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ABSTRACT

We consider the task of automated theorem proving, a key AI task. Deep learning
has shown promise for training theorem provers, but there are limited human-
written theorems and proofs available for supervised learning. To address this
limitation, we propose to learn a neural generator that automatically synthesizes
theorems and proofs for the purpose of training a theorem prover. Experiments on
real-world tasks demonstrate that synthetic data from our approach significantly
improves the theorem prover and advances the state of the art of automated theo-
rem proving in Metamath.

1 INTRODUCTION

Automated theorem proving is a key task in Artificial Intelligence. The goal is to automatically
generate a proof, given a conjecture (the target theorem) and a knowledge base of known facts, all
expressed in a formal language. Automated theorem proving is useful in a wide range of applica-
tions, including the verification and synthesis of software and hardware systems (Gu et al., 2016;
Darvas et al., 2005; Kern & Greenstreet, 1999).

Automated theorem proving boils down to a search problem: finding the sequence of symbol manip-
ulations that generate a valid proof. A prover typically works backward: starting from the theorem
statement, it searches for a path that connects the theorem to known facts in the knowledge base.
The fundamental challenge lies in the explosion of search space, in particular with long proofs and
large knowledge bases. The success of theorem proving thus relies on effective heuristics that guide
the search by deciding the next step the prover should take.

Deep learning has emerged as a promising approach to learning search heuristics in a automated
theorem prover (Irving et al., 2016; Yang & Deng, 2019; Whalen, 2016; Loos et al., 2017; Bansal
et al., 2019a). The search process fundamentally reduces to a sequence of actions on manipulating
a set of symbols. Thus a deep network can be trained to select the best action at each step.

A key challenge is how to train such networks. Prior work has used human-written theorems and
proofs to perform imitation learning and has shown promising results (Loos et al., 2017; Yang &
Deng, 2019; Whalen, 2016; Paliwal et al., 2019). The training data consists of theorems and proofs
manually written by human experts in a formal language, and the prover is trained to imitate the
proof steps demonstrated by humans.

However, relying on human-written data has a major drawback, that is, such data has limited avail-
ability and scalability. Writing theorems and proofs in a formal language requires highly specialized
knowledge and skill, including mathematics, computer programming, and proficiency in the par-
ticular formal language. For a computer science graduate student, it can take months to master
a new formal language such as Mizar, Metamath or HOLight (Wiedijk, 2003), after which it can
take days to formalize a single page of a math textbook. This makes it impractical to crowdsource
human-written proofs at large scale.

An alternative to imitation learning is reinforcement learning, which requires only formalized theo-
rem statements but not their proofs. During training, the prover estimates the value of each action
through exploration. This reinforcement learning approach substantially reduces the amount of
manual formalization needed, but at the expense of sample efficiency. The prover needs positive
rewards to assess past attempts, but positive awards are only available when the prover finds a com-
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plete proof, which is rare because it involves a combination of multiple correct steps. This leads to
extremely sparse positive rewards, and in turn very low sample efficiency.

In this paper, we propose to learn search heuristics using synthetic data. The basic idea is to construct
a generator that automatically synthesizes new theorems and their proofs, which are then used to
augment human-written data. To generate a new theorem and its proof, the generator applies an
inference rule on a set of existing theorems and combines their proofs to form the proof of the new
theorem. Similar to the prover, the generator performs a sequence of symbol manipulations, albeit
in the inverse direction, going forward from existing theorems to a new theorem instead of from a
target theorem to existing ones.

A key question is how to construct a generator such that the generated data is useful. The space of
new theorems and proofs is infinite, but a prover can only process a finite amount of data during
training. Thus, to maximize the utility of the generate data, we make the generator learnable by
parametrizing it with deep networks.

We hypothesize that the generated data will be more useful if they are similar to human-written data.
Thus we use human-written data to train a generator. We consider two scenarios. If the human-
written data consists of both theorem statements and their proofs, we train the generator to follow
the proof steps in the forward direction, so that a well-trained generator would derive theorems
humans tend to derive. If the human-written data consists of only theorem statements but not their
proofs, we use reinforcement learning to train the generator such that the generated theorems are
similar to the human-written theorems. We measure similarity using the language model trained on
the human-written theorem.

We instantiate our approach in Metamath (Megill, 2019), a popular language for formal mathemat-
ics, and with Holophrasm (Whalen, 2016), a Metamath neural prover. We propose a neural theorem
generator we call “MetaGen“, which synthesizes new theorems and their proofs expressed in the
formalism of Metamath. To the best of our knowledge, MetaGen is the first neural generator of syn-
thetic training data for theorem proving. Experiments on real-world Metamath tasks demonstrate
that synthetic data from MetaGen helps the prover prove more human-written theorems, achieving
state of the art results. Experiments also show that our approach can synthesize useful data, even
when there are only human-written theorems but zero proofs during training.

2 RELATED WORK

Automated theorem proving Our work is related to prior work on learning to prove theorems ().
Our work directly builds off of Holophrasm (Whalen, 2016), a neural-augmented theorem prover
for Metamath. It contains three deep networks to generate actions and initial values to guide proof
search following the UCT algorithm (Kocsis & Szepesvári, 2006).

TacticToe (Gauthier et al., 2018), DeepHOL (Bansal et al., 2019a) and ASTactic (Yang & Deng,
2019) are learning-based theorem provers for higher-order logic based on various interactive the-
orem provers, including HOL4 (Slind & Norrish, 2008), HOL Light (HOLLight) and Coq (Bertot
& Castéran, 2004). Paliwal et al. (2019) improves DeepHOL by representing formulas as graphs.
Loos et al. (2017) propose to learn clause selection by deep learning inside the first-order logic
prover E (Schulz, 2002). FastSMT (Balunovic et al., 2018) learns to compose search heuristics as
programs with branches for the SMT solver (De Moura & Bjørner, 2008).

All of these methods are othogonal to our approach because all of their provers are learned from
human-written training data, whereas our contribution is on training a neural generator of synthetic
training data for theorem proving.

Kaliszyk et al. (2018); Bansal et al. (2019a;b) use reinforcement learning to train provers with only
human-written theorems but not their proofs. During training, a prover only collects rewards only
upon finding full proofs. In contrast, we always train our prover using imitation learning. Under
the same setting with only human-written theorems but not proofs, we use reinforcement learning
to train our generator, whose reward is the similarity between a generated theorem and a human-
written theorem, as measured by a language model of human-written theorems. Our reinforcement
learning task is much easier because the reward is continuous and there are many ways to generate
theorems similar to human-written ones.
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Automatic goal generation by self-play Our work is similar to the line of work in reinforcement
learning (Florensa et al., 2018; Sukhbaatar et al., 2017; 2018; Durugkar & Stone, 2018) that deploys
one agent to generate tasks for another agent to accomplish. Sukhbaatar et al. (2017); Florensa et al.
(2018) propose to train these two agents by adversary self-play, where the generation agent learns
to produce difficult goals for another agent. With self-play, the generator learns to increase the
difficulty of goals and build a learning curriculum automatically.

We pursue similar ideas in the new context of theorem proving by learning to generate synthetic
theorems to train the prover. Also of note is that we have no adversarial self-play. The goal of the
generator is to discover novel theorems similar to human-written ones, not to beat the prover.

Recently, Huang (2019) introduced a two-player game which encourages players to learn to predict
the consistency of formulas in first-order logic by self-play. These two players behave symmetrically
and complete with each other in the game. In contrast, our generator and prover execute different
tasks, and are co-operative. In addition, their game remains a theoretical proposal without any
empirical validation, whereas we have performed experiments on large-scale data.

3 BACKGROUND ON METAMATH

Metamath is a language for developing formal mathematics. It is one of the simplest formal systems.
It has only one inference rule, called substitution, but is universally applicable in formalizing a large
portion of mathematics 1 and different types of logic (Megill, 2019).

A knowledge base in Metamath consists of a set of theorems including axioms, which are admitted
to be true, and others that are derived from proofs. Each theorem has one or more expressions,
including one assertion and zero or more hypotheses. The hypotheses provide the preconditions,
such as x = y2 and y is an even number, to prove the assertion, such as x is divisible by 4.

Following Whalen (2016), an expression is represented as a tree of tokens, whose nodes are either
constants or variables. A constant node has a fixed number of children (including zero) and a vari-
able has no children. Therefore, we represent each expression as a unique sequence of tokens by
traversing its parse tree in pre-order.

A proof is a sequence of steps using substitution. A proof step has two parts, a theorem that is
declared earlier than the current theorem in the knowledge base, and a substitution that maps a
variable in this theorem to a new expression. For example, we have a theorem t,

hypotheses: A = B (1)
assertion: CFA = CFB (2)

{A,B,C, F} is the set of variables in t. Let φ be a substitution to map each variable in t to a new
expression,

A→ 2 B → (1 + 1) C → 2 F → + (3)

By replacing variables in the t with their corresponding expressions from φ, we have a new assertion
and a set of new hypotheses,

new hypotheses: 2 = (1 + 1) (4)
new assertion: 2 + 2 = 2 + (1 + 1) (5)

and this proof step (t, φ) demonstrates that the new assertion 2 + 2 = 2 + (1 + 1) is entailed by the
new hypothesis 2 = (1 + 1). Note that we need to substitute all occurrences of the same variable
with the same expression in both the assertion and hypotheses 2.

Formally, let e ∈ E be an expression (a tree of tokens) with l unique variables fe = (f1, f2, ..., fl) ∈
F l, and let φ ∈ F → E be a substitution. Let e(φ) denote the new expression obtained by replacing
fi in e with φ(fi) in e, for i = 1, 2..., l. And given k expressions e = (e1, e2, ..., ek) ∈ Ek, let
e(φ) = (e1(φ), e2(φ), ..., ek(φ)) represent applying the substitution to all k expressions.

1Its largest knowledge base, set.mm ranks 3rd in the ”Formalizing 100 Theorems” challenge (Wiedijk).
2Variables in Metamath are called metavariables, which are different from variables bound by quantifiers in

the first-order and higher-order logic.
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Given a theorem t, let at be its assertion and ht = (ht,1, ht,2, ..., ht,m) ∈ Em be its hypotheses. Let
φt be a substitution for variables in t. A proof step s = (t, φt) ∈ Em+1 × (F → E) demonstrates
an entailment of assertion at(φt) by hypotheses ht(φt).

In this formal system, proving a theorem τ means finding a tree such that (1) the root node is the
assertion of τ , (2) each leaf node is either empty or one of the hypotheses of τ , and (3) each internal
node is an expression associated with a proof step that demonstrates an entailment of the node by its
children.

To prove a target theorem τ , it is the most straightforward to reason backward. We start by select-
ing a proof step that will demonstrate an entailment of the assertion of the target theorem, that is,
at(φ) = aτ . It is worth noting that if we pick a particular theorem t, if a valid φ exists, φ(f) is
uniquely determined for any variable f that occurs in the assertion (recall that each expression is a
tree of tokens). But φ(f) is not uniquely determined if f only occurs in the hypotheses (f is called
a hypothesis variable, or a assertion variable if it only occurs in the assertion), because it can be re-
placed with anything. Once this initial proof step (t, φ) is fully specified, the assertion aτ is entailed
by a set of new hypotheses hτ (φ), and the goal of proving theorem τ has now been decomposed to
the subgoals of finding entailment of the new hypotheses hτ (φ) by the original hypotheses hτ .

4 APPROACH

4.1 PROBLEM STATEMENT AND APPROACH OVERVIEW

In our task setup, we assume two sets of pre-existing human-written theorems. There is a set of
“background theorems”, B = {b1, b2, ..., bn}, which can be freely used as known facts in both
training and testing. There is also a set of “target theorems”, T = {t1, t2, .., tn}, which are theorems
to prove. The target theorems are split into a training set, a validation set, and a test set. The target
theorems in the test are not seen during training.

For target theorems in the training set and the validation set, a subset of them have human-written
proofs. Let S = (s1, s2, ..., sk) be proofs for k target theorems (ts,1, ts,2, ..., ts,k) ⊆ T and si =

(s1i , s
2
i , ...s

li
i ) be a sequence of proof steps for i = 1, 2, ..., k. We also consider the case with only

theorems but zero proofs.

Our goal is to train a prover to perform well on the target theorems in the test set.

Our approach consists of two modules, a prover to find proofs for given target theorem and a gener-
ator to sample synthetic theorems along their proofs. We call these synthetic theorems as ”generated
theorems”. These two modules performs similarly but in opposed directions. They both maintain a
tree of expressions / graph of theorems and generate new nodes by sampling proof steps.

The prover executes backward reasoning. Given a target theorem, it starts from the assertion and
build and extend the proof search tree by decomposing leave nodes using new proof steps. It succeed
if a complete proof tree is found.

The generator runs in forward reasoning. It maintains the graph of theorems over training proofs
and generated theorems. It samples new proof steps using existing theorems as preconditions and
add the generated theorems to the graph. Generated theorems are then used to train the prover.

For both two modules, the actions to pick a proof step are parameterized by deep networks. Since
their proof steps have the same components, a background theorem and a substitution, their deep
networks also share similar architectures but takes different inputs.

We first train the generator using target theorems and optionally their proofs. Then sample synthetic
proofs and train the prover from both real proofs and synthetic proofs.

4.2 GENERATOR

4.2.1 GENERATION PROCEDURE

To build the generator, we maintain a graph of theorems G = (V,E), where V = H
⋃
Q is the set

of nodes and E is the set of edges.
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Algorithm 1: MetaGen

Input: B T S N
/* thms targets proofs #steps */
Variable: V , E
/* nodes edges */
Function Generate():

Initialize()
while V.length ≤ N do

/* A new proof step. */
Sample b ∼ D1 // (∗∗)
φ,q←− ∅, ∅
for h ∈ hb do

/* Sample a precondition
node for h */

try
Sample q, φq ∼ D2

except Failed
Restart from (∗∗)

end
Add q to q
Merge φq to φ

end
for f ∈ b’s assertion variables do

/* Generate a
substitution for f */

try
Sample ef ∼ D3

except Failed
Restart from (∗∗)

end
φ(f)←− ef

end
AddNode(b, φ, q)

end
return

end

Function Initialize():
V,E ←− ∅, ∅
for t ∈ T do

for h ∈ ht do
/* Add a hypothesis */
Add (h, {h}) to V

end
end
for s ∈ S do

for (b, φ) ∈ s do
/* Add a step (b, φ) */
q←− precondition nodes for (b, φ)
AddNode(b, φ, q)

end
end
return

end

Function AddNode(b, φ, q):
a,h← ab(φ), ∅
for q ∈ q do

/* Merge hypotheses */
Merge hq to h′

end
v ← (a,h)
if v /∈ V then

/* A new node. */
Add v to V
for q ∈ q do

Add (q, v) to E
end

end
return

end

H is the set of hypotheses, which is collected from target theorems T as H =
⋃
t∈T ht. H is fixed

and we never generate new hypotheses. For convenience, we write a hypothesis h as (h, {h}) in the
form of a theorem, such that we have ah = h, hh = {h}.
Q = {(a1,h1), (a2,h2), (a3,h3), ...} is the set of theorems where each node comes from a proof
step. Here we record each node in the form of theorems instead of assertions, because hypotheses
play an important role to the meaning and the proof of a theorem. We hope to keep track of different
proofs for the same assertion from different hypotheses.

To add a proof step as a theorem in the graph, we make an assumption that every precondition for
this step is identical to the assertion of a node in the graph, which is called the precondition node.

Formally, given a proof step s = (b, φ) and precondition nodes q ⊆ V , s demonstrates that ab(φ) is
entailed by the preconditions hb(φ). For h ∈ hb(φ), we have a node qh ∈ q with aqh = h. Then
we merge hypotheses from precondition nodes to get h =

⋃
h∈hb(φ)

hqh and compose a theorem
(ab(φ),h), which means ab(φ) can be proved from the new hypotheses h merged from precondition
nodes. It is added to Q if it is new. This procedure is summarized as AddNode in Algorithm 1.
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G is a directed graph where each edge (u, v) in E represents that v is entailed in a proof step that
uses av as a precondition. A hypothesis node has no incoming edges. For each theorem node, we
only preserve the edges from the last proof step of its shortest proof, if multiple proofs exist.

Initially, we add hypotheses from target theorems T into H .

If we have at least one training proof, assume ts ∈ T is the target theorem for a proof s =
(s1, s2, ..., sl) ∈ S. For a proof step si = (b, φ) ∈ s, where i = 1, 2, ..., l, each precondition
h ∈ hb(φ) for si is either a hypothesis of ts or an intermediate assertion that is entailed in a previous
step sj ∈ s, where j < i. This means a node q satisfying aq = h and has been added to the graph G
previously. So we can find precondition nodes for si and add this step to the graph.

The above process is also summarized as Initialize in Algorithm 1.

After initializing the graph G from training data, we sample proof steps upon nodes in G as precon-
dition nodes to produce new generated theorems. We repeat this procedure until we obtain all the
generated theorems in our expectation to training the prover.

To sample a proof step, we need to make three decisions sequentially.

• Sample a background theorem b ∼ D1(B).
• Given an empty substitution φ and precondition nodes q, for each hypothesis hb,i ∈ hb,

sample a node qi ∼ D2(b, φ,q) and its corresponding substitution φi, such that hb,i(φi) =
aqi and φi is consistent with the existing substitution φ. Update φ and q using φi and qi.

• Optionally, if the theorem b has assertion variables, for each assertion variable f , sample
an expression e ∼ D3(f, b, φ,q) and update φ.

The distribution D1(B) is either uniform over T or multinomial over the frequencies of background
theorems used in training proofs.

D2 is a distribution over all nodes in G that can result in a substitution φi consistent with φ and
hb,i. D2 is multinomial over softmax probabilities outputted from a deep network, called relevance
network following Whalen (2016).

D3 is a distribution over potential expressions. We parameterize D3 by a sequence generation
network, which produces the pre-order traversal sequences for the expression trees. We call this
network as substitution network instead of generation network used in Whalen (2016) to prevent it
from getting confused with the generator.

If we cannot find a feasible precondition node for a hypothesis of b or generate a legal expression to
an assertion variable, we fail in this iteration and restart by sampling a theorem.

The complete generation procedure is summarized as Generate in algorithm 1. The architecture
of the relevance and substitution networks of the generator is presented in Appendix A.1.1.

4.2.2 TRAINING OF THE GENERATOR

We propose two training strategies to learn the generator, with or without training proofs.

With access to training proofs, we train the generator using Imitation Learning. After initializing
the graph G from training proofs, the generator is trained to imitate each proof step s = (b, φ). For
each h ∈ hb, we use a node q where aq = h(φ) as supervision for the relevance network to learn
to pick precondition nodes. For each b’s assertion variable f , we use the φ(f) as supervision for the
substitution network to learn to generate substitution for f .

We call the generator trained in this strategy as MetaGen-IL.

If we have no access to training proofs, we train the generator using Reinforcement Learning. We
first learn a language model from target theorems using a GRU. We expect this language model
assigns low perplexity to generated theorems that are similar to target theorems. Then we use this
language model as a reward function to train the generator with the Reinforce algorithm. We run
the generator to sample new generated theorems on-the-fly. New theorems are evaluated by the
perplexity of the language model and the generator is updated toward lower perplexity.

We call the generator trained in this strategy as MetaGen-RL.
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4.3 PROVER

We adopt Holophrasm as our theorem prover. Given a target theorem, Holophrasm tries to find
the proof by backward reasoning. It starts from the assertion and builds the proof search tree that
consists of goals and proof steps. Each goal has multiple proof steps as its children. Each proof step
(b, φ), which demonstrate ab(φ) is entailed by hb(φ), has ab(φ) as its parent and a set of subgoals
hb(φ) as its children. A proof step is solved if it has no children or all of its children are solved. A
goal is solved if at least one of its proof step is solved. The proof is found until the assertion in the
root is solved.

Holophrasm maintains valuation for goals and proof steps. It explores the proof search tree using
UCT (Kocsis & Szepesvári, 2006). The search direction is controlled by the valuation, which is
dependent on a node’s initial value and visit count following the UCB criterion.

The initial value of a goal is from a payoff network. To generate a proof step for the current goal, a
relevance network picks a theorem and optionally a substitution network produces substitutions for
hypothesis variables. The initial value of this step is also calculated from these the relevance and
substitution networks.

All relevance, substitution and payoff networks of the prover are trained by imitating each proof step
in training proofs, including human proofs and synthetic proofs we generated using MetaGen.

The architecture and training details of deep networks for the prover is presented in Appendix A.1.2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In experiments, we verify our proposed methods, to train the prover on the mixture of human proofs
(if available) and synthetic proofs sampled by our proposed generator MetaGen, in three different
settings: (1) with 10% training proofs (2) with all training proofs and (3) with no training proofs.

Dataset We use the Metamath set.mm knowledge base as our dataset. It contains 29337 theo-
rems and they are all used as background theorems B in algorithm 1. We remove axioms from B
and use the rest of theorems as target theorems T that are divided into three sets, including 21788
training theorems, 2712 validation theorems and 2720 test theorems.

Baselines For all experiments, we use provers trained on human proofs only as our baselines.

With 10% training proofs, we also compare with a random generator baseline MetaGen-IL-Rand.

With no human proofs, we propose also an ad-hoc baseline by replacing relevance and substitu-
tion networks with TF-IDF similarities and a naive language model. For more details on baseline
methods, please refer to Appendix A.2.

Evaluation The prover is evaluated by the number theorems proved on the test set. Following the
settings used in Whalen (2016), the prover is run on each test target theorem for 5 minutes or through
10000 passes, in three runs wiht different beam search width as 1,5,20 for substitution networks.

Since payoff networks are trained on exclusive data sampled by relevance and substitution networks,
they can not be compared among different methods. In general, we found payoff networks work
similarly, with accuracy ranging from 78 to 82.

Please also refer to Appendix A.3 for our full implementation details and hyper-parameter settings.

We present the performance of the relevance and substitution networks and the final provers in the
next section.

5.2 RESULTS

Relevance network We evaluate relevance networks by the average probability and top-K accu-
racy to pick positive theorems among all feasible candidates. From table 1, we got similar perfor-
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Table 1: The performance of relevance networks on validation data evaluated by the average proba-
bility and top-K accuracy to pick positive theorems.

Human Synthetic
proofs proofs Generator Model Prob Top-1 Top-5 Top-20

0 0 - tf-idf 0.0081 27.82 36.15 47.68
0 0 - relevance 0.0065 0.279 1.924 12.50
0 200K MetaGen-RL relevance 0.2160 22.23 42.23 60.54

2179 0 - relevance 0.6007 62.14 76.30 89.30
2179 1M MetaGen-IL relevance 0.5889 62.14 76.29 87.61

21788 0 - relevance 0.5978 61.54 74.55 87.28
21788 10M MetaGen-IL relevance 0.5920 63.02 76.71 87.93

Table 2: The performance of substitution networks on validation data evaluated by the average
probability and accuracy to generate the ground truth token at each position with teacher forcing.

Human proofs Synthetic proofs Generator Model Prob Accuracy

0 0 - lauguage model 0.0032 9.06
0 0 - substitution 0.0008 0.01
0 200K MetaGen-RL substitution 0.0050 25.03

2179 0 - substitution 0.2738 58.91
2179 1M MetaGen-IL-Rand substitution 0.3203 61.78
2179 1M MetaGen-IL substitution 0.3710 66.56

21788 0 - substitution 0.6142 81.57
21788 10M MetaGen-IL substitution 0.6847 83.90

mance for all networks trained using human proofs, even among those trained on 10% or all proofs.
So the size of training data isn’t the bottleneck to improve the performance of relevance networks.
Therefore, we also have no room of boost by generating synthetic proofs.

We also found the relevance network trained on synthetic proofs sampled by MetaGen-RL performs
better than the TF-IDF baseline, especially in terms of average probability, which is directly related
to the valuation maintained by the prover. It means even MetaGen-RL is trained without proofs, it
still samples synthetic proofs that are helpful for the relevance network.

Substitution network As shown in table 2, we use the accuracy and probability to generate the
correct token under teacher forcing as metrics to compare different substitution networks.

In all settings, the performance of substitution networks are improved by a large margin by using
synthetic data. This demonstrates the synthetic proofs generated by MetaGen are effective to train
substitution networks.

With 10% proofs, MetaGen-IL-Rand beats the baseline trained on 10% proofs only and this result
demonstrates the robustness of the MetaGen algorithm even without learned parameters. MetaGen-
IL outperforms MetaGen-IL-Rand and this verifies the learning of the generator is effective.

Prover Since we cannot promote relevance networks using synthetic proofs, we only apply rel-
evance networks trained on real proofs only, to study if improvement from substitution networks
could be reflected on provers.
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Table 3: The number of theorems proved on test data.

Human proofs Synthetic proofs Generator Prover Test proofs found

0 0 - tf-idf & LM 312
0 0 - Holophrasm 219
0 200K MetaGen-RL Holophrasm 351

2179 0 - Holophrasm 452
2179 1M MetaGen-IL-Rand Holophrasm 461
2179 1M MetaGen-IL Holophrasm 475

21788 0 - Holophrasm(’16) 388
21788 0 - Holophrasm 539
21788 10M MetaGen-IL Holophrasm 574

As shown in table 3, provers augmented with synthetic proofs that are generated by MetaGen proved
more target theorems than all baseline methods with the same amount of human proofs.

Our reimplementation of Holophrasm baseline using all proofs prove 539 test theorems, which is
much higher than reported by Whalen (2016). We assume it is due to our GPU implementation,
which brings the speed advantages since all provers run in the same time limit.

Given no training proofs, original Holophrasm performs worst since it carries two randomly initial-
ized networks. After training no synthetic proofs generated by MetaGen-RL, Holophrasm proves
140 more test theorems. It also find 12.5% more proofs than TF-IDF and languagee model baseline.
This proves the effectiveness of MetaGen-Rl.

By incorporating MetaGen-IL with all training proofs, we prove 574 theorems on set.mm knowl-
edge base, which is the new state-of-the-art result on this benchmark.

6 CONCLUSION

We have proposed a neural generator that automatically synthesizes theorems and proofs for the pur-
pose of training a theorem prover. Experiments on real-world tasks have demonstrated that synthetic
data from our approach significantly improves the theorem prover and advances the state of the art
of automated theorem proving in Metamath.
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A APPENDIX

A.1 NETWORK ARCHITECTURE

Our deep networks follow the same architecture as Holophrasm(Whalen, 2016). We represent each
expression as a sequence of tokens. Both the relevance and substitution networks take such expres-
sion sequences as inputs. A embedding layer is learned for tokens in the vocabulary and GRUs (Cho
et al., 2014) are used to encode and decode input sequences.

A.1.1 GENERATOR

The relevance network picks a precondition node among some theorem nodes according to the back-
ground theorem b and previously selected precondition nodes. It uses a theorem encoder to embed
the background theorem b as concatenation of the assertion and hypotheses of b and hypotheses of
selected precondition nodes. It uses another precondition encoder to embed each theorem node as
concatenation of its assertion and hypotheses. These two embeddings are fed to a bilinear layer for
the score of this node. The softmax probabilities are outputted over all candidates.

The substitution network is a sequence-to-sequence model. It generates the substitution for a vari-
able f in background theorem b, given a set of precondition nodes. It replaces f as special token
to mark itself as the target, then uses a encoder-decoder GRU to generate the output sequence from
concatenation for the assertion of b and hypotheses of precondition nodes.

A.1.2 PROVER

The relevance network picks a theorem on a goal given a proof task. It has a theorem encoder to
embed each potential theorem as the concatenation of its assertion and hypotheses. It also has a goal
encoder to embed the concatenation of goal and the hypotheses of the task. A bilinear layer and the
softmax function follows these two encoders to output the probability over potential theorems.

The substitution network is a sequence-to-sequence model. After replacing a target variable as a spe-
cial token, it takes inputs as the concatenation of hypotheses of the task and hypotheses of a picked
theorem, passes it through a encoder-decoder to generate a sequence tokens as the substitution.

The payoff network predicts if a goal can be proved in the given proof task. So it takes the concate-
nation of the goal and hypotheses of the task as inputs and use a GRU encoder and two linear layers
to get the score for the current goal.

The relevance and substitution networks are learned from training proofs. Given a proof step s =
(b, φ), the relevance network learns to predict b from other theorems and the substitution network
learns to generate φ(f) for a hypothesis variable f in b.

The payoff network works as a binary classifier of intermediate goals. Positive instances are ex-
tracted as goals from training proofs. Negative instances are generated using the learned relevance
and substitution networks. For each goal in training proofs, we generate proof steps and its subgoals.
The subgoals not covered by the proof are treated as negative instances.

A.2 BASELINE

For all experiments, we use the prover trained on human proofs only as baselines.

This leads to a prover carrying randomly initialized networks when we have no training proofs.

With 10% training proofs, we also compare MetaGen-IL with a random generator MetaGen-IL-
Rand, where D1, D2 in algorithm 1 are uniform and D3 is uniform over substitutions occured in
training proofs to verify if the learning of the generator is helpful.
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With no human proofs, we also manually design an ad-hoc baseline to replace the randomly initial-
ized relevance and subsitution networks. We pick a theorem over the cosine similarities between
TF-IDF features of theorems and goals, which is used in Bansal et al. (2019b), to replace the rele-
vance network. We learn a language model which is trained on expressions among target theorems,
including assertions and hypotheses, to generate new expressions as substitutions and replace the
substitution network. We compare our MetaGen-RL method with this baseline.

A.3 IMPLEMENTATION DETAILS

The dimensions of all GRUs are 128 except the language model for MetaGen-RL, which is 64-
dimensional. All deep networks are trained using Adam ,where the learning rate is 1e-4 for relevance
and payoff networks, and 5e-4 for substitution networks, in both generators and provers. Learning
rates are always decreased by 2 in the manually-scheduled epochs. The batch size of all networks
are 100.

To train relevance networks in the generator/prover, we need to discriminate a generated theo-
rem/background theorem from the other candidates, whose number could be higher than 10K. Dur-
ing training, we sample 10 negative candidates for each positive theorem in one iteration. During
inference, generators sample one target theorem from at most 20 candidates and provers pick each
theorem from all feasible candidates.

Substitutions are produced as sequences of tokens. For generators, each token is sampled over
probabilities from substitution networks. For provers, substitutions are generated by beam search.

The networks in MetaGen-IL for the first two experiments are trained for 6000 iterations each epoch.
With 10% training proofs, we train networks in MetaGen-IL for 40 epochs and decrease learning
rates after 20, 26 and 32 epochs. With all training proofs, we train networks in MetaGen-IL for 60
epochs and decrease learning rates after 30, 40 and 50 epochs.

To train MetaGen-RL, we train the language model for 200 epochs and decrease learning rates after
80, 120 and 160 epochs. Both the relevance and substitution networks are trained by Reinforce
for 20 epochs. In each epoch, we reinitialize the generated theorem graph and sample 8000 new
unique proof steps. Networks are updated for each 40 theorems. We set the gradient clipping as 5 to
stabilize policy gradients.

With learned generators, we sample synthetic proofs following the algorithm 1. The distribution D1

is multinomial over frequencies of theorems used by training proofs in MetaGen-IL, and uniform
over all theorems in MetaGen-RL. With 10% training proofs, we sample about 1M unique proof
steps and therefore the theorem graph is extended into 1M nodes. With all training proofs, we run
MetaGen-IL 10 times and sample 1M unique proof steps in each run and then merge them as 10M
synthetic proofs. With no training proofs, we sample 200K unique proof steps using MetaGen-RL.

Given all synthetic data, we train deep networks in the provers. With access to training proofs, we
mix synthetic proof steps and real proof steps in each batch, in ratio of 7:3 for 10% training proofs
and in ratio of 5:5 for all training proofs. With no training proofs, we train the prover using synthetic
data only.

Following the settings in Whalen (2016), the prover is run on each test target theorem for 5 minutes
or through 10000 passes. The beam search width is 1, 5, 20 in three different runs.
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