,

where T̂ is the solution to (3) with α = k/n.

We give a proof in Appendix A. Based on Theorem 1, we can choose

α(n, ε, δ) = max
k∈N

k/n subj. to
k∑
i=0

(
n

i

)
εi(1− ε)n−i < δ. (8)

3.4 THEORETICAL GUARANTEES

We have the following guarantee, which follows straightforwardly from Theorem 1:

Corollary 1. Let T̂ be the solution to (3) for α = α(n, ε, δ) chosen according to (8). Then, we have

PZval∼Dn

[
L(CT̂ ) > ε

]
< δ.

In other words, our algorithm is probably approximately correct.
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3.5 PRACTICAL IMPLEMENTATION

Our algorithm for estimating a confidence set predictor CT̂ is summarized in Algorithm 1. The
algorithm solves the optimization problem (3) using the choices of Θ, S(T ), and α(n, ε, δ) described
in the preceding sections. There are two key implementation details that we describe here.

Computing α(n, ε, δ). To compute α(n, ε, δ), we need to solve (8). A straightforward approach
is to enumerate all possible choices of k ∈ {0, 1, ..., n}. There are two optimizations. First, the
objective is monotone increasing in k, so we can enumerate k in ascending order until the constraint
no longer holds. Second, rather than re-compute the left-hand side of the constraint

∑k
i=0

(
n
i

)
εi(1−

ε)n−i, we can accumulate the sum as we iterate over k. We can also incrementally compute
(
n
i

)
, εi,

and (1− ε)n−i. For numerical stability, we perform these computations in log space.

Solving (3). To solve (3), note that the constraint in (3) is equivalent to∑
(x,y)∈Zval

E(x, y;T ) ≤ n · α(n, ε, δ) where E(x, y;T ) = I
[
fφ̂,τ̂ (y | x) ≥ e−T

]
. (9)

Also, note that k∗ = n · α(n, ε, δ) is an integer due to the definition of α(n, ε, δ) in (8). Thus, we
can interpret (9) as saying that E(x, y;T ) = 1 for at most k∗ of the points (x, y) ∈ Zval.

In addition, note that E(x, y;T ) decreases monotonically as fφ̂,τ̂ (y | x) becomes larger. Thus, we
can sort the points (x, y) ∈ Zval in ascending order of fφ̂,τ̂ (y | x), and require that only the first k∗

points (x, y) in this list satisfyE(x, y;T ) = 1. In particular, letting (xk∗+1, yk∗+1) be the (k∗+1)st
point, (9) is equivalent to

fφ̂,τ̂ (yk∗+1 | xk∗+1) ≥ e−T . (10)

In other words, this constraint says that T must satisfy yk∗+1 ∈ CT (xk∗+1). Finally, the solution T̂
to (3) is the smallest T that satisfies (10), which is the T that makes (10) hold with equality—i.e.,

T̂ = − log fφ̂,τ̂ (yk∗+1 | xk∗+1). (11)

We have assumed fφ̂,τ̂ (yk∗+1 | xk∗+1) > fφ̂,τ̂ (yk∗ | xk∗); if not, we increment k∗ until this holds.

4 PROBABILITY FORECASTERS FOR SPECIFIC TASKS

Classification. For the case Y = {1, ..., Y }, we choose the probability forecaster f to be a neural
network with a softmax output. Then, we can compute a given confidence set

CT (x) = {y ∈ Y | f(y | x) ≥ e−T }
by explicitly enumerating y ∈ Y . We measure the size of CT (x) as |CT (x)|/|Y|.

Regression. For the case Y = R, we choose the probability forecaster f to be a neural network
that outputs the parameters (µ, σ) ∈ Y × R>0 of a Gaussian distribution. Then, we have

CT (x) =

[
µ− σ

√
2(T − log(σ

√
2π)), µ+ σ

√
2(T − log(σ

√
2π))

]
.

This choice generalizes to Y = Rd by having f output the parameters (µ,Σ) ∈ Y × Sd�0 (where
Sd�0 is the set of d dimensional symmetric positive definite matrices) of a d dimensional Gaussian
distribution. Note that CT (x) is an ellipsoid CT (x) = µ + ΛSd−1, where Λ ∈ Rd×d and Sd−1 is
the unit sphere in Rd; we measure the size of CT (x) as ‖Λ‖F , where ‖ · ‖F is the Frobenius norm.

Model-based reinforcement learning. We also consider model-based reinforcement learning,
where the goal is to learn a model of the dynamics. In particular, we consider an MDP with states
X , actions U , and unknown dynamics g∗ : X × U → X . In general, the goal is to learn a policy
that achieves high performance according to some reward function, but in this paper we are inter-
ested in obtaining confidence sets on a learned model. Therefore, we assume given a fixed policy
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Figure 1: Results on ResNet for ImageNet with n = 25000. Default parameters are ε = 0.01 and
δ = 10−5. We plot the median and min/max confidence set sizes (normalized to 1.0; there are 1000
total labels). (a) Ablation study; C is “calibrated predictor” (i.e., use fφ̂,τ̂ instead of fφ̂), and D
is “direct bound” (i.e., use Theorem 1 instead of the VC generalization bound). (b) Restricted to
correctly vs. incorrectly labeled images. (c) Varying ε. (d) Varying δ.

π : X → U , and let f∗ : X → X denote the closed-loop dynamics—i.e., f∗(x) = g∗(x, π(x)).
Additionally, we consider the case where g∗ and π may be stochastic, so f∗(x′ | x) actually encodes
a probability distribution over the next state x′ given the current state x.

In this context, we assume given a learned model f(x′ | x) ≈ f∗(x′ | x) that estimates the proba-
bility of transitioning from xt to xt+1; furthermore, we assume that f has the form

f(xt+1 | xt) = N (xt+1 | µ(xt),Σ(xt)).

Our goal is to obtain confidence sets for our prediction of subsequent states from an initial state x0.
If we only consider one-step predictions f(xt+1 | xt), then this setting reduces to the regression
setting with labels Y = X . However, we are interested in the multi-step prediction setting. We use
f∗t (x′ | x) to denote the true distribution of states after t steps—i.e., f∗1 (x′ | x) = f∗(x′ | x) and
f∗t+1(x′ | x) =

∫
X f
∗(x′ | x′′) · f∗t (x′′ | x)dx′′. We can define the predicted distribution ft(x′ | x)

of states after t steps in the same way. In principle, the multi-step setting is still a regression problem.
The key difference is that it is in general intractable to compute ft(x′ | x) in closed form since f can
be nonlinear. Instead, we use a heuristic to estimate this distribution. In particular, we use a Gaussian
distribution f̃t(x′ | x) = (µ̃(x), Σ̃(x)), where µ̃(x) = x̄t, where x̄0 = x and x̄t+1 = µ(x̄t), and

Σ̃(x) = Σ(x̄0) + ...+ Σ(x̄t−1). (12)

We use the probability forecaster f̃t for calibrating the predicted state distribution after t steps. Then,
the problem of predicting confidence sets for f∗t (x′ | x) reduces to the case of regression.

5 EXPERIMENTS

ResNet for ImageNet. We use our algorithm to compute confidence sets for ResNet (He et al.,
2016) on ImageNet (Russakovsky et al., 2015), for ε = 0.01, δ = 10−5, and n = 25000 validation
images. We show the results in Figure 1. In (a), we compare to two ablations. In particular, C refers
to performing an initial temperature scaling step to calibrate the neural network predictor (i.e., using
fφ̂ instead of fφ̂,τ̂ , and (ii) D refers to using Theorem 1 instead of the VC generalization bound.
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Figure 2: Results on the dynamics model for the half-cheetah with n = 5000. Default parameters
are ε = 0.01 and δ = 10−5. (a) Ablation study; A is “accumulated variance” (i.e., use Σ̃(x) instead
of Σ(x)), and C andD are as for ResNet. We plot the median and min/max confidence set sizes (see
Section 4), averaged across t ∈ {0, 1, ..., 9}. (b) Same ablations, but with per time step errors. We
plot the L2 error of the confidence set size compared to the true error (i.e., the absolute difference
between the predicted and true trajectories). (c) Varying ε, and (d) varying δ, for t ∈ {0, 1, ..., 9}.

Thus, C + D refers to our approach. As can be seen, using Theorem 1 is performs substantially
better than using the VC generalization bound. Using calibrated predictor produces a smaller gain;
nevertheless, there is a noticeable reduction in the maximum confidence set size.

In (b), we show the confidence set sizes for images correctly vs. incorrectly labeled by ResNet. As
expected, the sizes are substantially larger for incorrectly labeled images. Finally, in (c) and (d), we
show how the sizes vary with ε and δ, respectively. As expected, the dependence on ε is much more
pronounced (note that δ is log-scale). Finally, we show additional results in Appendix B.

Half-cheetah. We use our algorithm to compute confidence sets for a probabilistic neural network
dynamics model (Chua et al., 2018) for the half-cheetah environment (Brockman et al., 2016), for
ε = 0.01, δ = 10−5, t = 20 time steps, and n = 5000 validation rollouts. When using temperature
scaling to calibrate fφ̂ to obtain fφ̂,τ̂ , we calibrate each dimension of the state space independently
(i.e., we fit d parameters, where d is state space dimension). We show the results in Figure 2.

In (a), we compare to three ablations for t = 20. In addition toC andD (which are as for ResNet),A
refers to using the accumulated variance Σ̃(x0) instead of the one-step predicted variance Σ(xt−1).
Thus,A+C+D refers to our approach. In (b), we show the same ablations over the entire trajectory
until t = 20. Unlike ResNet, using the calibrated predictor produces a large gain. In contrast, the
gain from using Theorem 1 is very small. Using the accumulated confidence produces a large gain.

In (c) and (d), we show how the sizes vary with ε and δ, respectively. The trends are similar to the
ones we observed for ResNet. Finally, we show additional results in Appendix B.

6 CONCLUSION

We have proposed an algorithm for constructing PAC confidence sets for deep neural networks.
Future work includes extending these results to more complex tasks (e.g., structured prediction),
and handling covariate shift (e.g., to handle policy updates in reinforcement learning).
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A PROOF OF THEOREM 1

Equivalence to binary classification. First, we show that the problem of estimating T is equiva-
lent to a binary classification problem. In particular, define φ : Z → R>0 by φ((x, y)) = − log f(y |
x), where f is the probability forecaster used to construct C. Then, given T ∈ Θ = R>0, define
MT : R>0 → {0, 1} by MT (t) = I[t ≤ T ]. Note that the space of confidence set predictors C is
equivalent to the spaceM = {MT | T ∈ Θ}—i.e., for every T ∈ Θ, we have

CT (x) = {y ∈ Y |MT (φ(x, y)) = 1}.
Furthermore, the problem of estimating a confidence set predictor on a validation set Zval ∼ Dn is
equivalent to the problem of estimating MT ∈M on the validation set

Z̃val = {(φ(z), 1) | z ∈ Zval ⊆ X̃ × Ỹ},

where X̃ = R>0 and Ỹ = {0, 1}. Note that Z̃val ∼ D̃, where the first component of D̃ is the
distribution over X̃ induced by φ from D, and the second component is the distribution over Ỹ that
places all probability mass on 1—i.e.,

D̃((t, 1)) = Pz∼D[φ(z) = t]

In summary, the problem of estimating CT on a validation set Zval ∼ Dn is equivalent to the
problem of estimating MT on a validation set Z̃val ∼ D̃n, which is a binary classification problem
with function familyM parameterized by T ∈ Θ and loss function

L̃(M) = P(t,a)∼D̃[M(t) 6= a].

In particular, note that L(CT ) = L̃(MT ). Thus, letting δ0 =
∑k
i=0

(
n
i

)
εi(1− ε)n−i, a bound

PZ̃val∼D̃n

[
L̃(MT̂ ) > ε

]
≤ δ0 (13)

would imply our desired bound PZval∼Dn

[
L(CT̂ ) > ε

]
≤ δ0.

Generalization bound. Let T ∗ be the smallest T for which L̃(MT ) = ε; then, (13) is equivalently

PZ̃val∼D̃n

[
T̂ < T ∗

]
≤ δ0,

since T̂ ≥ T ∗ implies that L̃(MT̂ ) ≤ L̃(MT∗) = ε, and vice versa. 1 Consider the event T̂ < T ∗;
recalling that T̂ must satisfy L̂(CT̂ ;Zval) ≤ α, so on this event, we have

k ≥
∑

(t,a)∈Z̃val

I[MT̂ (t) 6= a] =
∑

(t,a)∈Z̃val

I[t > T̂ ] ≥
∑

(t,a)∈Z̃val

I[t > T ∗]

where k = n · α(n, ε, δ). Thus, we have

PZ̃val∼D̃n

[
T̂ < T ∗

]
≤ PZ̃val∼D̃n

 ∑
(t,a)∈Z̃val

I[t > T ∗] ≤ k

 .
The event in the right-hand side of this inequality is essentially the sum of k i.i.d. random variables
I[t > T ∗] ∼ Bernoulli(ε). Thus, this event follows a distribution Binomial(n, ε), so

PZ̃val∼D̃n

[
T̂ < T ∗

]
≤

k∑
i=0

Binomial(i;n, ε) =

k∑
i=0

(
n

i

)
εi(1− ε)n−i = δ0,

as claimed. �

B ADDITIONAL RESULTS

Table 2 shows examples of ResNet confidence set sizes for ImageNet images. Table 3 shows results
for varying ε, δ on ResNet. Tables 4 & 5 show results for varying ε, δ on the Half-Cheetah.

1We implicitly assume that the distribution D̃ is continuous, but this assumption is very mild.
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|C(x)| = 1 5 ≤ |C(x)| ≤ 10 50 ≤ |C(x)| ≤ 100 |C(x)| ≥ 200
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Table 2: ImageNet images with varying ResNet confidence set sizes. The confidence set sizes are
on the top. The true label is on the left-hand side. Incorrectly labeled images are boxed in red.
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Table 3: Confidence set sizes for ResNet trained on ImageNet, for varying ε, δ and for n = 25000.
The plots are as in Figure 1.
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Table 4: Confidence set sizes for a neural network dynamics model trained on the half-cheetah
environment, for varying ε, δ and for n = 5000. The plots are as in Figure 2 (a).
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Table 5: Confidence set sizes for a neural network dynamics model trained on the half-cheetah
environment, for varying ε, δ and for n = 5000. The plots are as in Figure 2 (b).
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