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ABSTRACT

We explore the match prediction problem where one seeks to estimate the likeli-
hood of a group of M items preferred over another, based on partial group compar-
ison data. Challenges arise in practice. As existing state-of-the-art algorithms are
tailored to certain statistical models, we have different best algorithms across dis-
tinct scenarios. Worse yet, we have no prior knowledge on the underlying model
for a given scenario. These call for a unified approach that can be universally ap-
plied to a wide range of scenarios and achieve consistently high performances. To
this end, we incorporate deep learning architectures so as to reflect the key struc-
tural features that most state-of-the-art algorithms, some of which are optimal in
certain settings, share in common. This enables us to infer hidden models under-
lying a given dataset, which govern in-group interactions and statistical patterns of
comparisons, and hence to devise the best algorithm tailored to the dataset at hand.
Through extensive experiments on synthetic and real-world datasets, we evaluate
our framework in comparison to state-of-the-art algorithms. It turns out that our
framework consistently leads to the best performance across all datasets in terms
of cross entropy loss and prediction accuracy, while the state-of-the-art algorithms
suffer from inconsistent performances across different datasets. Furthermore, we
show that it can be easily extended to attain satisfactory performances in rank
aggregation tasks, suggesting that it can be adaptable for other tasks as well.

1 INTRODUCTION

The most elementary form of comparisons is pairwise: we often compare a pair of items and make
judgments as to which one is of higher utility or simply preferable over the other. With a large
amount of such comparison data, one can consider various interesting tasks. One may wish to predict
future outcomes of unseen matches, and also to rank alternatives in order of utility or preference.

Challenges arise in carrying out these tasks. Almost all existing state-of-the-art algorithms have been
developed under the assumption that given a scenario, there exists a certain underlying model which
governs statistical patterns of comparison data (see Section [2]for details). As such, we have different
best-performing algorithms across distinct scenarios. This traditional approach, which begins by
assuming certain models to develop algorithms, comes with limitations in practice.

First, it gives rise to inconsistent performances. No single algorithm can perform consistently well
in a wide range of scenarios, since it has been tailored to a specific model. Second, it is hard to know
the underlying model without expert domain knowledge. In its absence, we have little choice but
to find an appropriate algorithm via trial-and-error. Third, the model can be inherently complex for
any existing algorithm to be effective. Sometimes groups of items are compared, thus the effects of
interactions among in-group items come into play, further complicating the model.

In this work, we propose a unified algorithmic framework aimed to overcome these barriers. We
focus on the match prediction problem where one wishes to estimate the likelihood of a group of M
items preferred over another, based on partially observed group comparison data among a collection
of n items. One can imagine that such group comparison data may bear complex statistical patterns
due to a combination of two underlying models: the interaction model which governs the effects of
in-group interactions in determining the utility or preference of a group; and the comparison model
which governs the statistical patterns of pairwise group comparison data. Hence, designing a novel
framework hinges heavily upon accurate inference of these underlying models.
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Main contribution. We incorporate deep learning techniques into our framework design so that it
can infer these underlying models accurately from data specific to a given real-world application,
and thus can lead to consistently high performances on a variety of datasets from diverse real-world
applications where match prediction tasks are of interest.

To this end, we build on progress made through analysis in well-defined statistical models. We gain
insights instrumental to the progress by looking into existing state-of-the-art algorithms in related
and long-studied tasks such as rank aggregation (Negahban et al., 2016 [Hunter, 2004} Huang et al.,
20065 2008). We find that most of them share a key element. They all exhibit so-called reward-and-
penalty mechanisms in estimating the utilities of individual items.

To be more specific, they reward an item more greatly for winning (or being more preferred) in a dis-
advantageous comparison where its group is weaker than the counterpart. Likewise, they penalize it
more greatly for losing (or being less preferred) in an advantageous one. In addition, the magnitudes
of rewards and penalties are proportional to the contribution of the individual item to its group.

This structural similarity across the state-of-the-art algorithms has attracted our attention. Through
some manipulation, we find that they all employ the same basic rule for estimating individual utilities
(see (6) in Section []for details). The terms corresponding to rewards and penalties turn out to vary
as either one of the two underlying models changes. This observation has inspired us to incorporate
neural networks into our framework design.

The novelty of our design is salient in an ablation study where we compare it with a simple design.
As an initial effort, a single-layer neural network has been employed to predict winning probabilities
of unseen group matches (Menke & Martinez, |2008). It has shown a promising result, demonstrat-
ing prediction accuracy to be improved on a real-world online game dataset, but also exhibited a
scalability issue. It requires one input node per item, making it prohibitive to be extended to real-
world applications with a large number of items. Leveraging more advanced architectures (see
Figures|[I]and 2)) motivated by observant analysis as emphasized, our design not only addresses such
a scalability issue by design, but also outperforms the single-layer neural network. The merits of
our design are evaluated against the single-layer neural network and other state-of-the-art algorithms
through extensive experiments on a variety of synthetic and real-world datasets (see Section [5).

Using synthetic datasets, we demonstrate that our approach can achieve the performances of the
state-of-the-art algorithms in the models for which they have been specifically developed. We inves-
tigate four models. Three consider various extensions of the Bradley-Terry-Luce model (Bradley &
Terry, |1952)) to the group comparison scenario. The other is a generalized version of the Thurstone
model (Herbrich et al., [2007) widely used in skill rating systems of online games. As a result, we
show that our framework consistently yields the best performances across all of these datasets (near-
best in some cases), while the other state-of-the-art algorithms suffer from inconsistent performances
across different models.

Using real-world datasets, we also demonstrate that our framework performs consistently well across
diverse real-world applications. We investigate five real-world datasets (sources in Footnote[6). One
is a crowd-sourced image classification dataset, another is a collection of movie ratings, and the
other three are match records from online games. We consider, in addition to the cross entropy loss,
the prediction accuracy as another metric (defined in (9)). As a result, we show that our framework
consistently yields almost the best performances across all of these datasets in terms of both metrics.

We also show that our framework can be easily extended to achieve the best performance in rank
aggregation tasks where one seeks to rank items in order of utility or preference. Using a real-
world dataset of movie ratings, we demonstrate that our framework yields the best performances
in terms of two well-known metrics (see Footnote @I): Kendall tau distance (Kendall, |1938)) and
normalized discounted cumulative gain (Jarvelin & Kekildinen, 2002). This result suggests that it
can potentially be adaptable for other tasks as well.

2 RELATED WORK

The most related prior works are (Huang et al.l [2006; [2008; |[Li et al., 2018}, Herbrich et al.| [2007)
where plausible statistical models (some long-established and some widely used in practice) for in-
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group interactions and group comparisons are assumed, and statistical analysis is carried out to a
great extent. We use the algorithms developed in these models and their variants for main baselines.

The problem of estimating individual utilities from group comparison data has been investigated
in (Huang et al.| 2006} 2008). They considered extensions of the BTL model where the group
utility is either the sum or the product of individual utilities, and group comparison data follow the
BTL model in terms of two group utilities (which we call the BTL-sum and BTL-product models
respectively).

A more advanced in-group interaction model has been explored in (Li et al.,|2018)). They considered
a scenario where a pair of individuals in a group leads to a synergy, which contributes to the group.
The group utility is represented as the sum of two quantities (the HOI model): (1) the sum of
individual utilities and (2) the sum of the products of all pairs of individual utilities. A general
scenario, where any k-tuple of individuals in a group leads to a synergy, has been considered in
(DeLong et al., 2011).

In (Herbrich et al.,[2007), they assumed individual utilities to be centered around a mean following a
Gaussian distribution and viewed the group utility as their sum (the Thurstone model). The algorithm
therein is widely used in skill rating systems of online games where groups of users compete.

Employing neural networks has been considered as an initial effort to predict winning probabilities
of unseen group matches (Menke & Martinez, [2008). It has been shown that a single-layer neu-
ral network can fit some variants of the BTL model (Huang et al., 2008) and improve prediction
accuracy through experiments on a real-world online game dataset.

Some other works have also employed neural networks to exploit hidden models, for example, in
information retrieval (Burges et al., 2005} [Richardson et al.,|2006} |Guo et al., 2016) and community
detection (Chen et al.,|2018b)) in graph domains (Scarselli et al.| |2009; Schlichtkrull et al., 2018]).

3 PROBLEM SETUP

We investigate the match prediction problem where we seek to predict comparison outcomes for
unobserved pairs of groups given a collection of pairwise group comparison data. We consider the
setting where each group consists of M individual items.

We denote by [n] = {1,2,...,n} the set of all individuals. We are given comparison observations
between two groups of size M. To be more specific, each comparison consists of (A, B,y45). A
and B are groups of M individuals, respectively. y 45 indicates which group wins (or is preferred):

yAB:{l if A > B; 0

0 otherwise,

where A > B indicates that group A wins over group 3. We denote by Dgps the set of observed
comparisons, so all information we are given is {(A, B,y45)}4,8)eD,,,- The unobserved set of
comparisons, which we wish to predict, is denoted by Dynobs-

We consider the cross entropy loss as our metric, as it serves to quantify the discrepancy between two
probability distributions. We define 45 as the estimate of Pr [y 45 = 1]. Our goal is to minimize

_1 ) R
| Dobs| Z yaplog gap + (1 — yag)log(l — gan). 2)
%! (A,B)€Dass

We develop our algorithm primarily based on the cross entropy loss, but for evaluation purposes, we
also consider other metrics, such as prediction accuracy, the Kendall tau distance, and normalized
discounted cumulative gain (see Footnote [I0).

4 PROPOSED ALGORITHM

We propose a neural network architecture that learns from observed group comparison data to predict
unobserved group comparison outcomes. As presented in Figure [I] it consists of three modules,
which we denote by R, P and G. Figure[2] presents the detailed architecture of R and P (left) which
have the same structure but are separate modules with different weights, and that of G (right).



Under review as a conference paper at ICLR 2020

1st stage 2nd stage

.. R
w V= . —_ . —_— o — . (T G -1 AB
(

A, B) € Dops

Figure 1: Overall architecture of our proposed algorithmic framework.
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Figure 2: Detailed architectures of the key modules: module R (or P) (left) and module G (right).

4.1 MOTIVATION

Our decision to incorporate two modules R and P into our architecture has been inspired by
some state-of-the-art algorithms developed under certain statistical models, which have been shown
therein to be optimal. Our main contribution lies in this design choice. Looking closely into the
algorithms, we discover that they all share a similar mechanism in estimating individual utilities:

e First, they all exhibit “reward” and “penalty” terms in the estimation process (details in (3) and
(@)). They update an individual’s utility estimate by rewarding the individual for contributing to
its group’s winning and likewise penalizing it for contributing to its group’s losing.

e These reward and penalty terms vary in form as the underlying models change.

e The magnitudes of rewards and penalties depend on the power dynamics between groups. A
greater reward is given to an individual when its group is relatively weaker compared to the
opponent group, and likewise a greater penalty is given when its group is relatively stronger.

e Their magnitudes also depend on how large a portion of an individual’s contribution to its group
is. Suppose an individual’s group wins (or loses) in a group comparison. The individual is given
a greater reward (or penalty) when its contribution among others in the group is relatively greater.

Our algorithm design principles are centered around these key observations. We introduce two
separate modules for rewards and penalties. Also, we employ deep neural networks into the modules
so that they can serve to infer underlying models, which are unknown in real-world applications.

Reward and Penalty in State-of-the-art Algorithms. We present further details of some state-of-
the-art algorithms which demonstrate the aforementioned key observations.

e To begin with the simplest case, Rank Centrality (Negahban et al.,|2016) has been developed in a
model where individual items are compared in pairs and comparison data follow the BTL model.
It has been shown to achieve the minimal sample complexity for top-K rank aggregation, whose
task is to estimate the set of top-K items, in certain regimes (Jang et al.,2017;Chen et al.|[2017).
As in @), we define y;; as 1 if ¢ > j and O otherwise given a pair of individual items 4 and j.
Then, its individual utility update rule i

o el a3 (el — (- gye). 3)
j:(i’j)EDobs

'As in (Negahban et al., [2016), & = 1/dmax Where dmax := max; d; and d; is the number of distinct
items to which item ¢ is compared. Also, we describe Rank Centrality as an iterative algorithm (one way to
obtain the stationary distribution of the empirical pairwise preference matrix) in order to highlight its inherent
reward-and-penalty mechanisms.
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(t+1)

)

. . . t ..
For item ¢, one can consider w](- ) (next to y;;) as the reward as it increases w

(yi; = 1), and wgt) (next to (1 — y;;)) as the penalty as it decreases wftﬂ) when i < j (y;; = 0).

One can consider « as a step size in the update. Note that the reward is large when the opponent’s
utility estimate is large, since it can be considered that it has won in a tough match. Likewise, the
penalty is large when its own utility estimate is large, since it has lost in an easy match.

when ¢ > j

e Majorization-Minimization (MM) for the BTL-sum model has been developed in (Hunter, |2004;
Huang et al.,[2006). We define wﬁ) = iea wl(t). Then, its individual utility update rule i

T S (7 P N %) B
(A,B)EDops i€ A
where
(t) (t) () )
RO, - W5 Wi op®) _ Wa Wi (5)
ABi T ) @ 07 TABE T Gy (6 ()
wy +wg’ wy Wy Fwg Wy

Note that the update rule (@) is similar to of Rank Centrality in form, but the reward and
penalty terms (3)) are different. Its interpretation is similar. The reward for item ¢ is large when the

opponent group’s utility estimate is large (wg)). Note another factor: the larger the contribution
of item 7 to its group (wgt) / wfi)), the greater the reward. The same holds for the penalty.

e MM for the BTL-product model has been developed in (Huang et al.,|2008)) and shown to achieve
global minima in terms of cross entropy loss. Its individual utility update rule is described as in
but the reward and penalty terms are differen A similar interpretation applies again.

Our decision to incorporate another module G is as follows. To perform the match prediction task,
we need not only individual utility estimates, but also in-group interaction and group comparison
models that use such estimates to determine winning probabilities for pairs of groups. The role of G
is to fit these underlying models during training. It takes the individual utility estimates from a pair
of groups, which R and P help quantify, and predicts the winning probability of one group preferred
over the other. Putting all together, the three modules interact as a whole to perform the task.

Now that we have our motivation for incorporating the three modules into our framework design in
place, let us describe them in detail.

4.2 MODULES R AND P

The input and output of modules R (or P) are of dimension 2 (see Figure[2). M can be arbitrary.
We set its value according to the dataset at hand. They take the current utility estimates of the in-
dividuals in a given group comparison (A, B) as input, and produce the current R (or P) estimates
for the individuals as output’, Note that the input and output dimensions are independent of the
total number of items. Hence, our framework does not suffer from scalability issues in contrast to
prior approach (Menke & Martinez, 2008)) also based on employing neural networks. To make our
algorithm robust against arbitrary orderings of the items within a group, we apply data augmenta-
tion. Given a sample, we create extra samples which represent the same outcome but have different
member orderings. For example, given a sample (A = (1,2),8 = (3,4),ya5 = 1), we create an
extra sample such as (A’ = (2,1),8' = (4,3),yan = 1).

All layers are fully connected. The activation functions between two layers are rectified linear units.
The final activation function is the sigmoid function whose output ranges between 0 and 1.

—1 -
2 () (t)
&= (E<A78)€DobsviEA (w.A +wg ) )

—1
(t)
3,,() . (] — W4 @ _ _ wp ®) )  _ wy ()
wy =l w"’, o = —A JRY . = —=8—— w,’and P, . = ——4A— -w.".
A H'LGA 7 G Z wx)+wg) AB,i w%)+wg) 2 AB,i wi{)+wg) 7

“To be accurate, the produced output is a mix of the individual utility estimates, resulting from being passed
through fully-connected layers. Conceptually speaking, we refer to them simply as individual utility estimates.
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Starting with an initial vector w(®) € R™ (reflecting the current utility estimates), we finally obtain
wT) € R™ by applying R and P repeatedly 7' times. Each iteration is described as follows:

WD w4 g Z (yAB . R(f?&i — (1 —yaB)- Pfi)g,i) ) (6)

(A,B)EDgps,i€A
whereE]a = ¢/max; d; and d; = |{(A,B) :i € AUB}|.

At the end of each iteration, we transform w(**!) to be zero-mean as in wgtﬂ) — wgtﬂ) —

S w™™ /n, and unity-norm as in w{"™ WY /|l ||, At iteration £, given w®),

R and P produce positive real values in [0, 1]:

REsz—R< {w }JeAa{wk }k68> PS ( {w }]EAa{wk }keB) @)

4.3 MODULE G

The input and output of module G are of dimension 2/ and a scalar respectively (see Figure2)). As
in modules R and P, we set the value of M according to the dataset at hand. Since the dimensions
are independent of the total number of items, the module does not suffer from scalability issues.
The module takes the final utility estimates of the individuals in a given group comparison (A, B) as
input (see Footnote ), and produces the winning probability estimate of one group preferred over
the other in the given group comparison as output:

Jas =G ({ng)}ie.Aa {wj('T)}j€B> : (8)

All layers are fully connected. The activation functions between two layers are rectified linear units.
The final activation function is the sigmoid function whose output ranges between 0 and 1.

We now describe our training procedure. We first split available data D, randomly into Di,,i, and
Dyal- We let D, be a small fraction (1%—2%) of Dyps and use it for validation purposes.

Training Procedure.

(1) Initialize w(®) randomly using a Gaussian distribution whose mean is 0 and variance is the
normalized identity matrix. Also, initialize the parameters of R, P and G using the Xavier
initialization (Glorot & Bengio), 2010).

(2) Obtain w™) through T iterations in each of which we use modules R and P, and also group
comparison samples in Diyain.

(3) Obtain {y AB}( A,B)EDan for each group comparison sample in Dy,in by using w(™) obtained
in (2) above and module G.

(4) Update the parameters of R, P, and G via the Adam optimizer (Kingma & Bal, [2014) to min-
imize the cross entropy loss in replacing Dops therein by Dyrain. We apply weight decay
regularization with a factor of 0.01.

For each training epoch, we repeat (2)—(4) above. We use 500 epochs, in each of which we calculate
a validation loss using D,,. We apply early stopping, choosing the model parameters in the epoch
with the lowest validation loss. To avoid terminological confusion, we make it clear that we use
batch gradient descent. That is, we update the model parameters once at the end of each epoch.
Hence, the T’ iterations in (2) do not mean the number of (mini-)batches per epoch, in each of which
the model parameters are updated, as in the conventional way. They are our architectural constructs
intended to obtain well-refined estimates w(™), from which we fit the underlying model.

5 EXPERIMENT RESULTS

To verify the broad applicability of our algorithm, we conduct extensive experiments using synthetic
and real-world datasets. We compare it with five other algorithms: MM-sum (Huang et al., |2006)),

SPrior work (see Footnote motivates the choice of o and hyperparameter tuning determines its scaling ¢
in the numerator.
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MM-prod (Huang et al., [2008), SGD-HOI (Li et al) 2018)), TrueSkill (Herbrich et al., 2007) and
Rank Centrality (Negahban et al., 2016). SGD-HOI has been developed for the factorization HOI
model in (L1 et al.,[2018)) and TrueSkill for the Thurstone model in (Herbrich et al., 2007). As Rank
Centrality has been developed for the case of comparing two individual items, we consider its natural
extensions depending on the dataset. For example, in the sum model, we replace the summation in

t t
bY D(4,5)eDass i A (ZIAB Sreswl) + (1= yas) Yyeq vl ))-

5.1 SYNTHETIC DATA EXPERIMENTS

We use four synthetic datasets: BTL-sum, BTL-product, HOI and a generalized Thurstone. In all, we
setn = 300 and M = 5. In the HOI model, we generate the ground truth utilities and dimension-7
features using Gaussian distributions. In the others, we generate the ground truth utilities uniformly
at random. We generate 5n logn distinct paired groups and each pair is compared repeatedly 10
times.

We split generated datasets randomly into Dops (90%) and Dynobs (10%). All algorithms use Dops
to predict unobserved group comparisons in Dynobs. They use a fraction (1%—2%) of Doy for
validation purposes if necessary. We use 7' = 20 and the learning rate of 10~2. We use four hidden
layers with 70 nodes each for modules R and P, and four hidden layers with 90/ nodes each for
module G.

BTL-sum model BTL-product model HOI model A generalized Thurstone model
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Figure 3: Results of experiments. From left to right: BTL-sum model, BTL-product model, HOI
model, and a generalized Thurstone model. Off-the-scale curves are not shown. Amount of data
used for training is described in fractions of Dops, 90% of the entire dataset for training (x-axis).
Performance is obtained by using Dynobs, 10% of the entire dataset for testing (y-axis).

As our performance metric, we consider the cross entropy loss in (Z). MM-sum and MM-prod have
been developed to achieve maximum likelihood, which can be shown to be equivalent to minimizing
the cross entropy loss, and SGD-HOL is tailored for the cross entropy loss as it can adopt an arbitrary
loss function. It may seem somewhat unfair for Rank Centrality and TrueSkill, which have not been
developed to minimize the cross entropy loss. In Section some of our experiment results on
real-world datasets compare the algorithms in terms of other metrics, for which none of them are
tailored. They include prediction accuracy, the Kendall tau distance, and normalized discounted
cumulative gain (see Footnote [I0)), which may be considered more relevant for practical use.

Figure [3|shows our result. The algorithms that underperform by large gaps are not presented.

BTL-sum model: In most settings where the amount of data samples is sufficient, our algorithm
achieves the performance promised by MM-sum, which has been shown in (Huang et al., 2006) to
achieve local minima in terms of cross entropy loss.

BTL-product model: Our algorithm achieves the optimal performance promised by MM-prod, which
has been shown in (Huang et al., |2008) to achieve global minima in terms of cross entropy loss.

HOI model: SGD-HOI performs best in most settings. Our algorithm is second-best with a slight
gap to the best performance in those settings, but performs best when the amount of data samples
is ample. This is because our algorithm using neural networks is affected by overfitting when the
amount of data is insufficient.

Thurstone model: MM-prod and our algorithm perform best. TrueSkill comes next with a gap, but it
clearly outperforms the others. It is interesting to observe that TrueSkill, which has been developed
specifically for the Thurstone model, does not lead to the best performance. However, this result
does not run counter to theory, as its optimality has not been shown in the literature.
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Our algorithm performs consistently best (or near-best with a negligible gap) across all datasets,
while the others perform inconsistently across them. Some perform well in one, but poorly in the
others (for example, MM-sum performs best only in the BTL-sum model but poorly in all others).

This result has an important implication. Our algorithm is shown to achieve consistently the best
performances, matching those of the state-of-the-art algorithms specifically developed for the mod-
els that underlie the synthetic datasets. This implies that our algorithm can be universally applied to
achieve consistently high performances in a wide range of real-world match prediction applications.
We corroborate its universality further in the following extensive real-world data experiments.

5.2 REAL-WORLD DATA EXPERIMENTS

As in Section we split real-world datasets randomly into Dops (90%) and Dynobs (10%), and
use a fraction (1%—-2%) of D,ps for validation purposes if necessary. We use five different real-
world datasety’t GIFGIF, HOTS, DOTA 2, LoL, IMDb 5000. We use T' = 30, 15, 15, 20, 20 and the
learning rates of 1073,1073,1072, 1072, 102 respectively. We use four hidden layers with 7M
nodes each for modules R and P, and four hidden layers with 9M nodes each for module G.

GIFGIF: A crowd-sourcing projecﬂ We use the dataset pre-processed in (Maystre & Grossglauser),
2017). A participant is presented with two images and asked to choose one which better describes a
given emotio This dataset belongs to a special case of our interest as individual comparisons are
concerned. We consider the emotion of happiness. We have 6,120 images and 106,886 samples.

HOTS: A collection of HOTS match records from 10/26/17 to 11/26/17 collected by HOTS logsﬁ
Each match consists of two groups with five players each. The players choose heroes (characters)
for each match out of a pool of 84. We choose high-quality matches only where all players are
highly-skilled according to some available statistics. There are 26,486 match records.

DOTA 2: A collection of DOTA 2 match recordsﬂ Each match consists of two groups with five
players each, and they choose heroes out of a pool of 113. There are 50,000 match records.

LoL: A collection of LoL professional match recordsﬁ Two groups with five players each compete.
The players choose heroes for each match out of a pool of 140. There are 7,610 match records.

IMDb 5000: A collection of meta-data for 5,000 movieﬂ Each movie has a score and is associated
with keywords. To fit our purpose, we generate match records for movie pairs from the collection.
We consider each movie as a group and its five associated keywords as its items. Given a pair, we
declare a win for the one with a higher score. We have 8,021 keywords and 123,420 samples.

In addition to the cross entropy loss, we consider another metric relevant in the real-world: prediction
accuracy. In real-world data experiments, we measure cross entropy loss and prediction accuracy.
We declare it a win for a group if the estimate of its winning probability is above a certain threshold,
which we set as 0.5 (Delalleau et al., [2012)). Thus, the prediction accuracy is expressed as followsﬂ

-1 ) A
Danobs| Z Yasl>05(9a8) + (1 — yas)lcos(9as)- )
unobs
(AaB)eDunobs

We also conduct an ablation study where we consider an algorithm based on a single-layer neural
network (Menke & Martinez, 2008). It has a scalability problem, however, as it requires at least
one input node per item. This prevents us from measuring its performance in our setu[ﬂ for some
datasets with a large number of items such as GIFGIF and IMDb 5000.

Table 1| shows our result. The best performances are boldfaced, and the second-best are underlined.
The numbers in the parentheses indicate the ranks among the algorithms being compared in a given
setup of dataset and metric. Our algorithm consistently yields the top performances in all cases.

®Source: gifgif.media.mit.edu (GIFGIF); hotslogs.com/Info/API (HOTS); kaggle.com/devinanzelmo/dota-
2-matches (DOTA 2); kaggle.com/chuckephron/leagueoflegends (LoL); kaggle.com/carolzhangdc/imdb-5000-
movie-dataset (IMDb 5000).

"One is allowed to choose “neither” but we exclude such data.

$We define I>o.5(x)as 1if 2 > 0.5 and as 0 otherwise. I<o.5(z) equals to 1 if z < 0.5 and to 0 otherwise.

°Intel Core i7-6850K @ 3.6GHz (CPU) and GeForce GTX 1080 Ti (Single GPU).
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Table 1: Match prediction results in terms of cross entropy loss and prediction accuracy for experi-
ments with five real-world datasets (N/A: non available due to scalability issues)

GIFGIF HOTS DOTA 2 oL TMDB 5000
CE-Loss Acc CE-Loss Acc CE-Loss Acc CE-Loss Acc CE-Loss Acc
PROPOSED 0.3053 (1) | 0.8729 (3) | 0.6790 (1) | 0.5673 (1) | 0.6599 (1) | 0.6090 (2) | 0.6936 (1) | 0.5411 (1) | 0.8107 (1) | 0.6016 (1)
MENKE & MARTINEZ 2008 N/A N/A 0.6830 (6) | 0.5458 (7) | 0.6601 (2) | 0.6127 (1) | 0.6937 (2) | 0.5236 (5) N/A N/A
MM-suM 0.3114 (3) | 0.8758 (1) | 0.6796 (4) | 0.5645 (4) | 0.6610 (4) | 0.6049 (5) | 0.7036 (3) | 0.5166(7) | 1.0719 (4) | 0.5812 (2)
MM-PROD 0.3126 (4) | 0.8758 (1) | 0.6793 (3) | 0.5660 (2) | 0.6603 (3) | 0.6083 (3) | 0.7070 (5) | 0.5249 (3) | 3.7455 (5) | 0.5428 (5)
SGD-HOI 0.4056 (6) | 0.8614 (5) | 0.6798 (5) | 0.5562 (5) | 0.6673 (6) | 0.5955 (6) | 0.7125 (6) | 0.5171(6) | 0.9471 (3) | 0.5780 (3)
TRUESKILL 0.3063 (2) | 0.8728 (4) | 0.6857 (7) | 0.5499 (6) | 0.6683 (7) | 0.5863 (7) | 0.7057 (4) | 0.5245 (4) | 0.8409 (2) | 0.5736 (4)
RANK CENTRALITY 0.3761 (5) | 0.8555(6) | 0.6792 (2) | 0.5660 (2) | 0.6667 (5) | 0.6051 (4) | 0.7230 (7) | 0.5276 (2) | 3.7455 (5) | 0.5096 (6)

Table 2: Rank aggregation results in terms of Kendall tau distance and normalized discounted cu-
mulative gain for experiments with IMDb 5000 movie ratings data

RANK
PROPOSED | MM-SUM | MM-PROD | SGD-HOI | TRUESKILL CENTRALITY
KENDALL TAU
DISTANCE 0.4065 0.4171 0.4727 0.4727 0.4285 0.4882
NDCG@3 0.3933 0.3348 0.2555 0.2555 0.2932 0.1220

In contrast, the state-of-the-art algorithms suffer from inconsistent performances across different
datasets and/or metrics.

Here lies the value of our algorithm. In practice, it is difficult to choose which algorithm to deploy
since we do not know the underlying model for a given scenario without expert domain knowledge.
Even when we have a reasonably accurate estimate of the underlying model, multiple algorithms
known to perform equally well in one model can lead to noticeably different performances, making
it difficult to choose one given multiple alternatives. This is demonstrated in the GIFGIF case where
MM and Rank Centrality, known to perform well in the BTL model, show different performances.
More importantly, models in a variety of real-world applications can potentially be so complicated
that all existing algorithms tailored to specific models may perform poorly. As demonstrated in the
extensive real-world data experiments, our algorithm has the potential to be universally applicable.

Extension to Rank Aggregation. We have so far focused on the match prediction problem. How-
ever, we believe that our algorithm can be easily extended for other tasks as well. In an attempt to
demonstrate its potential flexibility, we present preliminary results in rank aggregation tasks.

In rank aggregation tasks, one seeks to rank all items in order of utility (Rajkumar & Agarwal,2014;
Agarwal et al., 2018), or to identify only a few top-ranked items (Chen & Suh, 2015; |Chen et al.,
2018a)) as in top-K ranking. In both tasks, one needs to obtain a collection of individual utility
estimates inferred from comparison data, which is close to the ground truth that one postulates.

We use the IMDb 5000 dataset as it comes with IMDb movie scores which can be regarded as the
ground-truth. The other algorithms produce individual utility estimates and use them to compute
group utility estimates based on the models they assume. In extending our algorithm, we let R, P
and G stay the same. We use its final winning probabilities for pairs of groups to compute group
utility estimates. In doing so, we adopt associated scores proposed in (Shah & Wainwright, [2015): a
group’s score is the probability that it is preferred over another group chosen uniformly at random.

We measure the performance in terms of two well-known metric the Kendall tau distance
(Kendall, [1938) and normalized discounted cumulative gain NDCG @ K) (Jarvelin & Kekaldinen,
2002). Table 2| shows our result. It turns out that our algorithm performs best in both metrics. This
result suggests that with slight adjustments of our framework to fit the purpose, it can potentially
lead to satisfactory performances for other related tasks as well.

'"Kendall tau distance is defined as |{(3,7) : i < j, (11(1) < 71(§) A 72(3) > 72(5)) V (11(5) > 71(j) A
72(i) < 72(j))}| where 71 (i) and 72 (%) are the rankings of item ¢ in 71 and 7. In words, it counts the number of
item pairs that are ranked reversely in the two rankings. In NDCG, items are associated with relevance scores.
In our case, items ranked higher in the ground-truth ranking have higher scores. Let rel; be the score of the item
ranked i-th in a ranking. NDCG discounts rel; by log, (i + 1) to “penalyze” the quality of a ranking for placing

a high-relevance item at a low rank. NDCG@K is normalized DCG@ K defined as Zf(:1 rel; /log, (i + 1).
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