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ABSTRACT

In the generative model approach of machine learning, it is essential to acquire an
accurate probabilistic model and compress the dimension of data for easy treat-
ment. However, in the conventional deep-autoencoder based generative model
such as VAE, the probability of the real space cannot be obtained correctly from
that of in the latent space, because the scaling between both spaces is not con-
trolled. This has also been an obstacle to quantifying the impact of the variation
of latent variables on data. In this paper, we propose a method to learn parametric
probability distribution and autoencoder simultaneously based on Rate-Distortion
Optimization to support scaling control. It is proved theoretically and experimen-
tally that (i) the probability distribution of the latent space obtained by this model
is proportional to the probability distribution of the real space because Jacobian
between two spaces is constant; (ii) our model behaves as non-linear PCA, which
enables to evaluate the influence of latent variables on data. Furthermore, to verify
the usefulness on the practical application, we evaluate its performance in unsu-
pervised anomaly detection and it outperforms current state-of-the-art methods.

1 INTRODUCTION

Capturing the inherent features of a dataset from high-dimensional and complex data is an es-
sential issue in machine learning. Generative model approach learns the probability distribu-
tion of data, aiming at data generation by probabilistic sampling, unsupervised/weakly super-
vised learning, and acquiring meta-prior (general assumptions about how data can be summarized
naturally, such as disentangle, clustering, and hierarchical structure (Y. Bengio & Vincent, 2013;
Michael Tschannen & Lucic, 2019)). It is generally difficult to directly estimate a probability den-
sity function(PDF) Px(x) of real data x. Accordingly, one promising approach is to map to the
latent space z with reduced dimension and capture PDF Pz(z). In recent years, deep autoencoder
based methods have made it possible to compress dimensions and derive latent variables. While
there is remarkable progress in these areas (van den Oord et al.; Kingma et al., 2014; Jiang et al.,
2016), the relation between x and z in the current deep generative models is still not clear.

VAE (P.Kingma & Welling, 2014) is one of the most successful generative models for capturing
latent representation. In VAE, lower bound of log-likelihood of Px(x) is introduced as ELBO.
Then latent variable is obtained by maximizing ELBO. Some previous works reported that there
are various limitations in the origin of maximizing ELBO (Alemi et al., 2018; Zhao et al., 2019).
Moreover, many previous works did not care about Jacobian between two spaces, despite the fact
that the ratio between Pz(z) and Px(x) is equal to the Jacobian. Even in models that provide more
flexible estimation (M.Johnson, 2016; Liao et al., 2018; Zong et al., 2018), this point is overlooked.

Here, when we turn our sight toward acquiring meta-prior, it is straightforward to evaluate the quan-
titative influence of each latent variable on the distance between data x1 and x2. To do so, the scale
of the latent variable should be appropriately controlled so that the changes in latent variables is
proportional to the changes of distance in data space. In addition, this scaling should be adjusted ac-
cording to the definition of the distance metric. For instance, with respect to image quality metrics,
different meta-prior would be derived from MSE and SSIM.

To deal with this, we propose RaDOGAGA (Rate-Distortion Optimization Guided Autoencoder for
Generative Approach), which simultaneously learns parametric probability distribution and auto-
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encoder, based on the rate-distortion optimization (RDO). In this paper, we show the effect of
RaDOGAGA in the following steps.

(1) We prove that RaDOGAGA has the following property theoretically and experimentally.

• Jacobi matrix between real space and latent space leads to be constant-scaled orthonormal.
So the response of the minute change of z to the real space data x is constant at any z.

• Because of constant Jacobian (or pseudo-Jacobian), Px(x) and Pz(z) are almost pro-
portional. Therefore, Px(x) can be estimated, by directly maximizing log-likelihood of
parametric PDF Pzψ(z) in reduced-dimensional space, without considering ELBO.

• When univariate independent distribution is used to estimate Pz(z) parametrically, it be-
haves as ”continuous PCA” where energy is concentrated on several principal components.

(2) Thanks to this property, RaDOGAGA achieve the state-of-the-art performance in anomaly de-
tection task with four public datasets, where probability density estimation is important.

(3) We show that our approach can directly evaluate how the z impact on the distance metric in real
space. This feature is promising to further interpretation of latent variables.

2 RELATED WORK

Flow based model: Flow based generative models generates astonishing quality of image
(Kingma & Dhariwal, 2018; Dinh et al., 2014). Flow mechanism explicitly takes Jacobian of x
and z into account. The transformation function z = f(x) is learned, calculating and preserving
Jacobian of x and z. Unlike ordinary autencoder, which reverse z to x with function g() different
from f(), inverse function transforms z as x = f−1(z). Since the model preserves Jacobian, Pz(x)
can be estimated by maximizing log likelihood of Pz(z) without considering ELBO. Although, in
this approach, f() need to be bijection. Because of this limitation, it is difficult to fully utilize the
flexibility of neural networks.

Interpretation of latent variables: While it is expected to acquire meta-prior by deep autoencoder,
interpreting latent variables is still challenging. In recent years, research aiming to acquire disentan-
gled latent variables, which encourages them to be independent, is flourishing (Lopez et al., 2018;
Chen et al., 2018; I. Higgins & Lerchner, 2018; Chen et al., 2016). With these methods, qualitative
effects for disentanglement can be seen. For example, when a certain latent variable is displaced,
image changes corresponding to specific attributes (size, color, etc.). Some works also propose
quantitative metrics for meta-prior. In beta-VAE (I. Higgins & Lerchner, 2017), the metric evaluates
the independence of latent variables by solving the classification task. But, the metrics do not eval-
uate the effect of latent variable to the distance between data directly, in spite of the fact that model
is trained based on the distance.

Image compression with rate-distortion optimization: Rate-distortion optimization (RDO) min-
imizes the information entropy −log(Pz(z)) with constant reconstruction error. The most related
works to our approach is image compression with deep learning (Johannes Ballé & Johnston, 2018;
Jing Zhou, 2019; Sihan Wen, 2019). In these works, the information entropy of feature map ex-
tracted by CNN is minimized. To calculate entropy, Johannes Ballé & Johnston (2018) propose
method to estimate probability distribution of latent variable Pz(z) parametrically, assuming uni-
variate independent (factorized) distribution for each latent variable. We discover that, behind the
success of these compression methods, RDO has effect to scale latent variables. Inspired by this, we
propose autoencoder which scale latent variables according to definition of distance of data, without
limitation of the transformation function. Our scheme is applicable even if GMM is used to estimate
Pz(z), which is suitable for clustering and anomaly detection. Furthermore, in the case factorized
distribution is used for Pz(z), our model behaves as continuous PCA. This property is considered
to promote the interpretation of latent variable.

3 METHOD AND THEORY

The fundamental mechanism of rate-distortion optimization guided auto-encoder is minimizing cost
function which consists of (i) reconstruction error between input data and decoder output with noise
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to latent variable and (ii) entropy of latent variable. By doing so, the model automatically finds an
appropriate scale of latent space. The specific method is described below.

First, let x be M -dimensional domain data(x ∈ RM ) and Px(x) the probability of x. Then x is
converted to N -dimensional latent space z ∈ RN by encoder. Let fθ(x), gϕ(z), and Pzψ(z) be
parametric encoder, decoder, and probability distribution function of latent space with parameters
θ, ϕ, and ψ. We assume that each function’s parameter is rich enough to fit ideally. Then latent
variable z and decoded data x̂ are generated as bellow:

z = fθ(x) x̂ = gϕ(z) (1)

Let ϵ ∈ RN be noise with each dimension being independent (non-correlated among different
dimensions) with an average of 0 and a variance of σ2 as follows:

ϵ = (ϵ1, ϵ2, ..ϵN ), E [ϵi] = 0, E [ϵi · ϵj ] = δij · σ2 (2)

Then, given the sum of latent variable z and noise ϵ, the decoder output x̆ is obtained as follows:

x̆ = gϕ(z + ϵ) (3)

Here, the cost function is defined by Eq. (4)

L = − log(Pzψ(z)) + λ1 · h (D (x, x̂)) + λ2 ·D (x̂, x̆) (4)

In this equation, the first term is the estimated entropy of the latent distribution. D(x1,x2) in the
second and the third term is a distance function between x1 and x2. It is assumed that this distance
function can be approximated by the following quadratic form in the neighborhood of x, where δx
is arbitrary micro variation of x, A(x) is M ×M Hermite matrix depending on x , and L(x) is
Cholesky decomposition of A(x).

D(x,x+ δx) ≃ tδx ·A(x) · δx = ∥L(x) · δx∥2 (5)

For instance, when D(·, ·) is square error as in Eq. (6), A(x) and L(x) are Identity matrices.

D(x1,x2) = ∥x1− x2∥2 (6)

In the case of SSIM (Zhou Wang (2001)) metric which is close to subjective image quality, a cost
(1−SSIM) can be also approximated in this quadratic form. This is explained in Appendix C. Let
h() in the second term of Eq. (5) be a scale function such as the identity h(d) = d, the logarithm
h(d) = log(d), etc.. The effect of h(d) is discussed in Appendix D. Then, averaging Eq. (4)
according to distributions, x ∼ Px(x) and ϵ ∼ P (ϵ). By deriving parameters that minimize this
value, the encoder, decoder, and probability distribution of the latent space are trained as Eq. (7).

θ, ϕ, ψ = arg min
θ,ϕ,ψ

(Ex∼Px(x), ϵ∼P (ϵ)[ L ]) (7)

Encoder
fθ(x)

Decoder
gφ(z)

Pzψ(z) : Parametric PDF of z
R=-log(Pzψ(z))
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Figure 1: Architecture of RaDOGAGA

Here, we introduce xD as rescaled space of x according to the distance function D(·, ·):
dxD = L(x) · dx (8)

When D(·, ·) is square error, the two spaces of xD and x are equivalent. It is turned out that each
column of the Jacobian matrix of latent space z and rescaled space xD are constant multiple of
orthonormal basis regardless of the value of z and x after training based on Eqs. (4) and (7). Here,
δij denotes Kronecker delta.

t

(
L(x) · ∂x

∂zi

)(
L(x) · ∂x

∂zj

)
= t

(
∂xD
∂zi

)(
∂xD
∂zj

)
= δij ·

1

2λ2σ2
(9)

3



Under review as a conference paper at ICLR 2020

A more detailed proof is described in Appendix A. Then, by calculating distance functionD(·, ·) for
x and x+ dx, following relationship is derived by Eqs. (5), (8) and (9).

D(x,x+ dx) = ∥L(x) · dx∥2 = ∥dxD∥2 =

∥∥∥∥∥
N∑
i=1

∂xD
∂zi

· dzi

∥∥∥∥∥
2

=
1

2λ2σ2
· ∥dz∥2 (10)

This means that, the latent space is scaled so that the amount of change in the real space in response
to the minute change of z is constant independent of z value.

D(x,x+ dx)/∥dz∥2 = ∥dxD∥2/∥dz∥2 = const. (11)

Next, Jacobian between xD and z is examined. First, when M = N , the Jacobian matrix dxD/dz
is a square matrix, and each column is the same as 1/(

√
2λ2 · σ) times orthonormal basis. For this

reason, the Jacobian is a constant regardless of the value of z as shown below:∣∣∣∣dxDdz

∣∣∣∣ = ( 1

2λ2 · σ2

)(N/2)

(12)

In this case, the probability distribution of xD and z is proportional because of the constant Jacobian.
For the case of M > N , we assume the situation where most energy is efficiently and effectively
mapped to N-dimensional latent space. Then the product of the singular values of SVD for a Jacobi
matrix can be regarded as a pseudo Jacobian between the real space and the latent space. Since all
of the N singular values are 1/(

√
2λ2 · σ), the pseudo Jacobian is also a constant. As a result, the

following equation holds where J is Jacobian or pseudo Jacobian.

Pz(z) ≃ J · PxD(xD) ∝ PxD(xD) (13)

Let P̂xD(xD) be estimated probability of xD. Because the Jacobian J is constant, P̂xD(xD) can
be approximated by J−1 · Pzψ(z). Accordingly, the average of the first term in Equation (4) by
x ∼ Px(x) can be transformed as follows.

Ez∼Pz(z))[− log(Pzψ(z))] ≃ −ExD∼Px(xD))[log(P̂xD(xD)]− log(J) (14)

Here, minimization of Equation (14) is equivalent to the log-likelihood maximization of P̂xD(xD).
As a result, the PDF of xD can be estimated without maximizing ELBO.

Regarding a parametric probability distribution, if a model such as GMM is taken, it is considered
that a multimodal probability distribution can be obtained flexibly. Besides, when the following
factorized probability model is used, the model shows a ”continuous PCA” feature where the energy
is concentrated in several principal latent variables.

Pzψ(z) =

N∏
i=1

Pziψ(Zi) (15)

The derivation of ”continuous PCA” feature is explained in Appendix B.

4 EXPERIMENT

4.1 PROBABILITY DENSITY ESTIMATION WITH TOY DATA

In this section, we describe our experiment using toy data to demonstrate whether the probability
density of the input data Px(x) and that of estimated in the latent space Pz(z) are proportional to
each other as in theory. First, we sample data s = (s1, s2...s10,000) from three-dimensional Gaus-
sian distribution consists of three-mixture-components with mixture weight π = (1/3, 1/3, 1/3),
mean µk = (µk1, µk2, µk3), and covariance Σk = diag(σk1, σk2, σk3). k is the index for mixture
component. Then, we scatter s with uniform random noise u ∈ R3×16, udm ∼ Ud

(
− 1

2 ,
1
2

)
, where

d and m are index for dimension of sampled data and scattered data. The Uds are uncorrelated with
each other. We produce 16-dimensional input data x with a sample number of 10,000 in the end .

x =

3∑
d=1

udsd (16)

The appearance probability of the input data Px(x) is equivalent to the generation probability of s.
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4.1.1 CONFIGURATION

In the experiment, we estimate the Pzψ(z) using GMM with parameter ψ as in DAGMM
(Zong et al., 2018). Instead of EM algorithm, GMM parameters are learned using Estimation
Network (EN), which consists of multi-layer neural network. When the GMM has K mixture-
components and I is the size of batch samples, EN outputs the mixture-components membership
prediction as K-dimensional vector γ̂ as follows:

p = EN(z;ψ), γ̂ = softmax(p) (17)

K-th mixture weight ϕ̂k, mean µ̂k, covariance Σ̂k, and entropy R of z are further calculated by Eqs.
(18) and (19).

π̂k =

I∑
i=1

γ̂ik/I, µ̂k =

I∑
i=1

γ̂ikzi/

I∑
i=1

γ̂ik, Σ̂k =

I∑
i=1

γ̂ik(zi − µ̂k)(zi − µ̂k)
T /

I∑
i=1

γ̂ik (18)

R = − log

(
I∑
k=1

π̂k/

√∣∣∣2πΣ̂k

∣∣∣ · exp(−1

2
(z − µ̂k)

T Σ̂−1
k (z − µ̂k)

))
(19)

Overall network is trained by Eqs. (4) and (7). In this experiment, we set D(x1, x2) as square error
∥ x1 − x2 ∥2, and test two types of h(), h(d) = d and h(d) = log(d). We denote models trained
with these h() as RaDOGAGA(d) and RaDOGAGA(log(d)). As a comparison method, DAGMM
is used. DAGMM also consists of encoder, decoder, and EN. In DAGMM, to avoid falling into the
trivial solution that entropy is minimized when the diagonal component of the covariance matrix is
0, the inverse of the diagonal component is added to the cost function as Eq. (20):

L = ∥x− x̂∥2 + λ1 · (− log(Pzψ(z))) + λ2P (Σ̂), P (Σ̂) =

K∑
k=1

d∑
j=1

Σ̂−1
kjj (20)

For both RaDOGAGA and DAGMM, the autoencoder part is constructed with fully connected (FC)
layers with sizes of 64, 32, 16, 3, 16, 32, and 64. For all FC layers except for the last of the encoder
and the decoder, we attach tanh as the activation function. The EN part is also constructed with FC
layer with a size of 10, 3. For the first layer, we attach the tanh as activation function and dropout
(ratio=0.5). For the last one, softmax is attached. (λ1, λ2) is set as (1× 10−4, 1× 10−9), (1× 106,
1×106) and (1×103, 1×104) for DAGMM, RaDOGAGA(d) and RaDOGAGA(log(d)) respectively.
Optimization is done by Adam optimizer (Kingma & Ba, 2014) with learning rate 1 × 10−4 for all
model. We set σ2 as 1/12.
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Figure 2: Plot of latent variable z
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Figure 3: plot of of Px(x) and Pzψ(z)
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4.1.2 RESULT

Figure 2 displays the distribution of latent variable z, and Figure 3 displays a plot of Px(x)(x-
axis) against Pzψ(z)(y-axis). Even though both methods can capture that s is generated from
three mixture-component, there is a difference is PDF. In our method, Px(x) and Pzψ(z) are ap-
proximately proportional to each other as in theory while we cannot observe such proportionality
in DAGMM. To compare RaDOGAGA(d) and RaDOGAGA(log(d)), we normalized Pzψ(z) with
the range from 0 to 1, then calculated residual of linear regression putting Pzψ(z) as objective
variable and Px(x) as explanatory variable. The residual of RaDOGAGA(log(d)), i.e., 0.0027,
is smaller than that of RaDOGAGA(d), i.e., 0.0100. Actually, when Pzψ(z) is sufficiently fitted,
h(d) = log(d) makes Px(x) and Pzψ(z) be proportional more rigidly. On the other hand, h(d) = d
makes the scale of latent space slightly bent in order to minimize entropy function, allowing relaxed
fitting of Pzψ(z). More detail is described in Appendix D. In the next section, we see how this trait
performs on the real task.

4.2 ANOMALY DETECTION TASK USING REAL DATA

In this section, we examine whether the clear relationship between Px(x) and Pz(z) is useful in
the anomaly detection task using real data. We use four public datasets1, KDDCUP99, Thyroid, Ar-
rhythmia, and KDDCUP-Rev. The (instance number, dimension, anomaly ratio(%)) of each dataset
is (494021, 121, 20), (3772, 6, 2.5), (452, 274, 15), and (121597, 121, 20) respectively. Detail of
datasets is described in Appendix E.

4.2.1 EXPERIMENTAL SETUP

We follow the setting in Zong et al. (2018). Randomly extracted 50% of the data is assigned to
training and the rest to testing. During training, only normal data is used. During the test, the R for
each sample is calculated as the anomaly score, and if the anomaly score is higher than a threshold,
it is detected as an anomaly. The threshold is determined by the ratio of anomaly data in each data
set. For example, in KDDCup99, data with R in the top 20 % is detected as an anomaly. As metrics,
precision, recall, and F1 score are calculated. We run 20 times for each dataset split by 20 different
random seeds.

4.2.2 BASELINE MODEL

Same as in the previous section, DAGMM is taken as the baseline method. We also compare with the
scores reported in previous works in which same experiments were conducted (Zenati et al., 2018;
Song & Ou, 2018; Liao et al., 2018).

4.2.3 CONFIGURATION

As in Zong et al. (2018), in addition to the output from the encoder, ∥x−x′∥2

∥x∥2
and x·x′

∥x∥2∥x′∥2
are

concatenated to z. It is sent to EN. Note that z is sent to the decoder before concatenation. Other
configuration except for hyper parameter is same as in the previous experiment. Hyper parameter
for each dataset is described in Appendix E.

4.2.4 RESULTS

Table 1 reports the average scores and standard deviations (in brackets). Comparing DAGMM and
RaDOGAGA, RaDOGAGA has a better performance regardless of types of h(). Simply introducing
the RDO mechanism into the autoencoder has a valid efficacy for anomaly detection. Moreover, our
approach achieves state-of-the-art performance compared to other previous works in which same
datasets is used. Clear relationship between Px(x) and Pz(z) by our model is considered to be
effective in the task of anomaly detection where the estimating probability distribution is important
In RaDOGAGA, when we compare result of RaDOGAGA(d) and RaDOGAGA(log(d)), either of
one is not always superior. As described in section 4.1 and Appendix D, h() can be an option
depending on fitting flexibility of Pz(z).

1Dataset can be dowonload from (https://kdd.ics.uci.edu/) and (http://odds.cs.stonybrook.edu)
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Table 1: Average and standard deviations(in brackets) of Precision, Recall and F1

Dataset Methods Precision Recall F1

KDDCup

ALAD∗ 0.9427(0.0018) 0.9577(0.0018) 0.9501(0.0018)
INRF∗ 0.9452(0.0105) 0.9600(0.0113) 0.9525(0.0108)
GMVAE∗ 0.952 0.9141 0.9326
DAGMM∗ 0.9297 0.9442 0.9369
DAGMM+† 0.9427(0.0052) 0.9575(0.0053) 0.9500(0.0052)
RaDOGAGA(d) 0.9550(0.0037) 0.9700(0.0038) 0.9624(0.0038)
RaDOGAGA(log(d)) 0.9563(0.0042) 0.9714(0.0042) 0.9638(0.0042)

Thyroid

GMVAE∗ 0.7105 0.5745 0.6353
DAGMM∗ 0.4766 0.4834 0.4782
DAGMM+† 0.4656(0.0481) 0.4859(0.0502) 0.4755(0.0491)
RaDOGAGA(d) 0.6313(0.0476) 0.6587(0.0496) 0.6447(0.0486)
RaDOGAGA(log(d)) 0.6562(0.0572) 0.6848(0.0597) 0.6702(0.0585)

Arrythmia

ALAD∗ 0.5000(0.0208) 0.5313(0.0221) 0.5152(0.0214)
GMVAE∗ 0.4375 0.4242 0.4308
DAGMM∗ 0.4909 0.5078 0.4983
DAGMM+† 0.4985(0.0389) 0.5136(0.0401) 0.5060(0.0395)
RaDOGAGA(d) 0.5353(0.0461) 0.5515(0.0475) 0.5433(0.0468)
RaDOGAGA(log(d)) 0.5294(0.0405) 0.5455(0.0418) 0.5373(0.0411)

KDDCup-rev

DAGMM∗ 0.937 0.939 0.938
DAGMM+† 0.9778(0.0018) 0.9779(0.0017) 0.9779(0.0018)
RaDOGAGA(d) 0.9768(0.0033) 0.9827(0.0012) 0.9797(0.0015)
RaDOGAGA(log(d)) 0.9864(0.0009) 0.9865(0.0009) 0.9865(0.0009)

∗Score of ALAD, INRF, GMVAE and DAGMM is cited from Zenati et al. (2018), Song & Ou (2018),
Liao et al. (2018) and Zong et al. (2018) respectively.

†DAGMM+ is our implementation. Note that we also test same configuration as in Zong et al. (2018) and
achieve similar score as reported (shown in Appendix E).

4.3 QUANTIFYING THE IMPACT OF LATENT VARIABLES ON DISTANCE AND
BEHAVIOR AS PCA

In this section, we verify that the impact of each latent variable on the distance function can be quan-
tified. As described in section 3, when z is displaced by a small interval δ, the error ratio between
two decoder output D(g(z),g(z+δ))

δ2 is constant regardless of the dimension of z. We verify if this
characteristic is observable in a model trained with real data. Once the model is trained, we encode
the image i and obtain zi. Then, δ is added to n-th dimension of zi and D(g(zi),g(zi+δ))

δ2 is calculated
for each sample. Finally, the average across all samples is measured. This operation is conducted
to each dimension of z independently. In rest of this section, D′(zn) denote D(g(z),g(z+δ))

δ2 for n-th
dimension. We also observe the distribution of z and how the image looks different in response to
the variation of zn.
To train model, we use CelebA dataset (Liu et al., 2015), which consists of 202,599 celebrity images.
The images are center-cropped so that the image size is 64 x 64.

4.3.1 CONFIGURATION

In this experiment, factorized distributions (Johannes Ballé & Johnston, 2018) is used to estimate
Pzψ(z). For comparison, we evaluate beta-VAE. Both models are constructed with same depth of
CNN and FC layers, with 256-dimensional z. Detail of networks and hyper parameter is written in
Appendix F. For RaDOGAGA, we set D(x1, x2) as 1 − SSIM(x1, x2) and h as h(d) = d. For
beta-VAE, reconstruction loss is also 1− SSIM(x1, x2). SSIM(x1, x2) is defined by Eq. (60).

4.3.2 RESULT

Both models are trained so that the SSIM between input and reconstructed image is around 0.93.
Figure 4a and 4b are the variance of latent variables z arranged in descending order. The red line
is the cumulative relative ratio of the variance. In Fig. 4b, variance is concentrated in a specific

7
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dimension. On the other hand, in Fig. 4a, VAE is trained so that each latent variable is fitted to a
Gaussian distribution with mean 0 and variance 1, there is no significant difference in the variance of
each latent variable. Figures 4c and 4d respectively depicts the average of D′(zn) of each of the top
nine dimensions with the largest variance of z. In VAE, the D′(zn) varies drastically depending on
the dimension n, while in RaDOGAGA, it is approximately constant regardless of n. Figure 5 show
decoder outputs when individual zn is traversed from -2σ to 2σ, fixing rest of z as mean. From the
top, each row corresponds to z0, z1, z2 ..., and the center column is mean. In Fig. 5b, the image
changes visually in any dimension of z, while in Fig. 5a, depending on n, there are cases where no
significant changes can be seen (such as z4, z5, and so on). This result means that, in RaDOGAGA,
the variance of z directly corresponds to the visual impact and the distance D(x1, x2), behaving as
PCA. Besides, since D′(zn) is constant, the variance can be used as a quantifying metric. Although
this is unsupervised image reconstruction task, if the task is the semantical problem and distance
function is defined so as to solve it, such as a classification, influence of each z on the semantics is
expected to be quantified.
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0.0
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0 127 255
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(a) VAE
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Figure 4: Variance of z (two on the left) and D′(zn)(two on the right)
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Figure 5: Latent space traversal

5 CONCLUSION

In this paper, we proposed RaDOGAGA that learns parametric probability distribution and autoen-
coder simultaneously based on rate-distortion optimization. It was proved that the probability dis-
tribution of the latent variables obtained by the proposed method is proportional to the probability
distribution of the input data theoretically and experimentally. This property is validated in anomaly
detection achieving state-of-the-art performance. Moreover, our model has the trait as PCA which
likely promotes interpretation of latent variables. For the future work, we will conduct experiments
with different types of distance functions that derived from semantical task, such as in categori-
cal classification. Meanwhile, as mentioned in Michael Tschannen & Lucic (2019), considering the
usefulness of latent variables in downstream task is another research direction to explore.
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A HOW JACOBI MATRIX BECOME A CONSTANTLY SCALED
ORTHONORMAL BASIS

In this appendix section, we prove that all of column vectors in decoder’s Jacobi Matrix have the
same norm and are orthogonal to each other. In other words, each column of Jacobi matrix is a
constantly scaled orthonormal basis.

Here we assume that data space sample x has M dimension, that is x ∈ RM , then encoded to N
dimensional latent space sample y ∈ RN . We also assume that an fixed encoder function y =
finit,θ(x) and a fixed decoder x̂ = ginit,ϕ(y) are given such that h(D(x, x̂)) becomes minimal.

y = finit,θ(x) (21)
x̂ = ginit,ϕ(y) (22)

s.t h(D(x, x̂)) =⇒ minimal

We further assume that fixed parametric PDF of latent variable y is also given.

Pyinit,ψ(y) (23)
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Here, it is noted that this function is not needed to be optimal in a sense of
DKL (Py (y) ∥Pyinit,ψ (y)) where Py (y) is an actual PDF of y.

Under these conditions, we introduce new latent variable z, and y is transformed from z using a
following scaling function a(z) : RN →RN .

y = a(z) = (a1(z), a2(z), · · · , aN (z)) (24)

Here, our goal is to prove Eq. (9) by examining the condition of this scaling function which mini-
mize the average of Eq. (4) with regard to ϵ ∼ P (ϵ).

Because of the assumption of minimal D(x, x̂), we ignore the second term of Eq. (4). Next, the
PDF of z can be derived using a Jacobian of a(z).

Pzψ,a(z) =

∣∣∣∣da(z)dz

∣∣∣∣ · Pyinit,ψ(a(z)) (25)

By applying these conditions and equations to Eq. (4), the cost of scaling function a(z) to minimize
the average is expressed as follows.

La = − log

(∣∣∣∣da(z)dz

∣∣∣∣ · Pyinit,ψ(a(z)))+ λ2 ·D(ginit,ϕ(a(z + ϵ)), ginit,ϕ(a(z)))

(26)

Next, the latent variable is fixed as y0, and z0 is defined in the next equation.

z0 = a−1(y0) (27)

Then the average of Eq. (26) with regard to ϵ ∼ P (ϵ) is expressed as follows.

Eϵ∼P (ϵ) [La|z=z0 ] = − log

(∣∣∣∣da(z)dz

∣∣∣∣
z=z0

· Pyinit,ψ(a(z0))

)
+ λ2 · Eϵ∼P (ϵ) [D(ginit,ϕ(a(z0 + ϵ)), ginit,ϕ(a(z0)))]

(28)

Then the condition of a(z0) in the neighborhood of y0 is examined when Eq. (28) is minimized.
Here, it is noted that the first term of the right side doesn’t depend on ϵ.

Before examining Eq. (28), some preparation of equations are needed. At first, Jacobi matrix of
a(z) at z = z0 is defined as B using notations of partial differentials bij = ∂ai

∂zj

∣∣∣
z=z0

.

B =
∂y

∂z

∣∣∣∣∣
z=z0

=
da(z)

dz

∣∣∣∣∣
z=z0

=


b11 b12 . . . b1N
b21 b22 . . . b2N

...
...

. . .
...

bN1 bN2 . . . bNN


where bij =

∂ai
∂zj

∣∣∣∣∣
z=z0

(29)

The vector bi is also defined as follows.

bi =
∂y

∂zj

∣∣∣∣∣
z=z0

=


b1i
b2i
...
bNi

 (30)

It is clear by definition that bi and B have the following relation.

B = (b1, b2, · · · , bN ) (31)

11
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∆ij is defined as a cofactor of matrix B with regard to the element bij , and b̃i is also defined by the
following equation.

b̃i =


∆1i

∆2i

...
∆Ni

 (32)

The following equations holds by the definition of cofactor.

tbi · b̃i =

N∑
k=1

bki ·∆ki = |B| (33)

d|B|
dbij

= ∆ij ,
d|B|
dbi

= b̃i (34)

In case of i ̸= j, inner product of bi and b̃j becomes zero because this value is a determinant of a
singular matrix with two equivalent column vectors bi.

tbi · b̃j =
N∑
k=1

bki ·∆kj = |(b1, · · · , bi, · · · , bi, · · · )| = 0 (35)

G′
init is defined as a M ×N Jacobi matrix of ginit,ϕ(y) at y = y0 as follows.

G′
init =

dginit,ϕ(y)

dy

∣∣∣∣∣
y=y0

(36)

Using these equations, we preceed to expand of Eq. (28). The first term of (28) in the right side can
be expressed as follows, where the second term Eq. (37) in the right side is constant by definition.

− log

(∣∣∣∣da(z)dz

∣∣∣∣
z=z0

· Pyinit,ψ(a(z0))

)
= − log(|B|)− log(Pyinit,ψ(y0)) (37)

Next step is an expansion of the second term in Eq. (28). First, the following approximation holds.

ginit,ϕ(a(z0 + ϵ))− ginit,ϕ(a(z0)) ≃

dginit,ϕ(y)

dy

∣∣∣∣∣
y=y0

 ·

(
da(z)

dz

∣∣∣∣∣
z=z0

)
· ϵ

= G′
init ·B · ϵ

= G′
init · (ϵ1 · b1 + ϵ2 · b2 + ·ϵN · bN )

=

N∑
i=1

ϵi ·G′
init · bi (38)

Then, the second term of Eq. (28) can be transformed to the next equation by using Eqs. (38), (2),
and (5).
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Eϵ∼P (ϵ) [D(ginit,ϕ(a(z0 + ϵ)), ginit,ϕ(a(z0))] = Eϵ∼P (ϵ)

∥∥∥∥∥L(x) ·
N∑
i=1

ϵi ·G′
init · bi

∥∥∥∥∥
2


=

N∑
i=1

E[ϵi
2] · ∥L(x) ·G′

init · bi∥2

+2 ·
N∑
i=1

N∑
j=i+1

E[ϵi · ϵj ] ·

t(L(x) ·G′
init · bi) · (L(x) ·G′

init · bj)

= σ2 ·

(
N∑
i=1

∥L(x) ·G′
init · bi∥2

)
(39)

As a result, Eq. (28) can be rewritten as Eq. (40).

Eϵ∼P (ϵ) [La|z=z0
] = − log(|B|)− log(Pyinit,ψ(y0))

+λ2 · σ2 ·

(
N∑
i=1

∥L(x) ·G′
init · bi∥2

)
(40)

By examining the minimization process of Eq. (40), the conditions of optimal scaling function
y = a(z) in the neighborhood of y0 is clarified. Here, the condition of Jacobi matrix B is examined
instead of a(z). Eq. (40) is differentiated by vector bi, and the result is set to be zero. Then the
following equation Eq.(41) is derived.

2λ2 · σ2 ·
(
t(L(x) ·G′

init) · (L(x) ·G′
init)

)
· bi =

1

|B|
· b̃i (41)

Afterwards, Eq. (41) is multiplied by tbj from the left, and divided by 2λ2 ·σ2. As a result, Eq. (42)
is derived by using Eqs. (33) and (35).

t(L(x) ·G′
init · bj) · (L(x) ·G′

init · bi) =
1

2λ2 · σ2
· δij (42)

Here, we define the following function gortho,ψ(z) which is a composite function of ginit,ψ() and
a().

x̂ = gortho,ψ(z) = ginit,ψ(a(z)) (43)

Then the next equation holds by definition.

∂gortho,ψ(z)

∂zi

∣∣∣∣∣
z=z0

=
∂x̂

∂zi

∣∣∣∣∣
z=z0

= G′
init · bi (44)

It is noted that this equation holds at any value of y0 or z0. As a result, the following equation, that
is Eq. (9), can be derived.

t

(
L(x) · ∂x̂

∂zi

)(
L(x) · ∂x̂

∂zj

)
= δij ·

1

2λ2σ2
(45)

If encoder and decoder are trained well and x ≃ x̂ holds, we can introduce new rescaled data space
xD determined by distance function such as dxD = L(x) · dx, and the next equation holds.

t

(
∂xD
∂zi

)(
∂xD
∂zj

)
= δij ·

1

2λ2σ2
(46)

In conclusion, all column vectors of Jacobi matrix between z and xD has the same L2 norm
1/
√
2λ2σ and all pairs of column vectors are orthogonal. In other words,, when column vectors

of Jacobi matrix are multiplied by the constant
√
2λ2σ, the resulting vectors are orthonormal.

13



Under review as a conference paper at ICLR 2020

B EXPLANATION OF ”CONTINUOUS PCA” FEATURE

In this section, we explain RaDOGAGA has a continuous PCA feature when factorized probability
density model as below is used.

Pzψ(z) =

N∏
i=1

Pziψ(zi) (47)

Here, our definition of ”continuous PCA” feature means the following. 1) Mutual information be-
tween latent variables are minimum and likely to be uncorrelated to each other. 2) Energy of latent
space is concentrated to several principal components, and the importance of each component can
be determined.

Next we explain the reason why these feature is acquired. As explained in appendix A, all column
vectors of Jacobi matrix of decoder from latent space to data space have the same norm and all
combinations of pairwise vectors are orthogonal. In other words, when constant value is multiplied,
the resulting vectors are orthonormal. Because encoder is a inverse function of decoder ideally, each
row vector of encoder’s Jacobi matrix should be the same as column vector of decoder under the
ideal condition. Here, fortho,θ(x) and gortho,ϕ(zθ) are defined as encoder and decoder with these
feature. Because the latent variables depend on encoder parameter θ, latent variable is described as
zθ = fortho,θ(x), and its PDF is defined as Pzθ(zθ). PDFs of latent space and data space have
the following relation where J is a Jacobian or pseudo-Jacobian between two spaces with constant
value as explained in appendix A.

Pzθ(zθ) ≃ J · PxD(xD) ∝ PxD(xD) (48)

As described before, Pzψ(z) is a parametric PDF of the latent space to be optimized with parameter
ψ.

By applying the result of Eqs. (40) and (42), Eq. (4) can be transformed as Eq. (49) where x̂ =
gortho,ϕ(fortho,θ(x)).

Lortho = − log (Pzψ(zθ)) + λ1 · ∥x− x̂∥2 +N/2

s.t. t
(
∂gortho,ϕ(zθ)

∂zθi

)
·
(
∂gortho,ϕ(zθ)

∂zθj

)
= δij ·

1

2λσ2
(49)

Here, the third term of the right side is constant, this term can be removed from the cost function as
follows.

L′
ortho = − log (Pzψ(zθ)) + λ1 · ∥x− x̂∥2 (50)

Then the parameters of network and probability can be obtained by the next.

θ, ϕ, ψ = arg min
θ,ϕ,ψ

(Ex∼Px(x)[L
′
ortho]) (51)

Ex∼Px(x)[L
′
ortho] in Eq.（51）can be transformed as the next.

Ex∼Px(x)[L
′
ortho] =

∫
Px(x) · (− log (Pzψ(zθ)) + λ1 · h (D(x, x̂))) dx

=

∫ (
Pzθ(zθ) ·

∣∣∣∣ dxdzθ
∣∣∣∣−1
)

· (− log (Pzψ(zθ))) ·
∣∣∣∣ dxdzθ

∣∣∣∣dzθ
+λ1 ·

∫
PxD(xD) · |L(x)|−1 · h (D(x, x̂)) · |L(x)|dxD

=

∫
Pzθ(zθ) · (− log (Pzψ(zθ))) dzθ

+λ1 ·
∫
PxD(xD) · h (D(x, x̂)) dxD (52)
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At first, the first term of the third formula in Eq.(52) is examined. Let dzθ/i be a differential of
(N − 1) dimensional latent variables where i-th axis zθi is removed from the latent variable zθ.
Then a marginal distribution of zθi can be derived from the next equation.

Pzθi(zθi) =

∫
Pzθ(zθ)dzθ/i (53)

By using Eqs.(47) and (53), the first term of the third formula in Eq. (52) can be expanded as follows.∫
Pzθ(zθ) · (− log (Pzψ(zθ))) dzθ =

∫
Pzθ(zθ) ·

(
− log

(∏N
i=1 Pziψ(zθi)∏N
i=1 Pzθi(zθi)

))
dzθ

+

∫
Pzθ(zθ) ·

(
− log

(
N∏
i=1

Pzθi(zθi)

))
dzθ

=

N∑
i=1

∫ (∫
Pzθ(zθ)dzθ/i

)
·
(
− log

(
Pziψ(zθi)

Pzθi(zθi)

))
dzθi

+

N∑
i=1

∫ (∫
Pzθ(zθ)dzθ/i

)
· (− log (Pzθi(zθi))) dzθi

=

N∑
i=1

DKL(Pzθi(zθi)∥Pziψ(zθi)) +
N∑
i=1

H(zθi) (54)

H(X) is an entropy of variable X . The first term of the third formula is KL-divergence between
marginal probability Pzθi(zθi) and factorized parametric probability Pziψ(zθi). The second term
of the third formula can be further transformed using mutual information between latent variables
I(zθ) and equation (48).

N∑
i=1

H(zθi) = H(zθ) + I(zθ) ≃ H(xD)− log(J) + I(zθ) (55)

The first term of the third formula is the entropy of input data with constant value. The second is
also constant. As a result, in order to minimize (54), mutual information I(zθ) must be minimized.

At second, the second term of the third formula in Eq. (52) is examined. xD and x̂D denote mapped
values to rescaled data space defined by the distance function D(x1,x2) as Eq.(8). Because xD
and x̂D are close, the following equations holds.

x̂D ≃ xD +L(x) · (x̂− x) (56)

D(x, x̂) ≃ |L(x) · (x̂− x)|2 ≃ |xD − x̂D|2 (57)

By using these expansions, Eq.(52) can be expressed as follows.

Ex∼Px(x)[L
′
ortho] ≃

N∑
i=1

DKL(Pzθi(zθi)∥Pziψ(zθi))

+I(zθ) + ExD

[
|xD − x̂D|2

]
+Const. (58)

Here, the rescaled real space xD is divided into a plurality of small subspace partitionings
ΩxD1, ΩxD2, · · · . Let Ωz1, Ωz2, · · · be corresponding subspace partitionings in latent space.
as the division space of the latent space z ∈ RN corresponding to ΩxD. Then Eq. (58) can be
rewritten as follows.

Ex∼Px(x)[L
′
ortho] ≃

N∑
i=1

DKL(Pzθi(zθi)∥Pziψ(zθi))

+
∑
k

(
I(zθ ∈ Ωzθk) + ExD∈ΩxDk

[
|xD − x̂D|2

])
+Const. (59)
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For each subspace partitioning, the transformation from ΩxDk to Ωzθk can be regarded as constantly
scaled orthonormal transformation where orthonormal basis is Jacobi matrix with scale factor J−1.

According to Karhunen–Loève Theory (Rao & Yip (2000)), the orthonormal basis which minimize
both mutual information and reconstruction error leads to be Karhunen–Loève transform(KLT). It is
noted that the basis of KLT is equivalent to PCA orthonormal basis.

As a result, when Eq. (59) is minimized, Jacobi matrix from ΩxDk to Ωzθk for each subspace
partitioning should be KLT/PCA. Accordingly, the same feature as PCA will be realized such as the
determination of principal components etc.

From these consideration, we conclude that RaDOGAGA has a ”continuous PCA” feature.

ΩxDk Ωzk

Rescaled domain space xD ∈ RM  with 
small subspace partitioning ΩxDk

Latent Space z ∈ RＮ with 
small subspace partitioning Ωzk

For all small subspace partitioning ΩxDK of rescaled domain space, 
mapping from ΩxDK to Ωzk can be regarded as  PCA

Subspace wise PCA

Figure 6: Continuous KLT(PCA) Mapping from input domain to latent space

C EXPANSION OF SSIM TO A QUADRATIC FORM

Structural similarity (SSIM) (Zhou Wang, 2001) is widely used for picture quality metric which is
close to human subjective quality. In this appendix, we show (1− SSIM) can be approximated to
a quadratic form such as Eq.(5).

Eq. (60) is a SSIM value for a N ×N window between picture x and y. In order to calculate SSIM
index for a picture, this window is shifted in a whole picture and all of SSIM values are averaged.

SSIMN×N (x,y) =
2µxµy

µx2 + µy2
· 2σxy
σx2 + σy2

(60)

If (1− SSIMN×N (x,y)) is expressed in quadratic form, the average for a picture (1 −
SSIMpicture) can be also expressed in quadratic form.

Let δx be a minute displacement of x. Then SSIM between x and x+ δx can be approximated as
follows

SSIMN×N (x,x+ δx) = 1− µδx
2

2µx2
− σδx

2

2σx2
+O

(
(|δx|/|x|)3

)
(61)

Then µδx2 and σδx2 can be expressed as follows.

µδx
2 = tδx ·M · δx

whereM =
1

N2
·


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 (62)
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σδx
2 = tδx · V · δx

where V =
1

N2
·


N − 1 −1 . . . −1
−1 N − 1 . . . −1

...
...

. . .
...

−1 −1 . . . N − 1

 (63)

As a result, (1− SSIMN×N (x,y)) can be expressed in the following quadratic form.

1− SSIMN×N (x,x+ δx) ≃ tδx ·
(

1

2µx2
·M +

1

2σx2
· V
)
· δx (64)

D EFFECT OF h(x)

In this appendix section, the effects of two kinds of cost scaling function h(d) = d and h(d) =
log(d) are discussed. We evaluated the behaviors of encoder and decoder in a one dimensional
model using simple parametric linear encoder and decoder.

Encoder
z=a･x

Decoder
=b･z

Probability of z
P(z)～ 𝑁𝑁 0, 𝑎𝑎𝜎𝜎𝑥𝑥 2

(Assume Pψ(z)=P(z))

𝑥𝑥 ∈ 𝑅𝑅
𝑥𝑥~𝑁𝑁(0,𝜎𝜎𝑥𝑥2) 𝑥𝑥 𝑧𝑧 �𝑥𝑥

h (|𝑥𝑥 − �𝑥𝑥|2)

𝑎𝑎, 𝑏𝑏 = arg 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝑥𝑥,𝜖𝜖 − log 𝑃𝑃 𝑧𝑧 + 𝜆𝜆1･ℎ |𝑥𝑥 − �𝑥𝑥|2 + 𝜆𝜆𝜆･|�𝑥𝑥 − �𝑥𝑥|2 )

Decoder
=b･(z+ε) �𝑥𝑥

| �𝑥𝑥 − �𝑥𝑥|2

𝜖𝜖~𝑁𝑁(0,1)

+

Figure 7: Simple encoder/decoder model to evaluate h(d)

Lex x be a one dimensional data with the normal distribution.

x ∈ R

x ∼ N(0, σx
2)

Lex z be a one dimensional latent variable. Following two linear encoder and decoder are provided
with parameter a and b.

z = a · x
x̂ = b · z

As a Distance function D(x, y), square error is used. The distribution of noise ϵ added to latent
variable z is set to N(0, 1). Then x̆ is derived by decoding z + ϵ.

D(x, y) = |x− y|2

ϵ ∼ N(0, 1)

x̆ = b · (z + ϵ)

For simplicity, we assume parametric PDF Pψ(z) is equal to the real PDF P (z). Because the
distribution of latent variable z follows N(0, (aσx)

2), the entropy of z can be expressed as follows.

P (z) ∼ N(0, (aσx)
2)

H(z) =

∫
−P (z) · log(P (z))dz

= log(a) + log(σx
√
2πe)
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Using these notations, Eqs. (4) and (7) can be expressed as follows.

Loss = Ex∼N(0,σx
2), ϵ∼N(0,1)

[
− logP (z) + λ1 · h(|x− x̂|2) + λ2 · |x̂, x̆|2

]
= log(a) + log(σx

√
2πe) + λ1 · Ex∼N(0,σx

2)

[
h(|x− x̂|2)

]
+ λ2 · b2 (65)

At first, the case of h(d) = d is examined. By applying h(d) = d, Eq. (65) can be expanded as
follows.

Loss = log(a) + log(σx
√
2πe) + λ1 · (a · b− 1)2 · σx2 + λ2 · b2 (66)

By solving ∂Loss
∂a = 0 and ∂Loss

∂b = 0, a and b are derived as follows.

a · b =
λ1σx

2 +
√
λ1

2σx4 − 2λ1σx2

2λ1σ2

a =
√

2 · λ2 ·

(
λ1σx

2 +
√
λ1

2σx4 − 2λ1σx2

2λ1σ2

)
b = 1/

√
2 · λ2

If λ1σx2 ≫ 1, these equations are approximated as next.

a · b ≃
(
1− 1

2λ1σx2

)
a =

√
2 · λ2 ·

(
1− 1

2λ1σx2

)
b = 1/

√
2 · λ2

Here, a · b is not equal to 1. That is, decoder is not a inverse function of encoder. In this case, the
scale of latent space becomes slightly bent in order to minimize entropy function. As a result, good
fitting of parametric PDF P (z) ∼ Pψ(z) could be realized at the expense of distance loss or degree
of proportional relation P (z) ∝ P (x).

Next, the case of h(d) = log(d) is examined. By applying h(d) = log(d) and introducing a minute
variable δ, Eq. (65) can be expanded as follows.

Loss = log(a) + log(σx
√
2πe) + λ1 · log

(
(a · b− 1)

2
+ δ
)
+ λ2 · b2 (67)

By solving ∂Loss
∂a = 0 and ∂Loss

∂b = 0 and setting δ → 0, a and b are derived as follows.

a · b = 1

a =
√

2 · λ2 (68)

b = 1/
√
2 · λ2

Here, a ·b is equal to 1 and decoder becomes a inverse function of encoder regardless of the variance
σx

2. In this case, good proportional relation P (z) ∝ P (x) could be realized regardless of the fitting
Pψ(z) to P (z).

Considering from these result, there could be a guideline to choose h(d). If the parametric PDF
Pψ(z) has enough ability to fit the real distribution P (z), h(d) = log(d) could be better. If not,
h(d) = d could be better.
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E DETAIL OF THE EXPERIMENT IN SECTION 4.2

In this section, we provide further detail of experiment in section 4.2. First, we describe the detail
of following four public datasets:

KDDCUP99 (Lichman (2013)) The KDDCUP99 10 percent dataset from the UCI repository is
a dataset for cyber-attack detection. This dataset consists of 494,021 instances and contains 34
continuous features and 7 categorical ones. We use one hot representation to encode the categorical
features, and eventually obtain a dataset with features of 121 dimensions. Since the dataset contains
only 20% of instances labeled -normal- and the rest labeled as -attacks-, -normal- instances are used
as anomalies, since they are in a minority group.

Thyroid (Lichman (2013)) This dataset contains 3,772 data sample with 6-dimensional feature
from patients and can be divided in three classes: normal (not hypothyroid), hyperfunction, and
subnormal functioning. We treat the hyperfunction class (2.5%) as an anomaly and rest two classes
as normal.

Arrhythmia (Lichman (2013)) This is dataset to detect cardiac arrhythmia containing 452 data
sample with 274-dimensional feature. We treat minor classes (3, 4, 5, 7, 8, 9, 14, and 15, accounting
for 15% of the total) as anomalies, and the others are treated as normal.

KDDCUP-Rev (Lichman (2013)) To treat“normal”instances as majority in the KDDCUP dataset,
we keep all“ normal”instances and randomly pick up“ attack”instances so that they compose
20% of the dataset. In the end, the number of instance is 121,597.

Next, hyper parameter for RaDOGAGA is described in table 2. First and second column is number
of neuron. For DAGMM, we set same number of neuron in table 2 and (λ1, λ2) as (0.1, 0.005).
Optimization is done by Adam optimizer with learning rate 1× 10−4 for all dataset.

Table 2: Hyper parameter for RaDOGAGA

Dataset Autoencoder EN λ1(d) λ2(d) λ1((log(d)) λ2(log(d))
KDDCup99 60, 30, 8, 30, 60 10, 4 100 1000 10 100
Thyroid 30, 24, 6, 24, 30 10, 2 100 10000 100 1000
Arrhythmia 10, 4, 10 10, 2 1000 100 1000 100
KDDCup-rev 60, 30, 8, 30, 60 10, 2 1000 100 100 100

In addition to experiment in main page, we also conducted experiment with same network size as in
(Zong et al. (2018)) with parameters in table 3

Table 3: Hyper parameter for RaDOGAGA(referring (Zong et al. (2018)))

Dataset Autoencoder EN λ1(d) λ2(d) λ1((log(d)) λ2(log(d))
KDDCup99 60, 30, 1, 30, 60 10, 4 100 100 100 1000
Thyroid 12, 4, 1, 4, 12 10, 2 1000 10000 100 10000
Arrhythmia 10, 2, 10 10, 2 1000 100 1000 100
KDDCup-rev 60, 30, 1, 30, 60 10, 2 100 100 100 1000

Now, we provide results of setting in table 3. In table 4, RaDOGAGA- and DAGMM- are results
of them and DAGMM is result cited from (Zong et al. (2018)). Even with this network size, our
method has boost from baseline in all dataset.

F DETAIL OF THE EXPERIMENT 4.3

In this section, we provide further detail of experiment in section 4.3. For both RaDOGAGA and
beta-VAE, we first extract feature with following Convolution Neural Network(CNN).

CNN(9, 9, 2, 64, GDN)-CNN(5, 5, 2, 64, GDN)-CNN(5, 5, 2, 64, GDN)-CNN(5, 5, 2, 64, GDN).
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Table 4: Average and standard deviations(in brackets) of Precision, Recall and F1

Dataset Methods Precision Recall F1

KDDCup

DAGMM 0.9297 0.9442 0.9369
DAGMM- 0.9338(0.0051) 0.9484(0.0052) 0.9410(0.0051)
RaDOGAGA-(L2) 0.9455(0.0016) 0.9608(0.0018) 0.9531(0.0017)
RaDOGAGA-(log) 0.9370(0.0024) 0.9517(0.0025) 0.9443(0.0024)

Thyroid

DAGMM 0.4766 0.4834 0.4782
DAGMM- 0.4635(0.1054) 0.4837(0.1100) 0.4734(0.1076)
RaDOGAGA-(L2) 0.5729(0.0449) 0.5978(0.0469) 0.5851(0.0459)
RaDOGAGA-(log) 0.5729(0.0398) 0.5978(0.0415) 0.5851(0.0406)

Arrythmia

DAGMM 0.4909 0.5078 0.4983
DAGMM- 0.4721(0.0451) 0.4864(0.0464) 0.4791(0.0457)
RaDOGAGA-(L2) 0.4897(0.0477) 0.5045(0.0491) 0.4970(0.0484)
RaDOGAGA-(log) 0.5044(0.0364) 0.5197(0.0375) 0.5119(0.0369)

KDDCup-rev

DAGMM∗ 0.937 0.939 0.938
DAGMM- 0.9491(0.0163) 0.9498(0.0158) 0.9494(0.0160)
RaDOGAGA-(L2) 0.9761(0.0057) 0.9761(0.0056) 0.9761(0.0057)
RaDOGAGA-(log) 0.9791(0.0036) 0.9799(0.0035) 0.9795(0.0036)

Here, CNN(w, h, s, c, f) is a CNN layer with kernel size (w, h), stride size s, dimension c, and
activate function f. GDN(Ballé et al. (2015)) is often used in image compression. Then, we reshape
feature map and send to autoencoder as follows.

FC(1024, 8192, softplus)-FC(8192, 256, None)-FC(256, 8192, softplus)-FC(256, 1024, softplus)

FC(i, o, f) is FC layer with input dimension i, output dimension o and activate function f. None
means no activate function. Note that, for beta-VAE, since it produces mean and variance, the
bottom of the encoder has 2 branches.

(λ1, λ2) is as (1.0, 0.1) is set for RaDOGAGA and β is set as 1× 10−4 for beta-VAE.

Optimization is done by Adam optimizer with learning rate 1× 10−4.
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