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ABSTRACT

Deep learning enables training of large and flexible function approximators from
scratch at the cost of large amounts of data. Applications of neural networks often
consider learning in the context of a single task. However, in many scenarios what
we hope to learn is not just a single task, but a model that can be used to solve
multiple different tasks. Such multi-task learning settings have the potential to
improve data efficiency and generalization by sharing data and representations
across tasks. However, in some challenging multi-task learning settings, particularly
in reinforcement learning, it is very difficult to learn a single model that can solve
all the tasks while realizing data efficiency and performance benefits. Learning each
of the tasks independently from scratch can actually perform better in such settings,
but it does not benefit from the representation sharing that multi-task learning can
potentially provide. In this work, we develop an approach that endows a single
model with the ability to represent both extremes: joint training and independent
training. To this end, we introduce matrix-interleaving (Mint), a modification to
standard neural network models that projects the activations for each task into a
different learned subspace, represented by a per-task and per-layer matrix. By
learning these matrices jointly with the other model parameters, the optimizer itself
can decide how much to share representations between tasks. On three challenging
multi-task supervised learning and reinforcement learning problems with varying
degrees of shared task structure, we find that this model consistently matches or
outperforms joint training and independent training, combining the best elements
of both.

1 INTRODUCTION

While deep learning has enabled remarkable levels of generalization through the use of function
approximators, this comes at the cost of large amounts of data, which remains a critical challenge
in deploying deep learning to a number of domains. When combined with deep networks, multi-
task learning offers the promise of building more powerful representations using less data per task,
leading to greater performance and data efficiency. However, multi-task deep learning has also posed
considerable challenges. Numerous works have observed that joint training on multiple tasks can
actually decrease task performance due to the negative influence of other tasks (Parisotto et al., 2015;
Rusu et al., 2016a). Indeed, training networks entirely independently on each task has remained a
strong approach, to the point that multiple multi-task methods have first trained models independently
before using them to train a multi-tasking model (Parisotto et al., 2015; Rusu et al., 2016a; Ghosh
et al., 2017; Teh et al., 2017; Czarnecki et al., 2019). Moreover, our experiments in Section 6
indicate that three recently proposed methods for multi-task learning are all surpassed by training
models independently per task. However, training independent models will only work well when
provided enough data per task, and precludes potential positive data-efficiency gains from multi-task
learning, only providing protection against negative transfer. Further, while a number of works have
successfully shared parameters, finding an architecture with the appropriate level of parameter sharing
for a given problem domain can require a considerable amount of manual engineering. In this work,
we aim to develop a multi-task learning method that can perform well both when tasks share very
little and when they share a large amount of structure.

To address this problem, we consider how we might develop a single neural network model that can
both represent independent models, when optimization challenges prevail, and a single model with
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shared weights, when sharing may be beneficial, as well as intermediate levels of model sharing. One
option for performing independent training within a single model is to put separate networks with
independent weights into a single model, using the task ID to select which network prediction to
output. However, this prevents any sharing. An alternative approach is to condition the model on the
task ID, through various conditioning approachs, including additive and multiplicative approaches
such as FiLM (Perez et al., 2018). In fact, point-wise multiplicative conditioning, as proposed in
FiLM, can indeed represent separate networks by selecting which parts of the network to be used
for different tasks, as can a number of of other approaches in multi-task learning (Rosenbaum et al.,
2017; 2019; Fernando et al., 2017). Yet, these approaches still require an optimization over shared
parameters in order to select how parameters used for each task, which can introduce significant
optimization challenges.

We instead consider how to allow a model to perform optimization on only shared parameters, only
disjoint parameters, or any combination thereof. We can achieve this by simply interleaving learned
per-task matrices at each layer of a jointly-trained neural network. When optimization over shared
parameters is ineffective, the model can still represent a full neural network per task, resulting
in independent training; while using identical per-task matrices results in standard joint training.
Intermediately, a mix of shared and per-task parameters may be used. In effect, by incorporating
these matrices into the network, the optimizer itself can automatically and dynamically modulate the
degree to which a representation is shared between tasks, depending on the problem domain and the
optimization progress, and can do so without having to optimize shared parameters.

The primary contribution of this paper is a simple yet effective approach for multi-task learning that
can represent and smoothly interpolate between independent training and joint training, via matrix
interleaving (Mint). We describe how we can implement Mint in deep multi-task models and show its
effectiveness in improving data efficiency and generalization in multi-task settings while providing
intuition about the reasons why this architecture performs so well. Further, we show that the model
can be extended to goal-conditioned reinforcement learning in a straightforward manner by allowing
the model to generate the interleaved matrices conditioned on task information such as the goal.
We evaluate Mint on sets of tasks with both high and low levels of shared structure and find that it
performs well in both settings, performing comparably to or outperforming both joint training and
independent training, effectively combining the best elements of both. Further, in comparison to
previous methods that use multiplicative interactions for continual learning (Cheung et al., 2019) and
for general conditioning (Perez et al., 2018), Mint is better able to separate tasks by avoiding the need
to optimize over shared parameters and can empirically produce substantially better performance on a
range of challenging multi-task problems. Finally, Mint also outperforms state-of-the-art approaches
for multi-task learning while being significantly simpler to implement.

2 PRELIMINARIES

In multi-task learning, the goal is to find a θ-parameterized model fθ that reaches high performance
across all training tasks drawn from a task distribution Ti ∼ p(T ), i.e. min

θ
ETi∼p(T ) [Li(fθ)], where

Li denotes the loss function for task Ti. In Section 4, we will study this multi-task problem in the
context of supervised and reinforcement learning settings. In our multi-task learning set-up, we
train a model that is conditioned on zk, where the additional input zk is used to specify which task
should be performed and can be represented in a variety of ways, from simple categorical variables
to learned task embeddings (Hausman et al., 2018). This formulation can be readily extended to a
goal-conditioned reinforcement learning setting, where zk indicates the desired goal.

Joint and fully independent training are the two extremes of multi-task learning. Assuming a set of n
training tasks, we characterize multi-task training as independent if it optimizes a set of task-specific,
disjoint parameters {θk}ni=1 that parameterize the model fθk . We define joint training as finding a
single set of task-independent, shared parameters θ of fθ. Note that joint training utilizes the fact that
the parameters are shared throughout learning. While joint training has a number of data-efficiency
and generalization benefits, it can be quite difficult to train effectively.

3 MULTI-TASKING WITH INTERLEAVED MATRICES

Considering fully independent and fully joint training as two ends of the spectrum in multi-task
learning problems, we want to design an algorithm to get the best of both worlds – the stability of
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independent training and the parameter-sharing efficiency of fully jointly trained models. To this end,
we propose to build models that allow the neural network to learn how much information should be
shared and between which tasks throughout learning, in an adaptive fashion. We describe the details
of our approach below.

3.1 MINTNET: MATRIX-INTERLEAVED NETWORKS

Given the success of independent training in comparison to a range of approaches, we hypothesize that
significant optimization challenges for parameters shared across tasks have hindered performance. To
this end, we aim to study how a model can represent independent training without having to optimize
any shared parameters, effectively bypassing any optimization issues that may arise when training
across disjoint tasks. In particular, we consider how we might allow the optimizer to dynamically
modulate how much each learned representation is shared versus disjoint across different tasks.

In the case of neural network models, we view representations as network activations at different
layers of the network. We aim to introduce a modification to the neural network that would allow the
model to either form those activations in a completely task-specific way, in a completely shared way,
or in a way that shares to an intermediate degree. To achieve this, we propose a model architecture
that transforms the previous layer’s representation both in a task-general way and in a task specific
way, in sequence. When two tasks share very little, the network can optimize task-specific weights,
while when the tasks share a considerable degree of structure, the network can leverage the shared
weights. This modification, which we refer to as a matrix-interleaving (Mint), effectively allows us to
“interpolate” between fully shared representations across tasks and learning separate representations
for different tasks. Since these transformations are task-specific and can be introduced at various
layers of the network, they allow for a different amounts of representation shared at different levels
of the neural network model.

To understand the practical implementation, we consider the activations at layer l of a fully-connected
neural network: y(l) = σ

(
W (l)y(l−1) + b(l)

)
, where W (l) is the weight matrix for layer l, b(l) is the

bias vector for layer l, and σ is the non-linearity at each layer. The Mint layer augments the traditional
fully-connected layer with task-specific weight matrix Mk and bias vector βk, where k indexes the
task. The forward pass of a Mint layer for some vector of activations y is presented in Definition 1.
Definition 1. A Mint layer applies an affine transformation to activations y ∈ Rn as follows, yielding
new activations a:

a = Mint(y) =Mky + βk (1)

where Mk and βk are per-layer task-specific matrix and bias, respectively. A neural network aug-
mented with Mint thus contains parameters that are both shared across all tasks as well parameters
that are only used for a particular task for each layer l, i.e. θ = {W (l), b(l),M

(l)
k , β

(l)
k }. See Figure 1

for a visual depiction of the application of Mint. We show how the regular fully-connected layers and
Mint layers can be interleaved in Equation 2 and 3 below:

y(l) = σ
(
W (l)a(l−1) + b(l)

)
(2)

a(l) =M
(l)
k y(l) + βk

(l). (3)

Because this layer is fully-differentiable, we can learn the task-specific matrices M (l)
k and biases β(1)

k
jointly with the shared parameters of the model.

When we apply Mint to tasks with very large numbers of tasks, or arbitrary task descriptors (e.g.,
goal-conditioning), we can train separate neural networks T lφ, T

l
ψ → M l

k, β
l
k, to output the Mint

matrices and biases at every layer, instead of storing independent matrices for each task. In this case,
Mint resembles FiLM, only with a matrix transforming the activations at each layer instead of a
point-wise multiplication by a vector. In the next section, we study a theoretical property of Mint.
We validate the benefits of Mint in our experimental evaluation in Section 6.

3.2 THEORETICAL ANALYSIS

We next aim to theoretically study the expressive power of Mint when the shared parameters are not
optimized effectively (e.g. due to optimization challenges). We assume only that the shared parameter
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Figure 1: Mint architecture. (a) A Mint Layer applies a task-specific matrix multiplication and vector
addition to an input vector x. The matrix and vector make up an affine transformation to the input
vector, given by a task network. (b) The modified neural network model with a distinct Mint layer
added after each fully-connected layer.

matrices W (l) are invertible, such that they do not lose information about the input. This assumption
critically does not require the optimizer to productively update the shared parameters. Under this
assumption, we show that Mint has the valuable property of universal function approximation for
each task. That is, if we train a Mint-augmented network on a set of tasks {Ti}, we show universal
approximation guarantees for the function Mint learns for each individual task, even if the shared
parameters are not optimized. This property is extremely significant in light of potential failures of
optimization of shared weights during multi-task training. Further, we also relate this to the expressive
power of FiLM.

Theorem 1. Let y(l−1) be the activations of layer l − 1, and let W (l), b(l) be the weight matrix and
bias vector at the l-th layer. We assume that W (l) is a fixed invertible matrix, rather than a matrix of
free parameters. Then, we have two results:

1. Applying Mint to y(l−1) allows us to express arbitrary affine transformations at layer l for
each task.

2. Applying FiLM to y(l−1) does not allow us to express arbitrary affine transformations at
layer l for each task.

The proof can be found in Appendix A. Crucially, the implication of this theorem is that Mint satisfies
the universal function approximation property (Hornik et al., 1989) of neural networks even when the
shared weight matrices are not learned; this property does not hold when the per-task transformations
correspond to point-wise multiplication of vectors. In the following sections, we empirically evaluate
Mint, and observe that the small yet important distinction between task matrices and task vectors
leads to pronounced chnages in multi-task learning performance and learning efficiency, and enables
Mint to learn well when tasks are distinct.

4 FLAVORS OF MINT

The general idea of Mint is implemented as follows in the supervised learning and reinforcement
learning cases.

Multi-Task Supervised Learning In the case of supervised learning models, we simply apply Mint
layers after every fully connected layer of the model. Specifically, for a task identifier zk ∈ RK
where K is the number of tasks and for every layer l with activations a(l) ∈ Rn, nonlinearity σ and
weight W (l) and bias b(l), we represent the transformation using two matrices T (l)

M ∈ Rn×n×K and
T

(l)
β ∈ Rn×K that take in the task identifier and output the per-layer task-specific matrices M (l) and

biases βl respectively. The transformation can be summarized as follows:
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a(l) = (T
(l)
M zk)σ(W

(l)a(l−1) + b(l)) + T
(l)
β zk =Mk

(l)σ(W (l)a(l−1) + b(l)) + βk
(l). (4)

Multi-Task Reinforcement Learning For multi-task reinforcement learning, we implement the
architecture similarity to the supervised learning case but we combine this with actor-critic RL
algorithms by introducing this architecture into both the critic Q(s, a, zk) and the actor π(a|s, zk).
Goal-Conditioned Reinforcement Learning For the case of goal conditioned RL, we introduce a
slightly modified Mint architecture into both the actor and the critic conditioned on the task goal
g. Specifically, for every layer l with activations a(l), nonlinearity σ, weight W (l), and bias b(l),
we represent two transformation function T (l)

φ and T (l)
ψ by two simple neural networks that take in

the goal and produces a per-layer goal-specific matrix M l(g) and the bias β(l)(g) respectively. The
transformation can be summarized as:

a(l) = T
(l)
φ (g)σ(W (l)a(l−1) + b(l)) + T

(l)
ψ (g) =M(g)

(l)
σ(W (l)a(l−1) + b(l)) + β(g)(l). (5)

5 RELATED WORK

Multi-task learning (Caruana, 1997; Bakker & Heskes, 2003; Ruder, 2017) focuses on the problem of
finding a single model that can solve multiple different tasks. This formulation can be readily applied
to a variety of learning domains, such as supervised learning (Zhang et al., 2014; Long & Wang, 2015;
Yang & Hospedales, 2016; Sener & Koltun, 2018; Zamir et al., 2018), and multi-task (Espeholt et al.,
2018; Wilson et al., 2007; Hessel et al., 2019) and goal-conditioned reinforcement learning (Kaelbling,
1993; Andrychowicz et al., 2017; Pong et al., 2018). While multi-task learning offers the promise
of efficient training of shared representations, naı̈vely training a single model on multiple tasks
often does not result in these desired benefits, due to the optimization challenges introduced by the
multi-task setting (Teh et al., 2017; Ghosh et al., 2017; Rusu et al., 2016a).

In order to eliminate potential negative interference between different tasks during multi-task learning
using a single model, many approaches propose to learn each task separately, to later combine their
solutions into a single multi-task model (Levine et al., 2016; Teh et al., 2017; Ghosh et al., 2017; Rusu
et al., 2016a; Czarnecki et al., 2019; Parisotto et al., 2015). In contrast to these works, we present a
method that is able to train a single model on multiple tasks, and is able to interpolate between the
extremes of joint and independent training,

More closely related to our approach, various architectural solutions have been proposed to increase
the multi-task learning capability of the model. Example approaches include architectural changes
that allow multiple modules or paths within the same network (Fernando et al., 2017; Devin et al.,
2016; Misra et al., 2016; Rusu et al., 2016b; Vandenhende et al., 2019; Rosenbaum et al., 2017),
transformation-based task conditioning (Perez et al., 2018), attention-based architectures (Liu et al.,
2018; Maninis et al., 2019), multi-headed network solutions (Long & Wang, 2015; Riedmiller et al.,
2018; Wulfmeier et al., 2019), and a variety of other approaches (Hashimoto et al., 2016; Ruder12
et al., 2017). We demonstrate an approach that allows for a middle ground between the conceptual
extremes of fully independent training at one end and single-model joint training at the other. This
added flexibility enables us to sidestep the negative effects of potential task interference while at the
same time share parameters between the tasks when appropriate. In our experiments, we provide
direct comparisons of our method to cross-stich (Misra et al., 2016), routing networks (Rosenbaum
et al., 2019), the FiLM architecture (Perez et al., 2018), rotational superposition (Cheung et al., 2019),
and multi-headed models.

6 EXPERIMENTS

The goal of our experimental evaluation is to answer the following questions: (1) does our method
enable effective multi-task learning both in settings where there is substantial overlap in tasks and
where there is little overlap?, (2) how does our method compare to independent training and joint
training in those settings?, (3) how does our method compare to prior state-of-the-art approaches?
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Figure 2: Visualization of the 50 tasks from Meta-World used in the MT50 evaluation. Mint is able to learn
about 30 of these tasks.

To answer the above questions, we conduct experiments on both multi-task supervised and rein-
forcement learning domains. For multi-task supervised learning, we evaluate our method on the
CIFAR-100 multi-task dataset, where we treat the 20 coarse labels as different tasks. For multi-task
RL doamins, we perform experiments on two multi-task RL benchmark variants MT10 and MT50 (as
showcased in Figure 2) proposed by Yu et al. (2019). Finally, to test if Mint can excel in continuous
task distributions, we also evaluate the method on a goal-conditioned RL domain where a Sawyer
robot arm is required to push a randomly initialized puck to different goal positions. For all RL
experiments, we use the popular off-policy RL algorithm, soft actor-critic (SAC) (Haarnoja et al.,
2018), which has shown to solve many RL benchmarks with great data-efficiency.

In the multi-task supervised learning setting, we consider the following comparisons:

• task specific-1-fc (Rosenbaum et al., 2017): learn a shared network along with a final task-
specific layer.
• task specific-all-fc (Rosenbaum et al., 2017): learn a shared convolutional neural network and

a task-specific fully-connected networks.
• cross stitch-all-fc (Misra et al., 2016): learn one neural network per task while using cross-

stitch units to share features across tasks.

• routing-all-fc+WPL (Rosenbaum et al., 2019): learn a router that chooses a particular neural
network for each task.

• independent: learn one separate network per task.

On the multi-task RL domains, we compare Mint to the following methods:

• SAC: train a vanilla SAC agent with task identifier as part of the input.
• Multi-head SAC: train a SAC agent where both the actor and critic are represented as multi-

head feedforward neural networks where the number of heads is the number of tasks.
• SAC (concat all fc): train a SAC agent where the task identifier z is concatenated with the

activation at each layer and passed as inputs to the next layer.
• FiLM (Perez et al., 2018): the actor and critic are learned with neural networks combined with

FiLM.

• superposition (Cheung et al., 2019): the actor and critic are learned with neural networks
combined with superposition.

• independent: learn separate actor and critic per task.

We provide details of architecture design in each domain as well as environment set-up in the
Appendix B.
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6.1 MULTI-TASK SUPERVISED LEARNING

On the CIFAR-100 multi-task domain, as shown in Table 1, Mint is able achieve the best classification
accuracy and outperform other methods by a least 2%, which demonstrates that Mint attains the
competitive results in established multi-task supervised learning benchmarks. Note that the number
of parameters of Mint is much smaller than popular multi-task supervised learning methods such as
cross stitch and routing networks and also independent networks, implying that Mint can efficiently
learn to interpolate between representing separate networks and sharing common structure among
tasks.

% accuracy # of parameters

task specific-1-fc (Rosenbaum et al., 2017) 42 104K
task specific-all-fc (Rosenbaum et al., 2017) 49 689K
cross stitch-all-fc (Misra et al., 2016) 53 1.23M
routing-all-fc + WPL (Rosenbaum et al., 2019) 64.1 1.31M
independent 64.3 1.56M

Mint (ours) 66.3 699K

Table 1: Results on CIFAR-100 multi-task dataset. Independent training of task models performs surprisingly
well, outperforming three recently proposed approaches. Mint, however, achieves the best performance with less
number of parameters comparing to more complicated methods such as routing-all-fc and independent training.

6.2 MULTI-TASK REINFORCEMENT LEARNING

On the RL domain, we first investigate the ability of Mint to perform a set of distinct RL tasks.
As discussed in Yu et al. (2019), MT10 and MT50 serve as representative benchmarks to evaluate
multi-task learning algorithms on learning a diverse range of robotics manipulation tasks. We present
the results in Figure 4. The success rates are averaged across tasks and we adopt the success metrics
used in the Meta-World benchmark. We design appropriate architectures of the actor and the critic of
the SAC algorithm for each method such that the number of parameters of each approach is around
the same magnitude (see Appendix B for details).

For MT10, Mint learns all tasks with the best data efficiency, while independent networks also learn
all of the tasks with slightly worse data-efficiency. The other methods are unable to acquire half of
the skills. Mint, on the other hand, enjoys the expressive power to interpolate between independent
learning and sharing while mitigating optimization challenges to attain the best results between the
two extremes.

For MT50, where the evaluations are done on all 50 of the Meta-World environments, as shown on
the right in Figure 4, Mint quickly learns to solve more than 60% of tasks in 20 million environment
steps while SAC and SAC with multi-head architectures struggled in solve 40% of the tasks after 35
million steps. Independent networks learn to solve the tasks slower than Mint but eventually surpasses
it.1 This result also validates the expressive power of Mint to represent both separate learning and
learning with shared networks.

6.3 GOAL-CONDITIONED REINFORCEMENT LEARNING

Next, We consider the question if Mint can be applied to a set of RL goals that have considerable
shared structure. Hence, we evaluate all methods on the goal-conditioned sawyer pushing domain. In
this environment, the goal space consists of the initial positions of the puck and the goal positions. For
details of the goal-conditioned environment, see Appendix B. At each policy rollout step, we sample
a batch of 9 goals and collect 3 paths for each goal, where all the paths are stored in the task-specific
replay buffers. At each training step, we sample a batch of 9 goals and 128 samples per goal from their
corresponding replay buffers. To prevent from creating infinite number of replay buffers, we discretize
the goal space into 200 goals. Given that it’s impractical to train 200 independent agents, we sample
10 goals from the goal space and train 10 independent SAC agents for estimating the performance
of independent training in goal-conditioned pushing. As shown in Figure 3, Mint outperforms all

1We did not evaluate superposition and FiLM on MT50 given the poor performance of these methods on
MT10.
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Figure 3: Learning curves on MT10 (left) and MT50 (right). We observe that independent training performs
well on both benchmarks. Mint, unlike prior multi-task learning approaches, is able to perform at a similar level
to independent training.

methods both in terms of data efficiency and distance to the goal. SAC (concat all fc) also achieves
comparable performnce while independent networks fail to learn the task without sufficient amount
of data, suggesting that the ability of Mint to represent both joint training and independent networks
per task is crucial in multi-task learning and can lead to considerable improvement.

Figure 4: Learning curves on goal-conditioned pushing. Mint is able to outperform all other methods in terms
of both distance to the goal and the required number of environment steps.

7 CONCLUSION

Simultaneous optimization of multiple, potentially unrelated tasks can prove challenging for deep
neural networks. Recent multi-task learning architectures attempt to mitigate this issue by providing
alternative pathways for information to flow through a neural network for each task. In this paper, we
introduce a new multi-task learning module, Mint, which provides theoretical guarantees of universal
approximation even for multi-task settings with no shared structure. We conjecture that this property,
not shared by similar multi-task architectures, enables Mint to outperform other multi-task approaches
on a variety of supervised and reinforcement learning benchmarks. We also observe that Mint is able
to match or improve upon the performance of independent training.

While Mint exhibits strong performance gains over previous methods, one potential limitation is that
the task matrices may introduces a significant number of parameters, particularly as the number of
tasks increases. As discussed, this can be alleviated for problem domains with many tasks, by learning
a single neural network that produces the matrices and biases conditioned on the task descriptor.
Further, in our experiments, we find that Mint-based networks can outperform prior methods while
using comparable or fewer parameters.

In summary, Mint is a simple, yet effective approach for deep multi-task learning. Its implementa-
tion requires minimal modifications over standard deep networks. As a result, we expect it to be
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straightforward for future work to build upon or use Mint for more effective multi-task learning in
deep networks.
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A PROOF OF THEOREM 1

Theorem 1. Let y(l−1) be the activations of layer l − 1, and let W (l), b(l) be the weight matrix and
bias vector at the l-th layer. We assume that W (l) is a fixed invertible matrix, rather than a matrix of
free parameters. Then, we have two results:

1. Applying Mint to y(l−1) allows us to express arbitrary affine transformations at layer l for
each task.

2. Applying FiLM to y(l−1) does not allow us to express arbitrary affine transformations at
layer l for each task.

Proof of 1.

Let W(l) and b(l) be an arbitrary weight matrix and bias vector. Suppose that for task k

we wish to represent the affine transformation Wk
(l)y(l−1) + bk

(l) at layer l of the network using
the combination of Mint and the affine transformation described by applying W (l) multiplicatively
and b(l) additively. Concretely, we wish to determine whether there exist a task-specific matrix
M(k)

(l) and task-specific bias vector β(k)(l) such that:

Wk
(l)y(l−1) + bk

(l) =W (l)(M(k)
(l)
y(l−1) + β(k)

(l)
) + b(l) (6)

Let M(k)
(l)

=W (l)−1Wk
(l) and β(k)(l) =W (l)−1(bk

(l) − b(l)). Then, the above equality holds.

Proof of 2.

We wish show a similar existence proof as in Equation 6, except instead of a per-task weight matrix
M(k)

(l) at each layer, FiLM uses a per-task modulation vector β(k)(l). Concretely, we wish to
determine whether there exist a task-specific feature modulation vector v(k)(l) and task-specific bias
vector β(k)(l) such that:

Wk
(l)y(l−1) + bk

(l) =W (l)(v(k)
(l) � y(l−1) + β(k)

(l)
) + b(l) (7)

where � denotes the Hadamard product. This is equivalent to representing v(k) as a diagonal matrix
V (k) whose entries along the diagonal are the entries in v(k). Equation 7 is equivalent to

Wk
(l)y(l−1) + bk

(l) =W (l)(V (k)
(l)
y(l−1) + β(k)

(l)
) + b(l)

=W (l)V (k)
(l)
y(l−1) +W (l)β(k)

(l)
+ b(l)

Equating the corresponding terms on both sides of the equation (those which include y(l−1) and those
which do not), equality holds only if:

W (l)V (k)
(l)
y(l−1) = Wk

(l)y(l−1)

→ V (k)
(l)

=W (l)−1Wk
(l)

Since this equality must hold for all possible y(l−1)

and β(k)(l) = W (l)−1(bk
(l) − b(l)). However, since V (k)

(l) and Wk
(l) is arbitrary, there is no

guarantee that W (l)−1Wk
(l) will be a diagonal matrix.
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B EXPERIMENT DETAILS

On the CIFAR-100 multi-task dataset, as suggested in (Rosenbaum et al., 2019), we use a standard
convolutional neural network with 3 convolutional layers with 160 3× 3 filters followed by 2 fully
connected layers with 320 hidden units interleaved with task-specific Mint matrices and biases. We
apply max pooling and batch normalization after every convolutional layer.

We use SAC (Haarnoja et al., 2018) algorithm for all RL domains. For Mint, We use 3-layer fully-
connected neural network interleaved with per-task Mint matrices and biases at each layer for both
the actor and critic. All the other methods use 6-layer fully-connected neural networks for the actor
and critic such that they maintain about the same number of total parameters as Mint. The number
of hidden units per layer is 200, 160, and 150 for goal-conditioned pushing, MT10, and MT50
respectively for all methods.

On the goal-conditioned pushing experiment, we sample the (x, y) positions of the puck uniformly
from the range [−0.2, 0.6] to [0.2, 0.7] and the positions of the goal uniformly from [−0.2, 0.85] to
[0.2, 0.95].
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