
Under review as a conference paper at ICLR 2020

LEARNING COMPACT EMBEDDING LAYERS VIA
DIFFERENTIABLE PRODUCT QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Embedding layers are commonly used to map discrete symbols into continuous
embedding vectors that reflect their semantic meanings. Despite their effectiveness,
the number of parameters in an embedding layer increases linearly with the number
of symbols and poses a critical challenge on memory and storage constraints. In
this work, we propose a generic and end-to-end learnable compression framework
termed differentiable product quantization (DPQ). We present two instantiations of
DPQ that leverage different approximation techniques to enable differentiability in
end-to-end learning. Our method can readily serve as a drop-in alternative for any
existing embedding layer. Empirically, DPQ offers significant compression ratios
(14-238x) at negligible or no performance cost on 10 datasets across three different
language tasks.

1 INTRODUCTION

The embedding layer is a basic neural network module which maps a discrete symbol/word into a
continuous hidden vector. It is widely used in NLP related applications, including language modeling,
machine translation and text classification. With large vocabulary sizes, embedding layers consume
large amounts of storage and memory. For example, in the medium-sized LSTM-based model on
the PTB dataset (Zaremba et al., 2014), the embedding table accounts for more than 95% of the
total number of parameters. Even with sub-words encoding (e.g. Byte-pair encoding), the size of
the embedding layer is still very significant. In addition to words/sub-words models in the text
domain (Mikolov et al., 2013; Devlin et al., 2018), embedding layers are also used in a wide range of
applications such as knowledge graphs (Bordes et al., 2013; Socher et al., 2013) and recommender
systems (Koren et al., 2009), where the vocabulary sizes are even larger.

Recent efforts to reduce the size of embedding layers have been made (Chen et al., 2018b; Shu and
Nakayama, 2017), where the authors proposed to first learn to encode symbols/words with K-way
D-dimensional discrete codes (KD codes, such as 5-1-2-4 for “cat” and 5-1-2-3 for “dog”), and then
compose the codes to form the output symbol embedding. However, in Shu and Nakayama (2017),
the discrete codes are fixed before training and are therefore non-adaptive and limited to downstream
tasks. Chen et al. (2018b) proposes to learn codes in an end-to-end fashion which leads to better
task performance. However, their method employs an expensive embedding composition function to
turn KD codes into embedding vectors, and requires a distillation procedure which incorporates a
pre-trained embedding table as guidance, in order to match the performance of the full embedding
baseline.

In this work, we propose a novel differentiable product quantization (DPQ) framework. The proposal
is based on the observation that the discrete codes (KD codes) are naturally derived through the
process of quantization (product quantization by Jegou et al. (2010) in particular). We also provide
two concrete approximation techniques that allow differentiable learning. By making the quantization
process differentiable, we are able to learn the KD codes in an end-to-end fashion. Compared to the
existing methods (Chen et al., 2018b; Shu and Nakayama, 2017), our framework 1) brings a new and
general perspective on how the discrete codes can be obtained in a differentiable manner; 2) allows
more flexible model designs (e.g. distance functions and approximation algorithms), and 3) achieves
better task performance as well as compression efficiency (by leveraging the sizes of product keys
and values) while avoiding the cumbersome distillation procedure.

1

Under review as a conference paper at ICLR 2020

We conduct experiments on ten different datasets across three tasks, by simply replacing the original
embedding layer with DPQ. The results show that DPQ can learn compact discrete embeddings with
higher compression ratios than the existing methods, at the same time achieving the same performance
as the original full embeddings. Furthermore, our results are obtained from end-to-end training where
no extra procedures such as distillation are required. To the best of our knowledge, this is the first
work to train compact discrete embeddings in an end-to-end fashion without distillation.

2 METHOD

Problem setup. An embedding function can be defined as FW : V → Rd, where V denotes the
vocabulary of discrete symbols, andW ∈ Rn×d is the embedding table with n = |V|. In standard
end-to-end training, the embedding function is jointly trained with other neural net parameters to
optimize a given objective. The goal of this work is to learn a compact embedding function FW′

in the same end-to-end fashion, but the number of bits used for the new parameterization W ′ is
substantially smaller than the original full embedding tableW .

Motivation. To represent the embedding table in a more compact way, we can first associate
each symbol with a K-way D-dimensional discrete code (KD code), and then use an embedding
composition function that turns the KD code into a continuous embedding vector (Chen et al., 2018b).
However, it is not clear where the discrete KD codes come from. One could directly optimize them
as free parameters, but it is both ad-hoc and restrictive. Our key insight in this work is that discrete
codes are naturally derived from the process of quantization (product quantization (Jegou et al., 2010)
in particular) of a continuous space. It is flexible to specify the quantization process in various ways,
and by making this quantization process differentiable, we enable end-to-end learning of discrete
codes via optimizing some task-specific objective.

2.1 DIFFERENTIABLE PRODUCTION QUANTIZATION FRAMEWORK

The proposed differentiable production quantization (DPQ) function is a mapping between continuous
spaces, i.e. T : Rd → Rd. In between the two continuous spaces, there is a discrete space
{1, · · · ,K}D which can be seen as discrete bottleneck. To transform from continuous space to
discrete space and back, two major functions are used: 1) a discretization function φ(·) : Rd →
{1, · · · ,K}D that maps a continuous vector into a K-way D-dimensional discrete code (KD code),
and 2) a reverse-discretization function ρ(·) : {1, · · · ,K}D → Rd that maps the KD code into a
continuous embedding vector. In other words, the general DPQ mapping is T (·) = ρ ◦ φ(·).

Compact embedding layer via DPQ. In order to obtain a compact embedding layer, we first take
a raw embedding and put it through DPQ function. More specifically, the raw embedding matrix can
be presented as a Query matrix Q ∈ Rn×d where the number of rows equals to the vocabulary size.
The discretization function of DPQ computes discrete codes C = φ(Q) where C ∈ {1, · · · ,K}n×D
is the KD codebook. To construct the final embedding table for all symbols, the reverse-discretization
function of DPQ is applied, i.e. H = ρ(C) where H ∈ Rn×d is the final symbol embedding matrix.
In order to make it compact for the inference, we will discard the original embedding matrix Q and
only store the codebook C and small parameters needed in the reverse-discretization function. They
are sufficient to (re)construct partial or whole embedding table. In below, we specify the discretization
function φ(·) and reverse-discretization function ρ(·) via product keys and values.

Product keys for discretization function φ(·). Given the query matrix Q, the discretization
function computes the KD codebook C. While it is possible to use a complicated transformation, in
order to make it efficient, we simply leverage a Key matrix K ∈ RK×d with K rows where K is the
number of choices for each code bit. In the spirit of product keys in product quantization, we further
split columns of K and Q into D groups/subspace, such that K(j) ∈ RK×d/D and Q(j) ∈ Rn×d/D.

We can compute each of D dimensional KD codes separately. The j-th dimension of a KD code Ci

for the i-th symbol is computed as follows.

C
(j)
i = arg min

k
dist
(
Q

(j)
i ,K

(j)
k

)
(1)

2

Under review as a conference paper at ICLR 2020

Result Matrix
H

(Constructed
Embedding Table)

K

n

d dD

n

K

D Groups D Groups

Discretization
(Eq. (1))

Index & Concatenation
(Eq. (2))

Training only

D Groups

Query Matrix
Q

(Raw Embedding
Table)

Key Matrix
K

Value Matrix
V

Codebook
C

Figure 1: The DPQ embedding framework. During training, differentiable product quantization is
used to approximate the raw embedding table (i.e. the Query Matrix). At inference, only the codebook
C ∈ {1, ...,K}n×D and the Value matrix V ∈ RK×d are needed to construct the embedding table.

The dist(·, ·) computes distance measure between two vectors, and use it to decide which discrete
code to take.

Product values for reverse-discretization function ρ(·). Given the codebook C, the reverse-
discretization function computes the final continuous embedding vectors. While this can be another
sophisticated transformation, we again opt for the most efficient design and employee a single Value
matrix V ∈ RK×d as the parameter. Similarly, we leverage product keys, and split the columns of V
into D groups/subspaces the same way as K and Q, i.e. V(j) ∈ RK×d/D. We use the code in each
of D dimension to index the subspace in V, and concatenate the results to form the final embedding
vector as follows.

Hi = [V
(1)

c
(1)
i

, · · · ,V(j)

c
(j)
i

, · · · ,V(D)

c
(D)
i

] (2)

We note that this is a simplification, both conceptually and computationally, of the ones used in (Chen
et al., 2018b; Shu and Nakayama, 2017), which reduces the computation overhead and eases the
optimization.

Figure 1 illustrates the proposed framework. The proposed method can also be seen as a learned
hash function of finite input into a set of KD codes, and use lookup during the inference instead of
re-compute the codes.

Storage complexity. Assuming the default 32-bit floating point is used, the original full embedding
table requires 32nd bits. As for DPQ embedding, we only need to store the codebook and the Value
matrix: 1) codebook C requires nD log2K bits, which is the only thing that depends on vocabulary
size n, and 2) Value matrix V requires 32Kd bits1, which does not explicitly depend on n and is
ignoble when n is large. Since typically nD log2K < 32nd, the DPQ embedding is more compact.

Inference complexity. Since only indexing and concatenation (Eq. 2) are used during inference,
both the extra computation complexity and memory footprint are usually negligible compared to the
regular full embedding (which directly indexes an embedding table).

Expressiveness. Although the DPQ embedding is more compact than full embedding, it is not
achieved by reducing the rank of the matrix (as in traditional low-rank factorization). Instead, it
introduces sparsity into the embedding matrix in two axis: (1) the product keys/values, and (2) top-1
selection in each group/subspace.
Theorem 1. Given that both C and V are full rank, and KD ≥ d, then the DPQ embedding matrix
H is also full rank.

The proof is given in the appendix B. Note that it is easy to keep H full-rank while achieving good
compression ratio, since it is easy to achieve nD log2K < 32nd with KD = d.

132Kd/D bits if we share the weights among D groups/subspaces.

3

Under review as a conference paper at ICLR 2020

So far we have not specified some designs of the discretization function such as the distance function
in Eq 1. More importantly, how can we compute gradients through the arg min function in Eq. 1?
While there could be many instantiations with different design choices, below we introduce two DPQ
instantiations that use two different approximation schemes.

2.2 SOFTMAX-BASED APPROXIMATION

The first instantiation of DPQ (named DPQ-SX) approximates the non-differentiable arg max opera-
tion with a differentiable softmax function. To do so, we first specify the distance function in Eq. 1
with a softmax function as follows.

C
(j)
i = arg max

k

exp(〈Q(j)
i ,K

(j)
k 〉)∑

k′ exp(〈Q(j)
i ,K

(j)
k′ 〉)

(3)

where 〈·, ·〉 denotes dot product of two vectors (alternatively, other metrics such as Euclidean distance,
cosine distance can also be used). To approximate the arg max, similar to (Chen et al., 2018b; Jang
et al., 2016), we relax the softmax function with temperature τ :

C̃
(j)
i = exp(〈Q(j)

i ,K
(j)
k 〉/τ)/Z (4)

Note that now C̃
(j)
i ∈ ∆K is a probabilistic vector (i.e. soft one-hot vector) instead of an integer C(j)

i .
And one_hot(C(j)

i) ≈ C̃
(j)
i , or C(j)

i = arg max C̃
(j)
i . With a one-hot code relaxed into soft one-hot

vector, we can replace index operation V
(j)

C̃
(j)
i

with dot product to compute the output embedding

vector, i.e. H(j)
i = C̃

(j)
i V(j).

The softmax approximated computation defined above is fully differentiable when τ 6= 0. However,
to compute discrete codes during the forward pass, we have to set τ → 0, which turns the softmax
function into a spike concentrated on the C

(j)
i -th dimension. This is equivalent to the arg max

operation which does not have gradient.

To enable a pseudo gradient while still be able to output discrete codes, we use a different temperatures
during forward and backward pass, i.e. set τ → 0 in forward pass, and τ → 1 in the backward pass.
So the final DPQ function can be expressed as follows.

Hi = T (Qi|τ = 1)− sg
(
T (Qi|τ = 1)− T (Qi|τ = 0)

)
(5)

Where sg is the stop gradient operator, which is identity function in forward pass, but drops gradient
for variables inside it during the backward pass.

2.3 CENTROID-BASED APPROXIMATION

The second instantiation of DPQ (named DPQ-VQ) uses a centroid-based approximation, which
directly pass the gradient straight-through (Bengio et al., 2013) a small set of centroids. In order to
do so, we need to put Q,K,V into the same space.

First, we treat rows in Key matrix K as centroids, and use them to approximate Query matrix Q. The
approximation is based on the Euclidean distance as follows.

C
(j)
i = arg min

k
‖Q(j)

i −K
(j)
k ‖

2 (6)

Secondly, we tie the Key and Value matrices, i.e. V = K, so that we can pass the gradient through.

We still have the non-differentiable arg min operation, and the input query Q
(j)
i are different from

selected output centroid V
(j)

C
(j)
i

. However, since they are in the same space, it allows us to directly

pass the gradient straight-through as follows.

Hi = Qi − sg(Qi − T (Qi)) (7)

Where sg is again the stop gradient operation. During the forward pass, the selected centroid is
emitted, but during the backward pass, the gradient is pass to the query directly. This provides a way

4

Under review as a conference paper at ICLR 2020

k = 1, 2, 3, …, K k = 1, 2, 3, …, K

ci
(j)

Forward pass:
use argmax over k

Backward pass:
use softmax to approximate argmax

ci
(j)~

(a) Softmax-based (DPQ-SX)

K
1

(j)

K
2

(j)

Qi
(j)

K
0

(j)

Forward pass:
use the closest key to approximate the query

Backward pass:
use the original query

(b) Centroid-based (DPQ-VQ)

Figure 2: Illustration of two types of approximation to enable differentiability in DPQ.

Table 1: Summary of differences between VQ and SX.

Method Dist. Metric Key/Value matrices Train Inference

DPQ-SX Dot product and more Not tied, allows different sizes Efficient Efficient

DPQ-VQ Euclidean only Tied More efficient Efficient

to compute discrete codes in the forward pass (which are the indexes of the centroids), and update the
Query matrix during the backward pass.

However, it is worth noting that the Eq. 7 only approximates gradient for Query matrix, but does
not updates the centroids, i.e. the tied Key/Value matrix. Similar to van den Oord et al. (2017), we
add a regularization term: Lreg =

∑
i ‖T (Qi)− sg(Qi)‖2, which makes entries of the Key/Value

matrix arithmetic mean of their members. Alternatively, one can also use Exponential Moving
Average (Kaiser et al., 2018) to update the centroids.

A comparison between DPQ-SX and DPQ-VQ. DPQ-VQ and DPQ-SX only differ during train-
ing. They are very different in how they approximate the gradient for the non-differentiable arg min
function: DPQ-SX approximates the one-hot vector with softmax, while DPQ-VQ approximates the
continuous vector using a set of centroids. Figure 2 illustrates this difference. This suggests that when
there is a large gap between one-hot and probabilistic vectors (large K), DPQ-SX approximation
could be poor; and when there is a large gap between the continuous vector and the selected centroid
(large subspace dimension, i.e. small D), DPQ-VQ could have a big approximation error.

Table 1 summarizes the comparisons between DPQ-SX and DPQ-VQ. DPQ-SX is more flexible as it
does not constrain the distance metric, nor does it tie the Key/Value matrices as in DPQ-VQ. Thus
one could use different sizes of Key and Value matrices. Regarding to the computational cost during
training, DPQ-SX back-propagates through the whole distribution of K choices, while DPQ-VQ
only back-propagates through the nearest centroid, making it more scalable (to large K, D, and batch
sizes).

3 EXPERIMENTS

We conduct experiments on ten datasets across three tasks: language modeling (LM), neural machine
translation (NMT) and text classification (TextC) 2 We adopt existing architectures for these tasks
as base models and only replace the input embedding layer with DPQ embeddings. The details of
datasets and base models are summarized in Table 2.

We evaluate the models using two metrics: task performance and compression ratio. Task performance
metrics are perplexity scores for LM tasks, BLEU scores for NMT tasks, and accuracy in TextC tasks.

2For the five text classification datasets Zhang et al. (2015), Yahoo! answers and AG news represent
topic prediction, Yelp Polarity and Yelp Full represent sentiment analysis, and DBpedia represents ontology
classification.

5

Under review as a conference paper at ICLR 2020

Table 2: Datasets and models used in our experiments. More details in Appendix C.

Task Dataset Vocab Size Tokenization Base Model

LM PTB 10,000 Words LSTM-based models from Zaremba et al.
(2014), three model sizesWikitext-2 33,278

NMT
IWSLT15 (En-Vi) 17,191 Words Seq2seq-based model from Luong et al.

(2017)IWSLT15 (Vi-En) 7,709

WMT19 (En-De) 32,000 Sub-words Transformer Base in Vaswani et al. (2017)

TextC

AG News 69,322

Words
One hidden layer after mean pooling of
word vectors, similar to fastText
from Joulin et al. (2017)

Yahoo! Ans. 477,522
DBpedia 612,530
Yelp P 246,739
Yelp F 268,414

Table 3: Comparisons of DPQ variants vs. the full embedding baselines.

Task Metric Dataset Baseline DPQ-SX (CR) DPQ-VQ (CR)

LM PPL PTB 83.38 83.17 (163.2) 83.27 (58.67)
Wikitext-2 95.61 94.94 (59.25) 95.92 (95.25)

NMT BLEU
IWSLT15 (En-Vi) 25.4 25.3 (86.17) 25.3 (16.13)
IWSLT15 (Vi-En) 23.0 23.1 (72.00) 22.5 (14.05)
WMT19 (En-De) 38.8 38.8 (18.00) 38.7 (18.23)

TextC Acc(%)

AG News 92.59 92.49 (19.26) 92.55 (23.95)
Yahoo! Ans. 69.41 69.62 (48.16) 69.15 (19.24)
DBpedia 98.12 98.13 (24.08) 98.14 (38.45)
Yelp P 93.92 94.17 (38.52) 93.91 (24.04)
Yelp F 60.33 60.10 (48.16) 60.22 (24.05)

Compression ratios for the embedding layer is computed as follows:

CR =
of bits used in the full embedding table

of bits used in the compressed model during inference

For DPQ in particular, this can be computed as CR = 32nd
nD log2 K+32Kd . Further compression

can be achieved with ‘subspace-sharing’ as described in Appendix E.2. With subspace-sharing,
CR = 32nd

nD log2 K+32Kd/D .

3.1 COMPRESSION RATIOS AND TASK PERFORMANCE AGAINST BASELINES

Table 3 summarizes the task performance and compression ratios of DPQ-SX and DPQ-VQ against
baseline models that use the regular full embeddings3. In each task/dataset, we report results from a
configuration that gives as good task performance as the baseline (or as good as possible, if it does
not match with the baseline) while providing the largest compression ratio. In all tasks, both DPQ-SX
and DPQ-VQ can achieve comparable or better task performance while providing a compression ratio
from 14× to 163×. In 6 out of 10 datasets, DPQ-SX performs strictly better than DPQ-VQ in both
metrics. Remarkably, DPQ is able to further compress the already-compact sub-word representations.
This shows great potential of DPQ to learn very compact embedding layers.

We also compare DPQ against the following recently proposed embedding compression meth-
ods (Chen et al., 2018b; Shu and Nakayama, 2017). Pre-train: pre-training and fixing KD codes after
pre-training; E2E: end-to-end training without distillation guidance from a pre-trained embedding
table; E2E-dist.: end-to-end training with a distillation procedure that uses a pre-trained embedding
as guidance during training. Table 4 shows the comparison between DPQ and the above methods

3For LM, results are from the medium-sized LSTM model.

6

Under review as a conference paper at ICLR 2020

Table 4: Comparison of DPQ against recently proposed embedding compression techniques on
the PTB LM task (LSTMs with three model sizes are studied). Metrics are perplexity (PPL) and
compression ratio (CR).

Small Medium Large
Method PPL CR PPL CR PPL CR

Full 114.5 1 83.4 1 78.7 1
Pre-train (Chen et al., 2018b) 108.0 4.8 84.9 11.7 80.7 18.5
E2E (Chen et al., 2018b) 108.5 4.8 89.0 11.7 86.4 18.5
E2E-dist. (Chen et al., 2018b) 107.8 4.8 83.1 11.7 77.7 18.5

DPQ-SX 105.8 85.5 82.0 82.9 78.5 238.3
DPQ-VQ 106.5 51.1 83.3 58.7 79.5 238.3

10 25 50
D

 neg-PPL (DPQ-SX)

2
8

32
12

8
K

-104.9 -91.2 -89.0

-88.3 -84.7 -84.5

-86.4 -83.2 -82.0

-85.3 -83.8 -82.0

10 25 50
D

 neg-PPL (DPQ-VQ)

-123.0 -92.9 -86.2

-96.1 -85.6 -83.7

-91.4 -84.5 -83.4

-91.6 -85.1 -83.3

10 25 50
D
 CR

2000.0 827.8 415.9

657.9 275.3 138.6

367.7 163.2 82.9

215.6 112.2 58.6

(a) PTB

8 32 128
D

 BLEU (DPQ-SX)
2

8
32

12
8

K

7.5 20.0 25.4

19.0 24.7 26.0

21.5 25.3 25.3

21.9 24.2 24.9

8 32 128
D

 BLEU (DPQ-VQ)

9.0 13.6 23.4

13.6 16.7 20.5

14.7 19.8 24.5

18.1 21.6 25.3

8 32 128
D
 CR

1657.2 484.2 126.4

519.1 158.4 41.9

232.9 86.2 24.5

92.2 47.4 16.1

(b) IWSLT15 (En-Vi)

Figure 3: Heat-maps of task performance and compression ratio. Darker is better.

on the PTB language modeling task using LSTMs with three different model sizes. We find that
1) both Pre-train and E2E achieve good compression ratios but with worse perplexity scores on the
Medium and Large models, 2) the E2E-dist. method has the same compression ratio as them and is
able to achieve similar perplexity scores as the full embedding baseline, with the downside that it
requires the extra distillation procedure, 3) DPQ variants (particularly DPQ-SX) are able to obtain
extremely competitive perplexity scores in all cases, while offering compression ratios that are an
order of magnitude larger than the alternatives.

3.2 EFFECTS OF K AND D

Among key hyper-parameters of DPQ are the code size: K the number of centroids per dimension
and D the code length. Figure 3 shows the task performance and compression ratios for different K
and D values on PTB and IWSLT15 (En-Vi). Firstly, we observe that the combination of a small K
and a large D is a better configuration than the other way round. For example, in IWSLT15 (En-Vi),
(K = 2, D = 128) is better than (K = 128, D = 8) in both BLEU and CR, with both DPQ-SX
and DPQ-VQ. Secondly, increasing K or D would typically improve the task performance at the
expense of lower CRs, which means one can adjust K and D to achieve the best task performance
and compression ratio trade-off. Thirdly, we note that decreasing D has a much more traumatic effect
on DPQ-VQ than on DPQ-SX in terms of task performance. This is because as the dimension of each
sub-space (d/D) increases, the nearest neighbour approximation (that DPQ-VQ relies on) becomes
less exact.

3.3 COMPUTATIONAL COST

DPQ incurs a slightly higher computational cost during training and no extra cost at inference. Figure
4 shows the training speed as well as the (GPU) memory required when using DPQ on the medium
LSTM model, trained on Tesla-V100 GPUs. For most K and D values, the extra training time is
within 10%, and the extra training memory is zero. For very large K and D values, DPQ-VQ has
better computational efficiency than DPQ-SX (as expected). At inference, we do not observe any
impact on speed or memory from DPQ.

7

Under review as a conference paper at ICLR 2020

10 50 130
D

 DPQ-SX

32
12

8
51

2
K

5.2% 7.1% 7.7%

8.1% 11.0% 13.1%

9.9% 23.6% 46.9%

10 50 130
D

 DPQ-VQ

9.1% 6.7% 6.0%

9.0% 9.6% 8.2%

10.2% 16.8% 37.5%

(a) Extra training time used.

10 50 130
D

 DPQ-SX

32
12

8
51

2
K

0.0% 0.0% 0.0%

0.0% 0.0% 0.0%

0.0% 0.0% 83.2%

10 50 130
D

 DPQ-VQ

0.0% 0.0% 0.0%

0.0% 0.0% 0.0%

0.0% 0.0% 4.9%

(b) Extra training memory used.

Figure 4: Extra training cost, when using DPQ with medium sized LSTM for LM.

3.4 CODE STUDY

To better understand the KD codes learned end-to-end via DPQ, we investigated the codes and
observed the following. Firstly, the centroids in all D groups are usually well utilized (Appendix
D.1). Secondly, the KD codebook changes as training progresses, but the rate of change decreases
throughout training and converges to < 20% (Appendix D.2). Thirdly, the nearest neighbours in the
continuous embedding space between DPQ and the baseline align very well (Appendix D.3). Finally,
we also list the learned codes for selected words in Appendix D.4.

4 RELATED WORK

Modern neural networks have many parameters and redundancies. The compression of such models
has attracted many research efforts (Han et al., 2015; Howard et al., 2017; Chen et al., 2018a). Most
of these compression techniques focus on the weights that are shared among many examples, such
as convolutional and dense layers (Howard et al., 2017; Chen et al., 2018a). The embedding layers
are different in the sense that they are tabular and very sparsely accessed, i.e. the pruning cannot
remove rows/symbols in the embedding table, and only a few symbols are accessed in each data
sample. This makes the compression challenges different for the embedding layers. Existing work on
compressing embedding layers include (Shu and Nakayama, 2017; Chen et al., 2018b), and our work
generalizes these methods to the new DPQ framework and improve the compression ratios without
resorting to the extra distillation process. Our framework is also more flexible and allows two types
instantiations with different gradient approximation. The product keys and values in our model make
it more efficient in both training and inference.

Our work differs from traditional quantization techniques (Jegou et al., 2010) in that they can be
trained in an end-to-end fashion. The idea of utilizing multiple orthogonal subspaces/groups for
quantization is used in product quantization (Jegou et al., 2010; Norouzi and Fleet, 2013) and
multi-head attention (Vaswani et al., 2017).

The two approximation techniques presented for DPQ in this work also share similarities with
Gumbel-softmax (Jang et al., 2016) and VQ-VAE (van den Oord et al., 2017). However, we do not
find using stochastic noises (as in Gumbel-softmax) useful since we aim to get deterministic codes.
It is also worth pointing out that these techniques (Jang et al., 2016; van den Oord et al., 2017) by
themselves cannot be directly applied to compression.

5 CONCLUSION

In this work, we propose a novel and general differentiable product quantization framework for
learning compact embedding layers. We provide two instantiations of our framework, which can
readily serve as a drop-in replacement for existing embedding layers. Empirically, we evaluate the
proposed method on ten datasets across three different language tasks, and show that our method
surpasses existing compression methods and can compress the embedding table up to 238× without
suffering a performance loss. In the future, we plan to apply the DPQ framework to a wider range of
applications and architectures.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-Efficient Adaptive Optimization
for Large-Scale Learning. In arXiv, 2019.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pages 2787–2795, 2013.

Ting Chen, Ji Lin, Tian Lin, Song Han, Chong Wang, and Denny Zhou. Adaptive mixture of low-rank
factorizations for compact neural modeling. Neural Information Processing Systems (CDNNRIA
workshop), 2018a.

Ting Chen, Martin Renqiang Min, and Yizhou Sun. Learning k-way d-dimensional discrete codes for
compact embedding representations. In International Conference on Machine Learning, 2018b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text
classification. In Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics, 2017.

Łukasz Kaiser, Aurko Roy, Ashish Vaswani, Niki Parmar, Samy Bengio, Jakob Uszkoreit, and
Noam Shazeer. Fast decoding in sequence models using discrete latent variables. arXiv preprint
arXiv:1803.03382, 2018.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, pages 30–37, 2009.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 66–71, 2018.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

Mohammad Norouzi and David J Fleet. Cartesian k-means. In Proceedings of the IEEE Conference
on computer Vision and Pattern Recognition, pages 3017–3024, 2013.

Raphael Shu and Hideki Nakayama. Compressing word embeddings via deep compositional code
learning. arXiv preprint arXiv:1711.01068, 2017.

9

Under review as a conference paper at ICLR 2020

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural tensor
networks for knowledge base completion. In Advances in neural information processing systems,
pages 926–934, 2013.

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances in
Neural Information Processing Systems, pages 6306–6315, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329, 2014.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in neural information processing systems, pages 649–657, 2015.

10

Under review as a conference paper at ICLR 2020

A ALGORITHM PSEUDO-CODE

This section lays out the algorithm pseudo-code for the DPQ embedding layer during the forward
training/inference pass.

Algorithm 1 DPQ for the i-th token in the vocab
(training, forward pass)
h-params :K, D
parameters : Q ∈ Rn×D×(d/D), K,V ∈

RK×D×(d/D), C ∈ {1, ...,K}n×D

for j in 1, ..., D do
C

(j)
i = arg maxk dist(Q(j)

i ,K
(j)
k)

h
(j)
i = V

(j)

C
(j)
i

end for
return concatenate(h

(1)
i ,h

(2)
i , ...,h

(D)
i)

Algorithm 2 DPQ for the i-th token in the
vocab (inference)
h-params :K, D
parameters : V ∈ RK×D×(d/D), C ∈

{1, ...,K}n×D

for j in 1, ..., D do

h
(j)
i = V

(j)

C
(j)
i

end for
return concatenate(h

(1)
i ,h

(2)
i , ...,h

(D)
i)

B PROOF OF THEOREM 1

Proof. We first re-parameterize both the codebook C and the Value matrix V as follows.

The original codebook is C ∈ {1, · · · ,K}n×D, and we turn each code bit, which is an integer
in {1, · · · ,K}, into a small one-hot vector of length-K. This results in the new binary codebook
B ∈ {0, 1}n×KD. Due to this construction, it is straight-forward that if C is full rank, then B is also
full rank.

The original Value matrix is V ∈ RK×d, and we turn it into a block-diagonal matrix U ∈ RKD×d

where the j-th block-diagonal is set to V(j) ∈ RK×(d/D). Again, due to our construction, it is
straight-forward that if V is full rank, then U is also full rank.

With the above re-parameterization, we can write the output embedding matrix H = BU. Given
both B and U are full rank and KD ≥ d, the resulting embedding matrix H is also full rank.

C DETAILS OF MODEL TRAINING

We follow the training settings of the base models used, and most of the time, just tune the DPQ
hyper-parmeters such as K, D and/or subspace-sharing. We also apply batch normalization for the
distance measure in DPQ along the K-dimension, i.e. each centroid will have a normalized distance
distribution with batch samples.

For training the Transformer Model on WMT’19 En-De dataset, the training set contains approxi-
mately 27M parallel sentences. We generated a vocabulary of 32k sub-words from the training data
using the SentencePiece tokenizer (Kudo and Richardson, 2018). The architecture is the Transformer
Base configuration described in Vaswani et al. (2017) with a context window size of 256 tokens.
All models were trained with a batch size of 2048 sentences for 250k steps, and with the SM3
optimizer (Anil et al., 2019) with momentum 0.9 and a quadratic learning rate warm-up schedule
with 10k warm-up steps. We searched the learning rate in {0.1, 0.3}.

D CODE STUDY

D.1 CODE DISTRIBUTION

DPQ discretizes the embedding space into the KD codebook in {1, ...,K}n×D. We examine the code
distribution by computing the number of times each discrete code in each of the D groups is used in

11

Under review as a conference paper at ICLR 2020

the entire codebook:

Count(j)k =

n∑
i=1

(C
(j)
i == k),∀j ∈ {1, ..., D}, k ∈ {1, ...,K}

Figure 5 shows the code distribution heat-maps for the Transformer model on WMT’19 En-De,
with K = 32 and D = 32 and no subspace-sharing. We find that 1) DPQ-VQ has a more evenly
distributed code utilization, 2) DPQ-SX has a more concentrated and sparse code distribution: in
each group, only a few discrete codes are used, and some codes are not used in the codebook.

0

800

1600

2400

3200

4000

0

800

1600

2400

3200

4000

Figure 5: Code heat-maps. Left: DPQ-SX. Right: DPQ-VQ. x-axis: K codes per group. y-axis: D
groups. K = D = 32.

D.2 RATE OF CODE CHANGES

We investigate how the codebook changes during training by computing the percentage of code bits
in the KD codebook C changed since the last saved checkpoint. An example is plotted in Figure 6 for
the Transformer on WMT’19 En-De task, with D = 128 and various K values. Checkpoints were
saved every 600 iterations. Interestingly, for DPQ-SX, code convergence remains about the same for
different K values; while for DPQ-VQ, the codes takes longer to stabilize for larger K values.

0.5
0 50000 100000 150000 200000 250000

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ct

io
n
 o

f
co

d
e
 c

h
a
n
g
e

DPQ-VQ, K=8

DPQ-VQ, K=32

DPQ-VQ, K=128

DPQ-SX, K=8

DPQ-SX, K=32

DPQ-SX, K=128

Figure 6: Percentage of code bits in codebook which changed from the previous checkpoint. Trans-
former on WMT’19 En-De. D = 128 for all runs. Checkpoints are saved every 600 iterations.

D.3 NEAREST NEIGHBOURS OF RECONSTRUCTED EMBEDDINGS

Table 5, 6 and 7 show examples of nearest neighbours in the reconstructed continuous embedding
space, trained in the Transformer model on the WMT’19 En-De task. Distance between two sub-
words is measured by the cosine similarity of their embedding vectors. Baseline is the original full
embeddings model. DPQ variants were trained with K = D = 128 with no subspace-sharing.

Taking the sub-word ‘_evolve’ as an example, DPQ variants give very similar top 10 nearest neigh-
bours as the original full embedding: both have 7 out of 10 overlapping top neighbours as the baseline
model. However, in DPQ-SX the neighbours have closer distances than the baseline, hence a tighter
cluster; while in DPQ-VQ the neighbours are further from the original word. We observe similar
patterns in the other two examples.

12

Under review as a conference paper at ICLR 2020

Table 5: Nearest neighbours of ‘_evolve’ in the embedding space.

Baseline (Full) Dist DPQ-SX Dist DPQ-VQ Dist

_evolve 1.000 _evolve 1.000 _evolve 1.000
_evolved 0.533 _evolved 0.571 _evolved 0.506
_evolving 0.493 _evolution 0.499 _develop 0.417
_develop 0.434 _develop 0.435 _evolving 0.359
_evolution 0.397 _evolving 0.418 _developed 0.320
_developed 0.379 _arise 0.405 _development 0.307
_developing 0.316 _developed 0.405 _developing 0.299
_arise 0.298 _resulted 0.394 _evolution 0.282
_unfold 0.294 _originate 0.361 _changed 0.278
_emerge 0.290 _result 0.359 _grew 0.273

Table 6: Nearest neighbours of ‘_monopoly’ in the embedding space.

Baseline Dist DPQ-SX Dist DPQ-VQ Dist

_monopoly 1.000 _monopoly 1.000 _monopoly 1.000
_monopolies 0.613 _monopolies 0.762 _monopolies 0.509
monopol 0.552 monopol 0.714 monopol 0.483
_Monopol 0.380 _Monopol 0.531 _Monopol 0.341
_moratorium 0.271 _zugestimmt 0.486 _dominant 0.258
_privileged 0.269 legitim 0.420 _moratorium 0.239
_unilateral 0.262 _Großunternehmen 0.401 _autonomy 0.230
_miracle 0.260 _Eigenkapital 0.400 _zugelassen 0.227
_privilege 0.254 _wirkungsvoll 0.399 _imperial 0.226
_dominant 0.250 _UCLAF 0.388 _capitalist 0.223

Table 7: Nearest neighbours of ‘_Toronto’ in the embedding space.

Baseline Dist DPQ-SX Dist DPQ-VQ Dist

_Toronto 1.000 _Toronto 1.000 _Toronto 1.000
_Vancouver 0.390 _Chicago 0.475 _Orlando 0.307
_Tokyo 0.378 _Orleans 0.467 _Detroit 0.306
_Ottawa 0.372 _Melbourne 0.435 _Canada 0.280
_Philadelphia 0.353 _Miami 0.434 _London 0.280
_Orlando 0.345 _Vancouver 0.415 _Glasgow 0.276
_Chicago 0.340 _Tokyo 0.407 _Montreal 0.272
_Canada 0.330 _Ottawa 0.405 _Vancouver 0.271
_Seoul 0.329 _Azeroth 0.403 _Philadelphia 0.267
_Boston 0.325 _Antonio 0.400 _Hamilton 0.264

D.4 CODE VISUALIZATION

Table 8 shows some examples of compressed codes for both DPQ-SX and DPQ-VQ. Semantically
related words share common codes in more dimensions than unrelated words.

E ADDITIONAL HYPER-PARAMETERS STUDY

E.1 EFFECTS OF K AND D

Figure 7 shows extra heatmaps with varied K and D in addition to those in Section 3.2.

13

Under review as a conference paper at ICLR 2020

Table 8: Examples of KD codes.

DPQ-SX DPQ-VQ

_Monday 2 5 0 7 0 6 1 6 6 5 0 2 4 3 1 7
_Tuesday 6 0 0 7 0 6 1 7 1 7 0 2 0 3 1 7
_Wednesday 6 5 0 3 0 6 1 6 6 2 3 2 0 2 1 7
_Thursday 5 5 0 3 0 6 1 7 7 2 0 2 0 3 1 2
_Friday 4 6 0 7 0 6 1 7 6 0 0 2 1 6 1 7
_Saturday 4 0 6 7 0 6 1 0 6 2 0 2 3 3 1 7
_Sunday 2 0 0 3 0 6 1 6 7 2 0 2 6 3 1 7

_Obama 2 6 7 2 5 7 3 7 2 3 1 6 6 1 7 4
_Clinton 2 4 7 2 3 5 6 7 5 3 5 6 6 0 7 4
_Merkel 4 1 7 2 6 2 2 6 6 3 1 1 4 6 7 4
_Sarkozy 7 6 7 1 4 2 5 0 0 3 1 7 5 7 7 4
_Berlusconi 4 6 5 1 4 2 6 7 6 3 0 6 6 7 7 4
_Putin 2 6 7 1 6 7 6 7 5 3 1 6 6 7 7 6
_Trump 7 6 7 2 0 7 6 7 2 3 1 6 5 7 7 7

_Toronto 6 2 3 2 4 2 2 6 4 3 4 7 6 2 0 7
_Vancouver 2 1 3 2 6 2 5 6 7 3 6 6 6 2 3 1
_Ottawa 2 5 6 1 6 2 2 7 6 3 1 6 6 2 0 4
_Montreal 4 0 0 2 6 2 1 7 4 3 1 1 6 2 0 1
_London 1 2 0 2 4 7 1 7 2 3 0 2 6 3 3 7
_Paris 4 0 3 5 4 2 1 0 5 3 0 0 6 3 2 7
_Munich 4 2 0 4 0 7 5 0 1 3 3 5 6 3 1 7

10 25 50
D

 neg-PPL (DPQ-SX)

2
8

32
12

8
K

-116.6 -105.9 -103.8

-100.9 -97.5 -97.1

-100.0 -96.8 -95.7

-98.0 -96.8 -94.9

10 25 50
D

 neg-PPL (DPQ-VQ)

-143.6 -111.7 -103.2

-107.7 -102.7 -98.6

-108.0 -98.7 -97.8

-108.5 -99.2 -95.9

10 25 50
D
 CR

2057.5 831.6 416.4

683.0 277.0 138.8

400.6 165.6 83.2

267.1 116.9 59.2

(a) WiKiText2

8 32 128
D

 BLEU (DPQ-SX)

2
8

32
12

8
K

11.4 37.1 37.4

36.5 37.3 38.2

36.6 37.8 37.8

36.8 38.5 38.8

8 32 128
D

 BLEU (DPQ-VQ)

11.5 36.4 37.6

33.7 37.7 38.4

36.7 37.4 37.6

37.4 38.2 38.7

8 32 128
D

 CR

2043.9 511.0 127.7

680.9 170.2 42.6

407.0 101.7 25.4

287.3 71.8 18.0

(b) WMT19 (En-DE)

Figure 7: Heat-maps of task performance and compression ratio. Darker is better.

E.2 SUBSPACE-SHARING

Subspace-sharing refers to the option of whether to share parameters among the D groups in the
Key/Value Matrices, i.e. constraining K(j) = K(j′) and V(j) = V(j′),∀j, j′. For simplicity we
refer to this as "subspace-sharing". Subspace-sharing improves the compression ratio to: CR =
32nd/(nD log2K + 32Kd/D).

Figure 8 shows the trade-off curves of task performance and compression ratio with different DPQ
variants, K, D and subspace-sharing. We find that one could vary the hyper-parameters to search
for optimal performance and compression trade-off. We also observe the effect of subspace-sharing
appears very much task-dependent: it improves perplexity scores in LM tasks but hurts BLEU scores
in NMT tasks. For TextC tasks, subspace-sharing seems beneficial for DPQ-SX but harmful for
DPQ-VQ.

14

Under review as a conference paper at ICLR 2020

0 100 200 300 400 500 600 700
Compression ratio

90

89

88

87

86

85

84

83

82

Pe
rfo

rm
an

ce
 (n

eg
-P

PL
)

Method x Shared
DPQ-SX x False
DPQ-SX x True
DPQ-VQ x False
DPQ-VQ x True

(a) PTB

0 100 200 300 400 500 600
Compression ratio

12

14

16

18

20

22

24

26

Pe
rfo

rm
an

ce
 (B

LE
U)

Method x Shared
DPQ-SX x True
DPQ-VQ x False
DPQ-SX x False
DPQ-VQ x True

(b) IWSLT15 (En-Vi)

0 10 20 30 40 50
Compression ratio

97.2

97.4

97.6

97.8

98.0

Pe
rfo

rm
an

ce
 (A

cc
ur

ac
y)

Method x Shared
DPQ-SX x True
DPQ-VQ x False
DPQ-SX x False
DPQ-VQ x True

(c) DBpedia

0 200 400 600 800
Compression ratio

110

108

106

104

102

100

98

96

Pe
rfo

rm
an

ce
 (n

eg
-P

PL
)

Method x Shared
DPQ-SX x False
DPQ-SX x True
DPQ-VQ x False
DPQ-VQ x True

(d) Wikitext-2

0 100 200 300 400 500 600
Compression ratio

16

18

20

22

Pe
rfo

rm
an

ce
 (B

LE
U)

Method x Shared
DPQ-SX x True
DPQ-VQ x False
DPQ-SX x False
DPQ-VQ x True

(e) IWSLT15 (Vi-En)

0 10 20 30 40 50
Compression ratio

91.8

91.9

92.0

92.1

92.2

92.3

92.4

92.5

92.6

Pe
rfo

rm
an

ce
 (A

cc
ur

ac
y)

Method x Shared
DPQ-SX x True
DPQ-VQ x False
DPQ-SX x False
DPQ-VQ x True

(f) AG News

0 10 20 30 40 50
Compression ratio

66.5

67.0

67.5

68.0

68.5

69.0

69.5

Pe
rfo

rm
an

ce
 (A

cc
ur

ac
y)

Method x Shared
DPQ-SX x True
DPQ-VQ x False
DPQ-SX x False
DPQ-VQ x True

(g) Yahoo! Answers

0 10 20 30 40 50
Compression ratio

86

88

90

92

94

Pe
rfo

rm
an

ce
 (A

cc
ur

ac
y)

Method x Shared
DPQ-SX x True
DPQ-VQ x False
DPQ-SX x False
DPQ-VQ x True

(h) Yelp Polarity

0 10 20 30 40 50
Compression ratio

52

54

56

58

60

Pe
rfo

rm
an

ce
 (A

cc
ur

ac
y)

Method x Shared
DPQ-SX x True
DPQ-VQ x False
DPQ-SX x False
DPQ-VQ x True

(i) Yelp Full

Figure 8: Task performance vs compression ratio trade-off curves. Each subplot comes from one
task/dataset and contains four configurations: {DPX-SX, DPX-VQ} × {subspace-sharing, NO-
subspace-sharing}.

15

	Introduction
	Method
	Differentiable Production Quantization Framework
	Softmax-based Approximation
	Centroid-based Approximation

	Experiments
	Compression Ratios and Task Performance Against Baselines
	Effects of K and D
	Computational Cost
	Code Study

	Related Work
	Conclusion
	Algorithm Pseudo-code
	Proof of Theorem 1
	Details of Model Training
	Code Study
	Code Distribution
	Rate of Code Changes
	Nearest Neighbours of Reconstructed Embeddings
	Code Visualization

	Additional Hyper-parameters Study
	Effects of K and D
	Subspace-sharing

