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ABSTRACT

Deep neural networks use deeper and broader structures to achieve better perfor-
mance and consequently, use increasingly more GPU memory as well. However,
limited GPU memory restricts many potential designs of neural networks. In this
paper, we propose a reinforcement learning based variable swapping and recom-
putation algorithm to reduce the memory cost, without sacrificing the accuracy of
models. Variable swapping can transfer variables between CPU and GPU mem-
ory to reduce variables stored in GPU memory. Recomputation can trade time
for space by removing some feature maps during forward propagation. Forward
functions are executed once again to get the feature maps before reuse. How-
ever, how to automatically decide which variables to be swapped or recomputed
remains a challenging problem. To address this issue, we propose to use a deep
Q-network(DQN) to make plans. By combining variable swapping and recompu-
tation, our results outperform several well-known benchmarks.

1 INTRODUCTION

Limited GPU memory restricts model performance due to two different reasons. Firstly, there is
a trend that deep neural networks (DNNs) use deeper and more GPU memory-intensive struc-
tures(Wang et al., 2018)), and have continuously made improvement in various computer vision
areas such as image classification, object detection, and semantic segmentation(He et al.| 2016a;
Simonyan & Zisserman, |2014; Krizhevsky et al.,|2012; Ronneberger et al., 2015} |(Goodfellow et al.,
2016; Szegedy et all 2015). Likewise, empirical results show that deeper networks can achieve
higher accuracy (He et al.| [2016b}; [Urban et al.l 2016). Deeper network means higher consump-
tion of GPU memory. Secondly, He et al.[(2019) shows that bigger input batch size can speed up the
training process and achieve higher accuracy. However, a bigger input batch size requires more GPU
memory to store intermediate variables. We want more GPU memory to get better performance.

The rationale to utilize CPU memory by offloading, and later prefetching variables from it is twofold.
Firstly, the size of the CPU memory is usually bigger than that of GPU memory. If we do not use
variable swapping, all the tensors will stay in GPU memory. Figure [T| shows the details of variable
swapping. Secondly, due to the availability of the GPU direct memory access (DMA) engines, which
can overlap data transfers with kernel execution. More specifically, a GPU engine is an independent
unit which can operate or be scheduled in parallel with other engines. DMA engines control data
transfers, and kernel engines can execute different layer functions of DNNs. Hence, in the ideal case,
we can completely overlap DNNs training with variable swapping. Therefore, variable swapping is
efficient.

Regarding recomputation, some feature maps are not stored in GPU memory in forward propaga-
tion, but the feature maps are gotten by running forward functions in backpropagation, as shown in
Figure |2l Why do we combine swapping with recomputation? Because recomputation uses GPU
computing engines to reduce memory usage, and variable swapping uses DMA engines to save
memory. Different engines can run parallelly. If we execute recomputation during data transfers, we
will not waste computing engines or DMA engines.

It is hard to decide which variables should be swapped or recomputed. Different DNNs have differ-
ent structures. Networks have thousands of variables during training, so it is intractable to enumerate
the search space exhaustively. Some existing works use heuristic search algorithms for recompu-
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Figure 1: The upper graph shows GPU operations in a standard neural network in a time sequence.
The lower one shows how to add variable swapping operations. The nodes in the same column
represent they occur at the same time. We copy X into CPU memory while reading Xy. After
data transfer and reading, we free Xy from GPU memory. Before using X, again, we allocate
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Figure 2: If we do not store X; in the memory in the forward propagation, we need to execute the
layer( forward function again to get X; for the layer; backward function.

tation or swapping with limited information from computational graphs. For example, they do not
consider the time cost of recomputing different layers or swapping different variables. Additionally,
they do not make plans for recomputation during swapping in order to increase GPU utilization. Our
work utilizes more information from computational graphs than theirs and makes plans automati-
cally for users.

The contribution of our paper is that we propose a DQN algorithm to make plans for swapping
and recomputation to reduce memory usage of DNNs. Users only need to set memory usage lim-
its and do not require background knowledge on DNNs. Additionally, the variable swapping and
recomputation will not decrease the accuracy of networks.

2 RELATED WORK

Variable swapping is widely used in DNNs for GPU memory management. Rhu et al.| (2016)
uses a greedy algorithm for swapping, which may be myopic. [Le et al.| (2018) uses a heuristic
algorithm to decide on which variables to be offloaded. However, users are required to decide the
number of variables to be swapped. Besides, they cannot devise plans automatically given different
memory limits. Wang et al.| (2018) uses a least recently used (LRU) algorithm, which does not take
advantage of the iterative nature of neural networks. Our method makes use of more information
from computation graphs and provides plans automatically.

Recomputation can trade space for time. |Chen et al|(2016) proposes recomputation, in-place
operation, and memory sharing. They mentioned a grid search method for recomputation when
given a memory limit. However, the time cost of recomputation does not become a concern to them.
Meng et al.|(2017) designs a strategy only for recomputing attention structure. (Gomez et al.|(2017);
MacKay et al.|(2018) propose reversible networks. However, they cannot make different plans given
different memory limits. [Wang et al.[(2018]) selects some specific low-cost layers for recomputation.
However, they do not utilize other types of layers. Moreover, recomputing some layers introduces
many allocation operations during backward propagation, which can influence the memory load of
DNNs. Our method considers the above challenges by using DQN to make plans for recomputation.

3  PROBLEM DEFINITION

Our major problem is to minimize the computation overhead with a GPU memory limit.

Let O = (09, 01, 02, ..., 05, ) be a sequence of GPU operations in a training iteration, where o; denotes
the 7,5, GPU operation. GPU operations include four types: malloc, free, read, and write. Let m;
be the GPU memory usage from o to 0;. tg is the the overall execution time of Q. We have several
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Figure 3: The inputs are a sequence of GPU operations and a memory limit from a user. The
algorithm gets the inputs and interacts with an environment simulator. After a few optimization
steps, the algorithm gives a best-found strategy which minimizes the training time and subjects to
the memory limit.

choices between offloading (swapping out) a variable from GPU memory, prefetching (swapping in)
a variable, removing a variable (the first phase of recomputation) from GPU memory, recomputing
a variable (the second phase of recomputation), and doing nothing. In each GPU operation o;, we
have a choice to make sure that maz;¢ o, ... n}m; is less than the memory limit and use as little g
as possible. Figure [3|shows the overall algorlthm

4 REINFORCEMENT LEARNING

4.1 OVERVIEW

We focus on optimizing DNNs and some machine learning algorithms such as K-means with iter-
ative nature. We first train DNNs or machine learning algorithms for a few iterations and collect
outputs of GPU operations. By utilizing the sequence of GPU operations and memory limit pro-
vided by users, we can use DQN to find an optimal plan to swap and recompute. Finally, we train
the DNNs or machine learning algorithms following the plan. Our algorithm is an offline version
since we want to exploit the iterative nature of DNNs to get more information.

In each GPU operation, we need to choose an action. Actions include three types: swapping, re-
computation, and doing nothing. Which action should we choose? We can use Q-learning to solve
the problem. We cannot enumerate all states and find their corresponding Q-values since even a
small network has hundreds of candidate variables. Hence we use deep Q-network, which learns to
approximate Q-values from states by a neural network and chooses actions following the Q-values.
We need to swap and recompute to make the memory usage not exceed the memory limit set by the
user. The reward is related to the performance overhead of swapping or recomputation.

4.2 DEEP Q-NETWORK

Let us introduce GPU operations. Operations include four types such as malloc, write, read, and
free. The beginning time of each operation is known to us. Each operation contains a variable and
the address and the size of the variable. We can view each GPU operation as a node in the graph.
If two rows are continuous or use the same variable, we will add an edge to these two nodes. The
weight of the edge is the time lag between the two nodes.

We need to create agent states for DQN. Here are four types of information that we should record:
the variable which is being executed, variables which can be swapped or recomputed, the attributes
of the variables, various structures of DNNs. The first two types of information can change while
the agent state changes. However, the last two will not change when actions are applied to the agent.
We map the structures of DNNs as well as other information into vectors as agent states. We will
introduce a representation of the state of each node, and then combine all node states into agent
states (graph states).

4.3 COMMON FORMULATION

Before continuing, let us list some of the necessary notations.

e s, is the state of node v, where v € V. V is the set of nodes. S includes all node states.
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w(u, v) is the weighted edge between node u and v, and its value is the time lag between u
and v. Each node represents a GPU operation.

u € N (v) means that there is an edge between node u and v, or u = v.

The parameter matrix W can be learned.

e HY and H' include all variables which can be offloaded and recomputed in the current state
respectively.

[, ] joins a sequence of matrices along the first dimension.

4.4  STATE
4.4.1 NODE STATE

As shown in the following Equation [I} s! means the state of node v, where v € V. Each node
state s, contains its at most ¢ — 1 hop neighbor information, node features, and edges information
between itself and its neighbors. S includes all node states in ¢ iteration: s§, si, s§... We first
initialize node set S° to zero and then use the Equation 1] to update S* by S°. Now, s! only has the
information of node v. We update S?, S, and S* until S” in sequence. The number of iterations 7'
for each node is usually small, such as 7" = 4, which is inspired by Dai et al.| (2017).

s,t = ReLU(Wizy + WaSuen ()8, + Waluen () ReLU (Waw(u, v))) M

where Wy € RP*S, Wy, W3 € RPXP, W, € RP*1, st € RP*!, and z, € RS*!. x, includes six
features: the size of the variable operated in node v, the duration of the variable transferring between
GPU memory and CPU memory, the duration of the variable recomputing, how soon the variable
will be revisited, the action type of the node (Section @ whether it is valid to execute the action
in node v.

One reason for adding neighbor nodes and edges is that adding operation is invariant to the different
order over neighbors. The other reason is that we can use the same length of the node vectors for
different DNN structures.

4.4.2 GRAPH STATE

The graph state concatenates the summation over each node state with the state of the node which is
under execution.

T T
g = [WE)EUGVS'U. ) W6Sc } (2)
where W5, W € RP*P. s, is a node state which indicates that node c is under execution.

Because we add all the state of nodes together, the graph feature is not related to the number of
nodes. An advantage of using such graph feature representation is that we can train a DQN on a
small graph and fine-tune on a large graph.

4.5 ACTIONS

The actions a include three types: offloading a variable in the set H” into CPU memory, removing
a variable from the set H'! during forward propagation, doing nothing (Figure . Note, variable
swapping includes two phases: swapping out a variable and swapping in a variable. Recomputation
also includes two phases: removing a variable in forward propagation and recomputing functions to
get the removed variable during backpropagation. Actions only include the first phase for variable
swapping and recomputation, so we call them the swap-out action and the removing action.

There is no swap-in action or the second phase recomputation action since when the variable is in
CPU memory, the optimal swap-in or the second phase recomputation timing is fixed, no need for
including into actions. As to prefetching, We first prefetch the earliest reused variable which is not
in the GPU memory and then the second earliest reused variable. If swapping in a variable does not
cause any excess of memory usage until the end of the backpropagation, we will begin to prefetch
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Figure 4: Solid and dashed lines represent time relation between nodes and agent transition (Section
respectively. Each node represents exactly one GPU operation and will be executed in a time
sequence. Each node represents at most one action, and not all of the actions will be executed. In
each node, we can choose one action from several candidate actions. For example, we can choose
to do nothing, remove X, or offload X in the 3;;, node.

the variable. If a GPU operation requires a variable, we need to suspend GPU operations before
finishing prefetching the variable. We use a similar procedure for recomputation.

4.6 TRANSITION

For the state transition, when we apply an action to an agent, {H°, H'} and the node which is under
execution will change. However, actions will not influence the relationships between nodes and
attributes of nodes. For example, As shown in Figure [ the agent is in the 3, node. It takes one
second to finish each GPU operation. Offloading X takes 1.5 seconds. If we choose an action
which is doing nothing or removing X, the agent will be in the 4, node. If the action is offloading
Xy, the agent will be in the 5;;, node since we always round up the agent to the next node. We need
an extra check. The current GPU memory usage should be less or equal than the memory limit.
If we choose to offload X, and the current memory usage is equal to the memory limit, the agent
will be in the 4, node instead of in the 5;;, node. We will not malloc new variables before the
GPU memory has enough space. The forward overhead for offloading X is 0.5 seconds since GPU
operation pause for 0.5 seconds to wait for offloading. We have known the prefetching order, which
is described in the Sectiond.3]so that we can calculate the backward overhead in the same way.

4.7 REWARDS

If we never pause GPU operations for variable swapping to make the memory usage less than the
memory limit, and there is no recomputation, the reward will be zero. As shown in Figure 4} if
we choose to remove X, the reward will be negative time for recomputing forward layer functions
to get X in the backward propagation. If we choose to offload X, the reward will be negative
overhead of the forward and backward propagation which is caused by offloading and prefetching
Xo.

In order to get the right state transitions and rewards, we need to know the exact time for each GPU
operation. However, sometimes, we cannot fit a huge model to GPU memory. We came up with
an idea to solve the problem. During training, we free all big intermediate results. Before we reuse
the intermediate results, we malloc new intermediate results for backpropagation. Because we use
memory pool(NVIDIA| 2019), its free and malloc are fast, so we need neglectable extra time for
free and malloc. Hence, the training time will be roughly correct. It should be noted that we cannot
get the right derivative of weights by such way. However, we can get the roughly correct time for
each GPU operation.

4.8 ENVIRONMENT

When we apply an action to the agent, the agent will transition to the next state from the current
state; at the same time, we get a reward. A simulator provides the next state and a reward following
the criteria that we defined in the action, transition, and reward sections (Section @) We use the
simulator to simulate the training environment while updating DQN. We have such following two
assumptions: The first one is that the recomputing time can be estimated(Jia et al. |2018). The
second one is that variable swapping can run parallel with layer functions entirely.
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Algorithm 1 Update DQN

1: Experience replay dataset: D = {}.

2: for episode = 1 to [ do

itg = 0g, g is the state of the beginning of the neural network iteration.
4:  Actionset: A = {}

5 while g are not the terminal state do

6: Generate a random variable e between 0.0 and 1.0

7

8

if ¢ > 500 then
: a = a random action where « is the index of node state.
9: else

10: a=argmax,; QA(”g7 SZ/ ;W)

11: end if

12: Feed simulator ‘g, s and it provides “r, ?*1g.
13: Add tuple (tg, s8I ity ittlg) to D

14: Update W over Equation 4] for B by SGD

15: itg = +1g where batch B is sampled from D

16: Addato A

17:  end while

18: end for

19: return A

4.9 Q VALUES

It is easy to convert graph states to Q values. We concatenate the graph state and an action node state
to a vector and then map the vector to a value. The action node represents not only a GPU operation
but also an action(Figure [)).

Q(g,sL; W) = WrReLU(|g, Wis!)) 3)

where Wy € RY3P and Wy € RP*P. sT is an action node. As shown in Figure we can begin
to copy X into CPU memory while reading X, but we need to remove X, from GPU memory
after reading X. It is noteworthy that we cannot offload X after removing X, and vice versa. We
usually use the first node to represent doing nothing action. We use a heuristic method to decide
which node can also represent an action, and we guarantee that no node represents more than one

action.

4.10 FITTED Q-ITERATION

We train an end-to-end DQN by the following loss function.

loss = (y — Q("g,"sL; W))? (4)

a’
y =ymazr Q(" g, 8L W) +r("g,"s) (5)

where 7 is a decay factor. y is a constant value, which means that the gradient will not flow through
y. r("g,"sT) is the reward for agent state “’g and action “s”. Terminal state Q; is zero. If
we no longer need to remove or offload any variables until the end of the current iteration, and
MAaTic(o,....n}M; is less than the memory limit, the state will be the terminal state. As shown in
algorithm (I} we do not update the Equation |4|{ by the single currently experienced sample. Instead,
fitted Q-iteration updates the weights with mini-batches sampled from experience replay dataset.

We use the € greedy method to choose an action a from {H, H'}.

Finally, we train the DNN following the plan that is generated by DQN. We execute each GPU
operation in a time sequence. If the current node is an action node, and the action is in action set
A, we will execute the action following Section As for prefetching and the second phase of
recomputation, we following the method introduced in Section
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Figure 5: Different overheads for different memory reductions. The y-axis represents performance
overhead. The lower x-axis shows memory reduction, and the upper x-axis shows corresponding
memory usage.

5 EXPERIMENT

In this part, we evaluate the performance of variable swapping and variable swapping combined
with recomputation. We test our method on various architectures such as ResNet, VGG, UNet, K-
means(Src-D} 2019), and LSTM, whose structures do not change during training. We also extend
our method on a dynamic computation graph, e.g., deep networks with stochastic depth(Huang et al.,
2016), whose structures can change during training. Our images dataset is CIFAR-10 and Karpathy’s
char-RNN dataset(Karpathy}, [2019). Our k-means dataset is generated randomly by NVIDIA code.
Additionally, we train ResNet and VGG for two different depths for better analyzation.

Our experiments are conducted on a workstation, which equipped CPU Intel Xeon E5 and NVIDIA
GeForce GTX 1080 Ti with 11 GB RAM. The CPU memory is 64GB. Our motherboard has PCI
Express x16 for data communication between GPU and CPU. Our system is Ubuntu 16.04, with
CUDA 9.0 and cuDNN 7.0. We use the fastest cuDNN algorithm, which requires extra workspaces
to store intermediate results. Our method is tested on deep learning framework Singa (Wang et al.,
2015;|Ooi et al.| [2015).

5.1 COMPARE WITH OTHER BASELINES

We compare our method with other baselines. They are MXNet-memonger(Chen et al.| 2016)),
SuperNeurons(Wang et al., [2018)), and TFLMS(Le et al., 2018). MXNet-memonger trades compu-
tation to exchange memory, but the performance depends on recomputing layers that we choose.
SuperNeuraons have proposed recomputation and variable swapping. TFLMS only uses variable
swapping.

Figure [5] shows different computation overheads versus different memory reductions. For MXNet-
memonger, we can obtain different data points in our graphs as changing recomputation layers. As
for SuperNeurons, we choose to use recomputation mode, swapping mode, and swapping combined
with recomputation mode to get three different data points. Their program does not have recomputa-
tion mode for ResNet, so we only report two data points in ResNet for their baseline. As for TFLMS,
we choose the different number of swapping variables to control memory usage. Our method takes
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less extra computation time and saves more GPU memory, which shows that our results are better
than MXNet-memonger, SuperNeurons, and TFLMS.

SuperNeuron uses the least recently used (LRU) algorithm for variable swapping. They view GPU
memory as a cache and use a classical cache replacement algorithm. However, they do not make use
of the iterative nature of the DNN. TFLMS only uses variable swapping, and they need to set the
number of swap variables manually. SuperNeuron and MXNet-memonger choose specific layers for
recomputation by expert knowledge. Our method makes use of more information from computation
graphs and provides plans automatically for users.

SuperNeuron also combines variable swapping with recomputation. However, they do not treat
variable swapping and recomputation separately. When we run their program, we find that their
program GPU utilization during network training is much lower than ours. They waste some GPU
resource for saving memory, which can be avoided. The GPU utilization of our method is higher
than theirs.

Our work can be used in more general architectures. Only TFLMS and our method can work on
LSTM function CuDNNLSTM. We cannot run the other two methods on such architecture. Ad-
ditionally, among these four works, only our method supports ResNet with stochastic depth and
K-Means.

Compared with other baselines, our algorithm has the following advantages. First of all, we can set
a wide range of memory limit easily. Secondly, our method can work well on an extensive range
of iterative nature machine learning algorithms. Last, our method provides plans automatically for
users, and users do not need expert knowledge.

5.2 COMPARE FOR DIFFERENT ARCHITECTURES

Let us analyze our method for different architectures. For ResNet and VGG, they have similar
architectures and get similar results. Regarding UNet, its structure is different from that of ResNet
and VGG. For example, the first feature map is required to be used at the end phase of the forward
propagation and the second feature map need to be used at the second last phase of the forward
pass and so on. If we offload the first feature map, we need to prefetch it before the last phase of the
forward pass, which means we need to swap it in again in memory usage growing phase. If we do not
offload such variables, GPU data transfer engines will be idle for some time or have fewer candidate
variables to be offloaded. Thus results on UNet is worse than ResNet and VGG. Concerning LSTM,
it does not have convolutional layers. Convolutional layers execute slower than other layers. If we
need to use longer time to do kernel operation in GPU, we will have a longer time for data transfers
since kernel operation, and data transfers are executed in different GPU engines. In consequence,
the overhead of LSTM is longer than that of ResNet and VGG. As to SD ResNet, it has dynamic
structures. The architecture of the network can change during training. Our method is not designed
for such structures, so the result is worse than others.

6 CONCLUSIONS

In this paper, we propose a DQN to devise plans for variable swapping and recomputation to reduce
memory usage. Our work can work well with different memory limits. Our method provides plans
automatically for users. They only need to set a memory limit and do not require background
knowledge on DNN or machine learning algorithm. Our method can work well for different network
structures such as ResNet, VGG, K-means, SD ResNet, and LSTM. Besides, the variable swapping
and recomputation do not decrease the accuracy of networks.
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