
Under review as a conference paper at ICLR 2020

THREE-HEAD NEURAL NETWORK ARCHITECTURE
FOR ALPHAZERO LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The search-based reinforcement learning algorithm AlphaZero has been used as
a general method for mastering two-player games Go, chess and Shogi. One cru-
cial ingredient in AlphaZero (and its predecessor AlphaGo Zero) is the two-head
network architecture that outputs two estimates — policy and value — for one
input game state. The merit of such an architecture is that letting policy and value
learning share the same representation substantially improved generalization of
the neural net. A three-head network architecture has been recently proposed that
can learn a third action-value head on a fixed dataset the same as for two-head net.
Also, using the action-value head in Monte Carlo tree search (MCTS) improved
the search efficiency. However, effectiveness of the three-head network has not
been investigated in an AlphaZero style learning paradigm. In this paper, using
the game of Hex as a test domain, we conduct an empirical study of the three-
head network architecture in AlpahZero learning. We show that the architecture
is also advantageous at the zero-style iterative learning. Specifically, we find that
three-head network can induce the following benefits: (1) learning can become
faster as search takes advantage of the additional action-value head; (2) better pre-
diction results than two-head architecture can be achieved when using additional
action-value learning as an auxiliary task.

1 INTRODUCTION

Computational advancements of deep neural networks (Bengio, 2009; LeCun et al., 2015) have led
to progresses in a number of scientific areas, ranging from image classification (Krizhevsky et al.,
2012), speech recognition (Graves et al., 2013), natural language processing (Collobert et al., 2011),
playing Atari games (Mnih et al., 2015), to the prominent achievement of AlphaGo (Silver et al.,
2016), AlphaGo Zero (Silver et al., 2017b), and AlphaZero (Silver et al., 2017a; 2018) learning sys-
tems for playing multiple classic two-player alternate-turn perfect-information zero-sum games —
games of which kind have been a research object as old as the subject of artificial intelligence itself.
Arguably, the accomplishments of AlphaGo and its successors represent a result of continual effort
from two lines of research directions. The heuristic search (or sometimes AI planning) community
studies various intelligent search strategies (Pearl, 1984) (e.g., best-first search) given that a space of
states can be generated gradually by description of the problem (e.g., rules of Go), the goal is to find
a desired solution using smaller computational cost by exploring promising regions preferably; the
study of machine learning attempts to summarize a general concept from experience data, therefore
enabling probably correct prediction even in unseen scenarios.

The combination of both learning and search techniques dates back to Samuel’s studies in check-
ers (Samuel, 1959), where two learning methods, rote learning and generalization learning, were
studied and integrated into a look-ahead minimax search; the later development leveraging advance-
ments from both learning and search techniques (e.g., training on games produced by stronger play-
ers with more expressive function approximation for better generalization learning and using better
αβ pruning (McCarthy et al., 2006) in search) achieved better results (Samuel, 1967). Noticeably,
the learning techniques are only used to construct an evaluation function for checkers positions
from historical playing records either generated by human or computer players. However, in certain
games (e.g., chess) where a large body of human players exist, manually constructing a heuristically
correct evaluation function is also possible. Therefore, rather than attempting to automatic construct
an evaluation functions, much early research effort focus on analyzing formal properties of search
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algorithms given certain assumption on the correctness of an existing evaluation function (Knuth &
Moore, 1975; Pearl, 1980a), proposing new search routines that may lead to more efficient prun-
ing (Pearl, 1980b; Plaat et al., 1996), or devising procedures when the assumed correctness of an
evaluation failed to consign in practice (Harris, 1975). Indeed, optimizing using minimax upon an
approximated evaluation has been regarded as a “deadly sin” in the eye of statistics, since such an
optimization could only compound the approximation error, therefore resulting pathological behav-
ior of search (Nau, 1982), i.e., the deeper the search the worse of the obtained evaluation. How-
ever, in practice, pathological behavior was seldom observed in a number of games. Pearl (1983)
presented several observations that may explain the phenomenon, such as the approximation error
tends to decrease as search goes deeper, the ubiquitous of perfect evaluation in some branches of
the search, the fact that the search space is a directed acyclic graph rather than a tree, and the rel-
atively small branching factor of the game of interest. Game-searching by minimax continued to
triumph as computers become faster and more general or game-specific searching techniques are
introduced, culminating to the successes of champion playing strength against human players in
games such as checkers (Schaeffer et al., 1992), chess (Campbell et al., 2002), Othello (Buro, 1998)
and backgammon (Tesauro, 1995).

It follows that game AI research began to switch attention on several more challenging games where
reliable human-directed evaluation function is difficult to construct and the branching factor is sig-
nificantly larger, such as the game of Go (Müller, 2002) and the game of Hex (Van Rijswijck, 2002a).
Coulom (2006) proposed a Monte Carlo tree search (MCTS) for computer Go; it uses Monte Carlo
simulation to sidestep the need of a static evaluation function. From the heuristic search perspec-
tive, MCTS can be regarded as an instance of the general best-first search depicted by Pearl (1984).
Different from αβ pruning, which relies on an accurate move ordering for preferable exploration,
best-first search iteratively adjusts its search effort by summarizing the new information backed from
leaf evaluations, at the expense of explicitly storing the whole search tree in memory. To select a leaf
node to expand and evaluation from the search tree, a UCT search can be used (Kocsis & Szepesvári,
2006) for a balance between exploration and exploitation. Notably, unlike αβ minimax search,
MCTS does not apply hard-min or max when backing up approximated leaf evaluation but uses
average to summarize all previous evaluations while preserving asymptotic convergence. The supe-
riority of MCTS is also manifested by its flexibility of integrating learned heuristic knowledge into
the search (Gelly & Silver, 2007). That is, by incorporating an existing move-ranking function for
better leaf node selection (i.e., progressive bias by Chaslot et al. (2008) or PUCT by Rosin (2011)),
the search can focus on only promising moves therefore effectively reducing the high branching
factor; by leveraging more informed pattern-based Monte Carlo playout (Coulom, 2007), better
leaf evaluation can be obtained and backed up therefore further enforcing the best-first behavior,
although in practice stronger playout policy for leaf evaluation does not always result in stronger
performance given the same finite computation of MCTS (Silver & Tesauro, 2009).

Continual effort were made towards adding more accurate prior knowledge to MCTS. The suc-
cesses of deep neural networks in other AI domains, such as image classification (Krizhevsky et al.,
2012), revived the application of neural networks for approximate human’s evaluation in Computer
Go (Maddison et al., 2015; Clark & Storkey, 2015; Tian & Zhu, 2015), leading to the development
of AlphaGo Fan (Silver et al., 2016) which uses policy network for providing prior knowledge in
move selection and value network for leaf node evaluation in MCTS — it became the first program
defeating human professional player in the game of Go. Subsequently improved versions AlphaGo
Lee defeated a more pronounced world champion player in public match. A even stronger version
called AlphaGo Master was strong enough that it never lost any game against any top human play-
ers in a set of online match. The commonality of these programs is that the neural networks used
in search were all first trained on human professional game records. Later, it was found that even
without using human data to initialize the neural network weights, a closed loop learning paradigm
could still learn MCTS players stronger than AlphaGo Lee and AlphaGo Master (after doubling
neural net size); the paradigm is named as AlphaGo Zero (Silver et al., 2017b). By further removing
other Go specific encoding in AlphaGo Zero, a more general version — AlphaZero (Silver et al.,
2017a; 2018) — was applied to chess, Shogi and Go, producing strong players in all these games
after separately training on each of them. We summarize the major differences between AlphaGo
Master, AlphaGo Zero and AlphaZero in Figure 1.

However, one limitation of the Zero algorithms (AlphaGo Zero and AlphaZero) is that a large com-
putation cost could be needed because they use search to produce millions of training games, where
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Figure 1: Flowcharts for AlphaGo Master, AlphaGo Zero and AlphaZero; each of them is a simpli-
fication of its predecessor; that is, AlphaGo Zero removes the need of human data in training, while
in AlphaZero gating is further discarded (gating refers to playing tournament using existing neural
models in PV-MCTS thus a model parameter will passed down to selfplay workers only when its
win-percentage exceeds a certain threshold, e.g., 55%). Notice that AlphaGo Zero and AlphaZero
used asynchronous training, i.e., selfplay game generation and neural network training were con-
ducted simultaneously given a sufficient number of games have been stored in the buffer. Detailed
differences on search and learning, such as hyperparameters, are omitted in these diagrams.

each move in a game was produced by calling neural networks hundreds of times for building the
search-tree — AlphaZero used thousands of TPUs in its week-long training on the game of Go (Sil-
ver et al., 2018). A three-head neural network architecture was proposed in (Gao et al., 2018b)
which can learn an additional action-value head on search-produced training dataset, akin to the
two-head network used in AlphaGo Master, AlphaGo Zero and AlphaZero. In this paper, we con-
duct an empirical comparative study on AlphaZero style learning using two- and three-head neural
networks. We find that, in comparison to the two-head counterpart, three-head network can also lead
to improvement in AlphaZero style learning paradigm.

2 ANATOMY OF ALPHAGO ZERO AND ALPHAZERO

We provide an anatomy to AlphaGo Zero and AlphaZero, along with discussion with their predeces-
sors AlphaGo Fan, AlphaGo Lee and AlphaGo Master. See Appendix A for preliminaries on Monte
Carlo tree search.

2.1 POLICY VALUE MONTE CARLO TREE SEARCH

MCTS is an essential component in AlphaGo Zero and AlphaZero since it is the algorithm upon
which training data for the neural network are produced; that is, the policy network is trained by
mimicking the move probabilities generated by MCTS, while the value network is to learn to predict
game result generated by MCTS players.

A two-head policy-value network fθ provides two estimates given one input game-state, i.e., p, v ←
fθ(s) where s is a game-state, p is a policy over actions at s and v is an estimate of the optimal
state-value of s. After one evaluation, policy and value estimates are added to the Monte Carlo
tree search (PV-MCTS) in the following way. At each iteration of MCTS, after a leaf node s is
selected, the game state of that leaf node is then passed to neural net for inference, p, v ← fθ(s).
The value estimate v is backpropaged to the search tree. The leaf node is subsequently expanded, for
each action a from s, the newly created child node stores: {N(s, a) = 0,W (s, a) = 0, Q(s, a) =
0, P (s, a) = pa}, where N(s, a) the visit count of a at s, W (s, a) is the number of wins, Q(s, a) is
the accumulated action-value (equivalent to negated V (s′) is acting a at s results s′), and P (s, a) is
the prior probability for action a. AlphaGo Fan used an expansion threshold nth > 0, therefore a leaf
node is expanded only when it has been visited more than nth times. AlphaGo Zero and AlphaZero
used an expansion threshold of 0 because for each selected leaf node, to back up an estimate, neural
network has to be called; however, the two-head neural network provides two estimates p and v;
naturally, to not waste GPU computation, probabilities in p has to be saved in newly created child
nodes by node expansion.
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Search Param. Description Learning Param. Description

nmcts num of MCTS iterations dnn depth of neural net
cpuct PUCT coefficient wnn width of neural net
α root dirichlet noise parameter β initial learning rate
η mvoe select dithering threshold - how to schedule learning rate
τ dither temperature c L2 regularization in loss function
- reuse subtree or not? B mini-batch size
ε root fraction for dirichlet noise Inn input planes to neural net

Table 1: Search and Learning parameters in AlphaGo Zero and AlphaZero. In AlphaGo Zero,
nmcts = 1600 while in AlphaZero nmcts = 800. PUCT coefficient in AlphaGo Zero were not
explicitly specified, studies by Tian et al. (2019) suggests cpuct = 1.5. α = 0.03 in Go; dither
selection threshold η of MCTS was 30 with temperature 1.0; weight for dirichlet noise ε = 0.25.
Note that in (Silver et al., 2018), a dynamic PUCT coefficient with base 1.25 was used; however,
as noted in (Silver et al., 2018), during training, due to small visit count of each game state, the
coefficient is almost static.

2.2 CLOSED LOOP LEARNING

As in Figure 1, AlphaGo Zero and AlphaZero can be summarized as a closed loop learning
paradigm. The predecessor AlphaGo Master might also be called closed loop learning based on
description revealed in (Silver et al., 2017b). It begins by initializing neural network weights either
with supervised learning on human data or just with random weights. Then, the neural network is
plugged into an MCTS and passed to a number of parallel workers for producing selfplay games.
These games are stored in an external buffer, and subsequently an updated neural network model is
produced by retraining the neural network on game examples sampled from the buffer. Even though
AlphaGo Zero and AlphaZero were run in asynchronous manner. Our summarization in Figure 1
naturally suggests a synchronous paradigm, where at each iteration the learning worker should wait
until all selfplay worker to finish all their games before optimizing the neural network. Whether
the asynchronous implementation is superior to the synchronous execution, or how advantageous
it could be, has never been formally investigated. On the other side, asynchronicity introduces an
additional difficulty for reproducibility (Henderson et al., 2018) due to the fact that executing results
are dependent on the relative speed of the selfplay and learning workers in that specific execution.
We therefore believe that the synchronous implementation of AlphaZero is worth investigating as
it has never been formally investigated before. For example, in model-free reinforcement learning
algorithm A3C (Mnih et al., 2016), asynchronicity was conjectured as one reason for the observed
good performance, other implementation found that the synchronous version A2C (OpenAI, 2017)
can achieve equivalent results as A3C.

2.3 SEARCH AND LEARNING HYPERPARAMETERS

Due to the possibility of different hyperparameter choices, AlphaZero represents a family of algo-
rithms, rather than a single and rigidly defined procedure. We classify the hyperparameters into
three categories: (1) search parameters, (2) learning parameters, (3) execution parameters. While
(3) could be specified by referring to the specific game and available computation hardware, we
summarize the (1) and (2) in Table 1. Observing that the learning parameters are in large accordance
with many other deep learning applications (Goodfellow et al., 2016), we emphasize that search
hyperparameters used to configure MCTS are not typically employed in heuristic search, making
the setting of these parameters difficult.

2.4 THEORETICAL JUSTIFICATION

In terms of reinforcement learning, the algorithmic framework of AlphaGo Zero and AlphaZero
has been summarized as an approximated policy iteration (Bertsekas, 2011) (or generalized policy
iteration as in (Sutton & Barto, 2017)), where the policy improvement is due to running PV-MCTS at
each state, and policy evaluation is achieved by regression with respect to the search-based selfplay
game result (Silver et al., 2017b). However, such an interpretation is essentially high-level: It does
not provide detailed explanation on convergence properties of the algorithm, nor does it give explicit
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and practical guidance on how to select better hyperparameters for search, neural network design and
training. Another interpretation names the whole framework as an Expert Iteration (ExIt) (Anthony
et al., 2017) by drawing connection to Systems I and II psychological theories on human mind —
the fast intuition by deep neural network and the slow thinking by tree search (Evans & Stanovich,
2013). The same drawback remains; ExIt does not provide detailed guidance on hyperparameter
choices either.

3 POTENTIAL MERITS OF THREE-HEAD NEURAL NETWORK
ARCHITECTURE

A three-head network θ provides three estimates from three heads: p, q, v ← fθ(s). The additional
q head is simply a two-layer network appended to the common representation shared by p and v
heads: the first layer uses a single 1×1 convolution filter, and the second layer uses a layer ofN×N
fully-connected units with tanh function to transform the output into action values. For brevity, we
shall call three-head network as 3HNN, and 2HNN for the two-head architecture. A 3HNN can be
optimized using the following loss function:

(1)

L(fθ;D) =
∑

(s,a,zs)∈D

((
(zs − v(s))2 + (zs + q(s, a))

2︸ ︷︷ ︸
R1

+
max(−zs, 0)
|A(s)|

∑
a′∈A(s)

(zs + q(s, a
′
))

2

︸ ︷︷ ︸
R2

+ (min
a′

q(s, a
′
) + v(s))

2

)
︸ ︷︷ ︸

R3

−πT (s) logp(s) + c||θ||2
)

where c is a constant for the level of L2 regularization; D is a set of game examples produced by
search; (s, a) is a state-action pair from example set D; zs is the game result with respect to the
player to-play at s that can be extracted fromD; andA(s) is the set of actions at s. In comparison to
the loss function used in training 2HNN, three additional value error functions, R1, R2 and R3, are
added. R1 can be extracted from D directly; R2 is produced by a data-augmentation method; and
R3 is an optimal consistence penalty between state- and action-value heads; see (Gao et al., 2018b).
We present the following potential merits that three-head neural network may bring to MCTS and
AlphaZero learning.

• More efficient MCTS. One advantage that has been exploited by 3HNN in (Gao et al.,
2018b) is allowing node expansion threshold nth > 0. Because when a new child node
is first created, like the P (s, a) = pa, the action-value can be initialized to Q(s, a) = qa.
Therefore, in future MCTS iteration, a leaf value estimate can be obtained simply by query-
ing Q(s, a) without expanding and evaluating the node using fθ. This improves the search
efficiency of MCTS as it allows more iterations of search given the same computation bud-
get.
• Auxiliary task for better neural net learning. Yet how deep neural networks manage to

generalize is much unknown except some intuitive explanation (Zhang et al., 2017), many
empirical evidence seem to suggest that adding auxiliary tasks (Jaderberg et al., 2016)
during neural net training generally produces better results. In AlphaGo, it was found that
simply combining policy and value network learning into a two-head architecture produces
an 600 Elo gain (Silver et al., 2017b).
• Improved data efficiency. Using 3HNN also improves the data efficiency in the sense that

on the same dataset, one more estimator is learned, and if such an advantage is fully used
in search, it is expected that few number of training samples might be required to achieve
similar results as using 2HNN.

4 EXPERIMENTS

In this section, we present experiments conducted on the game of Hex. We first give a brief review on
previous research in this game, then describe the testing data we used to measure learning progress.
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Finally, we present experiment results and comparisons of 2HNN and 3HNN in the same AlphaZero
learning.

4.1 THE GAME OF HEX

The game of Hex (Hayward & Toft, 2019) can be played on arbitraryN×N hexagonal board, where
two players Black and White each is given two opposing borders; at each move, one player places
a stone of their color on the board. Usually, Black starts first, then the game continues in alternate
turns; the goal for each player is to form a monochromatic chain connecting their opposing borders.
The game became well-known after Nash (1952), who proved that there is a first-play winning
strategy for any board size N×N though explicit winning strategies are unknown.

The game was first studied from an AI perspective in 1950s by Shannon (1953), who designed an
electronic resistance simulated evaluation to play Hex — after observing that devising an evaluation
using expert knowledge could be difficult in this game (unlike, e.g., chess). However, progresses
have been slow in developing strong algorithms for the game. Using a two-distance evaluation
extracted from graph properties of Hex, together with advanced implementation of αβ search, in
late 1990s Queenbee (Van Rijswijck, 2002b) became the first program achieving novice strength
on small board sizes. The discovery of a hierarchical algebra (implemented as H-Search (Anshele-
vich, 2002)) to bottom up build connection strategies resulted moderate strong playing players (e.g.,
Hexy (Anshelevich, 2000) and Six (Hayward, 2006)) using αβ search. The benefits of H-Search
are manifold: (1) it can be used for early endgame state detection; (2) it often induces signifi-
cant pruning due to mustplay (Hayward et al., 2004); and (3) it induces a simplified Hex graph
where more accurate evaluations — e.g., electronic resistance — can be extracted from. Yet, as
suggested in (Berge, 1981; Hayward & Van Rijswijck, 2006), it is possible to identify more prun-
ing by manually analyzing the graph properties of Hex; the study of inferior cells are towards this
end. Notably, both pruning from H-Search and inferior cells are provably correct knowledge to
the game, thus optimal strategy is always preserved. Continual effort in identifying more local in-
ferior patterns (Henderson, 2010), better H-Search implementations (Pawlewicz et al., 2015), and
better parallel exhaustive search (Pawlewicz & Hayward, 2013) have subsequently led to board sizes
from 7×7 (Hayward et al., 2004), 8×8 (Henderson et al., 2009), and 9×9 (Pawlewicz & Hayward,
2013) being solved 1. These knowledge computation have been implemented in an open source
codebase benzene (Arneson et al., 2010b). For playing, applying H-search and inferior cells im-
proves the application of MCTS to the game, resulting program MoHex (Arneson et al., 2010a)
(available inside of benzene). Like Go, later improved version MoHex 2.0 (Huang et al., 2013;
Pawlewicz et al., 2015) add more accurate heuristic knowledge to in-tree selection and leaf evalua-
tion by pattern-based Monte Carlo playout. Recent MoHex versions further incorporate knowledge
due to neural networks in its node selection and evaluation (Gao et al., 2017a; 2018b) — adding
neural network for both player and solver leads to neurobenzene where how to train these neural
nets is configurable, and we shall use this platform to conduct our study.

4.2 IMPLEMENTATION

We focus on small board size 9×9 Hex, taking advantage of the existing solver (Henderson, 2010;
Pawlewicz et al., 2015; Pawlewicz & Hayward, 2013) to measure the progress of AlphaZero learn-
ing. However, since H-search and inferior cell analysis could induce too much pruning on such
small board size, we configure MoHex to turn off these knowledge computation during training,
simulating a pure MCTS player whose performance is majorly influenced by the quality of the neu-
ral net knowledge learned from playing data. We use an synchronous implementation that follows
the rightmost workflow in Figure 1. See Appendix B for implementation details and parameter
choices.

4.3 TEST DATA

To measure the progress of neural net learning, we use two datasets.

• A publicly available 9×9 Hex game set produced by MoHex 2.0 in relatively strong set-
ting (Gao et al., 2018a). In such configuration, due to extensive H-Search and inferior cell

1Note that solving 9×9 requires months of parallel computation
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Figure 2: AlphaZero-2HNN versus AlphaZero-3HNN learning progresses measured in training
time. MCTS-3HNN performs 800 iteration MCTS faster than MCTS-2HNN because it uses an
expand threshold 10, while MCTS-2HNN uses threshold 0. Consequently, 3HNN leads to faster
AlphaZero learning than that of 2HNN. Note that for the random play examples, because final move
is random, we only test the value error on these examples (rightmost).

pruning, the player is already close to optimal and it can usually conduct several hundred
thousands iteration MCTS on 9× 9 board size. The test set contains 149362 examples. We
call this test set T1. We use this set of examples to test the policy-head by measuring the
move prediction accuracy, state- and action-value heads by measuring the mean squared
error (MSE).

• A set of randomly sampled but perfect labeled (using the solver in benzene) game states.
This set contains 8485 examples. We call this set T2. This dataset is only used to measure
the MSEs of state- and action-value heads, because measuring move prediction accuracy
on moves produced by random player is meaningless.

4.4 RESULTS

As discussed in Section 2, parameters in MCTS may have a profound influence on the final re-
sults. Leaving the neural network learning parameters fixed, we explore the performance of Alp-
haZero learning with various configurations on MCTS. To distinguish, we use AlphaZero-2HNN
and AlphaZero-3HNN for AlphaZero learning with two- and three-head architecture respectively.
We note that due to expensive computation cost, we do not tune our parameters — we instead present
the experiment results of reasonable parameters we choose based on our understanding of the do-
main, and adjust parameter values after observing the learning performance of each previous trial.
We use the following parameter choices:

• The maximum number of MCTS iteration is set to nmcts = 800 for both AlphaZero-2HNN
and AlphaZero-3HNN.

• For in-tree selection, we use the default method that uses a weighted combination of prior
probability of neural net, RAVE and UCT exploration term, where the weight for prior
probability cpb = 2.47 (served as cpuct when PUCT formula is used).

• Dirichlet noise parameter α = 0.03 as AlphaGo Zero and AlphaZero for Go.

• We set move selection dithering threshold η = 10 due to the short game length in 9×9 Hex.

• For AlphaZero-3HNN, default expansion threshold nth = 10 is used; for AlphaZero-
2HNN, nth = 0 as in AlphaZero.

We then run AlphaZero-2HNN and AlphaZero-3HNN both for 100 hours. Figure 2 shows the com-
parative results. For policy learning, both methods achieved similar prediction accuracy on the
game examples (T1) produced by strong search algorithms. For the value learning, however, due to
fast search, the AlphaZero-3HNN learned much faster than AlphaZero-2HNN both on games states
produced by strong player (T1) as well as examples produced by random play (T2). Remarkably,
AlphaZero-3HNN can indeed successfully learn an action-value head even that there is gap between
the accuracy of action-value and state-value heads on T2, which suggests that the action-value learn-
ing is correlated to policy learning.
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Figure 3: AlphaZero-2HNN versus AlphaZero-3HNN. All use expand threshold 0, leaving 3HNN
only as an architecture with an auxiliary task head while optimizing the neural network.
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Figure 4: AlphaZero-2HNN versus AlphaZero-3HNN. AlphaZero-3HNN used a MCTS with ex-
pand threshold 1. Upon writing, only 60 iterations are finished for AlphaZero-3HNN.

From Figure 2 we also observe that one iteration AlphaZero-2HNN is about 5 to 6 times slower
than AlphaZero-3HNN. The reason is that the MCTS-2HNN builds a much deeper search tree than
MCTS-3HNN (which is with expand threshold 10) using the same 800 iterations. We therefore
conduct a second run using the following parameter specifications:

• We reduce nmcts to 160 to reduce computation time in each iteration.

• To further encourage exploration, we use move selection dithering threshold η = 30.

• We change the in-tree selection formula to PUCT and set cpuct = 1.5.

• We set the Dirichlet noise parameter α = 0.15 as we observe that the branching factor of
9×9 Hex is several times smaller than 19×19 Go.

Figure 3 (in red) shows the results obtained by AlphaZero-2HNN learning. In comparison to Fig-
ure 2, we see that AlphaZero-2HNN in such setting learned much better state-value head: it also
achieved better results than the AlphaZero-3HNN with nmcts = 800 and nth = 10. However, we
note that the AlphaZero-2HNN in Figure 3 was using search parameters that are largely different
from the AlphaZero-3HNN in Figure 2.

To see the effect of 3HNN in similar setting, we run an AlphaZero-3HNN using the same nmcts =
160, η = 30, α = 0.15 and expand threshold 0. In this setting, the additional action-value was totally
not used in search, but just used as an auxiliary task while optimizing the neural networks. Figure 3
(in color blue and teal) shows the results of AlphaZero-3HNN with comparisons to AlphaZero-
2HNN using the same search parameters. Clearly, even though the action-value head was not used
in MCTS, optimizing the neural net by imposing an an auxiliary task produced neural networks that
have better accuracy both on the state-value and policy predictions.

We continue to investigate the effect of non-zero expand threshold for AlphaZero-3HNN. Figure 4
shows the test result by increasing MCTS-3HNN’s expand threshold to 1, and its comparison to
AlphaZero-2HNN (the same as in Figure 3). In this setting, AlphaZero-3HNN did not produce
models with better prediction accuracy than the AlphaZero-2HNN.
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Table 2: Match performance against MoHex 2.0. Games were played by iterating all opening moves;
each opening is tried twice with the competitor starts first and second, therefore each match consists
of 162 games. We manually sampled 8 models from Figure 3.

Player
Iteration 10 20 30 40 50 60 70 75

MCTS-2HNN-800 56.2% 78.4% 79.9% 83.3% 85.8% 87.3% 87.3% 87.7%
MCTS-3HNN-800 63.6% 73.5% 85.8% 82.8% 84.0% 88.9% 88.9% 89.0%

4.5 MATCH PERFORMANCE

We further investigate the performances of MCTS-3HNN and MCTS-2HNN using neural networks
obtained by AlphaZero learning.

We first compare our PV-MCTS against MoHex 2.0, using the neural network models as in Figure 3.
For the MoHex 2.0, we use the default setting which conducts knowledge computation (i.e., H-
search, inferior cells, etc). For PV-MCTS, the same as for AlphaZero learning, we turn off all
knowledge computation, and set the maximum iteration to 800. For 3HNN, we use expand threshold
0, the same as for 2HNN. Table 2 shows the result. Clearly, both obtained 2HNN and 3HNN models
are able to produce playing strength significantly stronger than 10000-iteration MoHex 2.0.

5 RELATED WORK

The high demand on computation makes reproducing the result or studying the behavior of AlphaGo
Zero and AlphaZero significantly difficult. Meanwhile such studies are highly relevant, because the
understanding for most parts of these algorithms are still in intuition-level. Following research
projects to such end include Leela Zero (Pascutto, 2018), and ELF OpenGo (Tian et al., 2019) —
they either use crowd-source to collect computation resource voluntarily contributed worldwide or
have direct accessible to thousands of GPUs for parallel selfplay game generation. Some discoveries
reported in (Tian et al., 2019) are: (1) the final performance is almost always bounded by the neural
network capacity, i.e., improvement can always be achieved by increasing neural network size as
more games are accumulated; (2) the PUCT parameter in PV-MCTS seems important; (3) learning
(strength of PV-MCTS) has high variance even in the later stage; (4) Elo (Elo, 1978) improvement
does not always correspond to real playing improvement — the monotonic increase of Elo score did
not capture the fluctuation in strength; and (5) an important tactic called “Ladder” in Go was never
fully master even by increasing MCTS iterations.

AlphaZero style learning has also been studied in games other than Go, chess and Shogi. In par-
ticular, in the game of Hex, Anthony et al. (2017) proposed an expert iteration paradigm, applied
to 9×9 Hex, and obtained a PV-MCTS player that is able to defeat 2011 version of MoHex (Ar-
neson et al., 2010a); the subsequent work (Anthony et al., 2019) explored other search algorithms
in expert iteration framework, though on 9×9 Hex these algorithms did not produce results better
than an AlphaZero implementation that uses MCTS as the search algorithm. Using a policy net-
work for move selection and value network for move evaluation, Takada et al. (2019) proposed
a minimax search algorithm and applied it to the game of Hex; starting from random weights, by
training the neural network solely using search-based reinforcement learning for a few months, the
final minimax-search based player DeepEzo is able to defeat MoHex 2.0 on 13×13 in a large margin
with 30 seconds per move. However, in formal tournament competition, DeepEzo failed to defeat
recent version MoHex3HNN that uses a three-head neural network whose weights were trained on
games produced by MoHex 2.0 as well as MoHex3HNN selfplay; see (Gao et al., 2019). Model-free
reinforcement learning have also bee applied to the game of Hex, but they did not produce competi-
tive playing strength with search algorithms; see (Young et al., 2016; Gao et al., 2018a). In the game
of NoGo, Lan et al. (2019) explored the idea of dynamically increasing neural network size during
the process of AlphaZero training, and showed that a Monte Carlo tree search with multiple small
and large networks could accelerate the learning.
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6 CONCLUSIONS

Using the game of Hex as an object, we have presented an empirical study on synchronous Alp-
haZero learning with two- and three-head neural networks. Our results suggest that the three-head
network is indeed compatible with the zero-style closed loop learning paradigm, consistent to the
conjecture made in (Gao et al., 2018b); moreover, in the game of Hex, the new architecture also
enabled faster search and yielded better performance. The most straightforward usage of the three-
head net is to solely replace the two-head network while leaving the MCTS in AlphaZero untouched,
only injecting an auxiliary task for better neural network learning.

On the other side, the adjustment we have made on search for using the new action-value head is
rather limited: only a non-zero expansion threshold is adopted to take advantage of the available
action-value estimates. Other opportunities, such as combining the estimates of state-value and
action-value heads, could be studied. Furthermore, it is not clear if MCTS is the best choice for
search at all. Unlike αβ, MCTS does not directly apply hard-min and -max upon estimated value
functions which tends to amplify the approximation error. Early research (Nau, 1982; Pearl, 1983)
have also suggested some alternative methods that do not have such issues. For example, the product
propagation (PP) (Pearl, 1983) have long been conjectured as a promising alternative (or better
than?) to minimax, while in practice PP requires to estimate the probabilities of win/lose which are
not instantly available. Previous studies (Kaindl et al., 2015) typically normalize a static evaluation
function into probabilistic estimates, and in practice if PP is superior to minimax is unclear. It
remains to experimentally verify if neural networks could be used for provide better probabilistic
estimates.

Playing and solving algorithms for two-player games have seen separate developments. While early
work in playing majorly focus on more memory-efficient depth-first procedures that use α and β
bounds for pruning, the development of solving algorithm (e.g., proof number search (Allis, 1994))
quickly switched to best-first paradigm as they are more tolerant to heuristic estimates backpropa-
gated from leaf evaluations. MCTS is a best-first search algorithm that has been extensively used
for playing but not solving, while proof number search variants (e.g., (Gao et al., 2017b)) are good
at fast-solving but do not perform well at playing games. Unifying playing and solving algorithms
that can fast solve game states given sufficient computation time and memory while also can pro-
vide high-quality moves given limited computation budget is worth further investigating. More
preferably, such an unified algorithm should be compatible with AlphaZero style learning, therefore
enabling improved performance in both playing and solving as neural network learning progresses
on.
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A MONTE CARLO TREE SEARCH WITH DELAYED NODE EXPANSION

Monte Carlo tree search (MCTS) is a best-search algorithm that repeatedly conducts the following
steps:

1. Selection. Given an existing search tree and a single starting node sR, a leaf node sL in the
tree is selected by a series of action-selection starting from sR. an action,

2. Evaluation. The leaf node sL is evaluated, either by Monte Carlo playout or an external
evaluation function (e.g., a neural network).

3. Expansion. The leaf node sL may be expanded and if so, all child nodes of sL will be
created and added to the search tree.

4. Backpropagation. The evaluation of sL obtained at step 2. is backpropgated to the search
tree.

A complete execution of these steps is called one iteration of MCTS. Delayed node expansion refers
to an implementation of step 3. where the leaf node sL will be expanded only when it has been
visited at least nth > 0 number of times. Conversely, the non-delayed expansion implementation
expands sL when it has been selected the first time, i.e., equivalently, nth = 0.

A three-head network can be used for delayed node expansion, because every leaf node in the search
tree contains an value estimate that was stored upon its creation.

B IMPLEMENTATION DETAILS

For understanding convenience, we document how to configure the MCTS in MoHex for various
use. Most of them have been implemented in benzene except that those involving neural networks
and AlphaZero are newly added.
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B.1 MOHEX TURN OFF KNOWLEDGE COMPUTATION

param_mohex perform_pre_search 0
param_mohex knowledge_threshold "999999"

B.2 SETTING IN-TREE SELECTION FORMULA

Two formulas have been implemented, the RAVE formula:

(1− ω)
(
Q(s, a) + cb

√
lnN(s)

N(s, a)

)
+ ωR(s, a) + cpb

p(s, a)√
N(s, a) + 1

, and a PUCT formula:

Q(s, a) + cpbP (s, a)

√∑
bNr(s, b)

1 +Nr(s, a)
.

They can be configured using the following commands.

param_mohex use_rave 0
param_mohex progressive_bias 1.5
param_mohex uct_bias_constant 0.0
param_mohex root_dirichlet_prior 0.15
param_mohex moveselect count
param_mohex moveselect_ditherthreshold 30
param_mohex extend_unstable_search 0

If use_rave is true, a in-tree selection using RAVE will be used, otherwise the PUCT formula
will be used. cb is set by uct_bias_constant, and ω is a dynamic RAVE weight. The
prior probability P (s, a) will be set to P (s, a) ← (1 − ε)P (s, a) + εDir(α) where ε = 0.25 if
root_dirichlet_prior 6= 0, otherwise no dirichlet noise will be used.

B.3 MOHEX TURN OFF PLAYOUT

param_mohex use_playout_constant 0.0

By such, MoHex solely uses neural net estimates for leaf node evaluation.

B.4 MOHEX LOAD NN MODELS

nn_load path_to_nn_model

By such, MoHex can load a trained neural net model into its search.

B.5 MOHEX SETS NUMBER OF ITERATIONS

param_mohex max_games 800

By such, MoHex will conduct an 800-iteration search.

B.6 MOHEX SETS EXPAND THRESHOLD

param_mohex expand_threshold 0

By such, MoHex will expand a leaf at its first visit.
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B.7 NEURAL NET TRAINING

The neural network was trained using stochastic gradient descent with momentum 0.9. The batch
size is 128, initial learning rate is 0.005, with an annealing factor 0.9 each iteration until a minimum
learning rate 0.000005 is reached. Note that our initial learning rate is order of smaller than that of
AlphaZero because our batch-size is 32 times smaller. At each iteration, we train the neural network
for 5 epochs and then pass the obtained model to MCTS workers for next iteration game generation.
L2 regularization is set to c = 0.0001.

The neural network we used is exactly the same as in (Gao et al., 2018b), containing 10 residual
blocks, each with 32 filters.

B.8 MCTS SELFPLAY

We use 60 parallel MCTS workers for selfplay, each producing 200 games each iteration. We reuse
the subtree in each selfplay game (by configuring param_mohex reuse_subtree 1). Unlike
Go, Shogi and Chess, for N×N Hex, the maximum game length is N2, therefore we do not specify
a resign threshold during selfplay, either maximum game length. To accommodate the swap rule in
Hex, for each selfplay game, Black starts first by uniformly sampling a cell on the board.

B.9 COMPUTATION HARDWARE

We use the same hardware for neural network training and selfplay game generation. Specifically,
the computer has an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz with 56 processors with 500
GB RAM, and 6 Tesla P100 GPUs each with 16 GB RAM. During selfplay, the parallel workers are
evenly distributed to the available GPUs.

B.10 TURN OFF DATA AUGMENTATION IN 3HNN DYNAMICALLY

The data augmentation error in Eq. 3, i.e., max(−zs,0)
|A(s)|

∑
a′∈A(s)(zs + q(s, a′))2, assumes that in

the selfplay game both players are selecting the best actions produced by search. This assumption
does not hold when dithering threshold η > 0. We use a scheme to that disables data augmentation
action-value error in Eq. 3 when Nmoves(s) ≤ η, where Nmoves(s) is the number of moves that
have played in game state s. All AlphaZero-3HNN training uses this scheme except Figures 2
and 5, which either used data augmentation all the time or removed it off totally.

B.11 MATCH CONFIGURATION

For MoHex 2.0, we use the default setting but restrict to 10000 iteration MCTS, which is equivalent
to the following:

param_mohex use_rave 1
param_mohex uct_bias_constant 0.22
param_mohex progressive_bias 2.47
param_mohex max_games 10000

For MoHex with 2HNN or 3HNN, we use the following:

param_mohex use_rave 0
param_mohex uct_bias_constant 0.0
param_mohex progressive_bias 1.5
param_mohex max_games 800
param_mohex use_playout_constant 0.0

The difference for 2HNN and 3HNN is that, for 2HNN, we always set param_mohex
expand_threshold 0, while for 3HNN, other non-zero thresholds are also used as specified
in the context.
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Figure 5: AlphaZero-3HNN training with action-value error augmentation removed for all game
states. On random game states, the gap between predictions of action-value and state-value heads
increased.
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Figure 6: AlphaZero-3HNN training on 8×8 Hex, with nmcts = 160, η = 30, α = 0.15, cpuct =
1.5, expand threshold 3. These results were obtained on a machine with Intel(R) Xeon(R) W-2145
CPU @ 3.70GHz with 16 processors and two Titan GPUs each with 12GB RAM. In each iteration,
30 parallel selfplay workers were used.

C ADDITIONAL RESULTS

C.1 TURN OFF DATA AUGMENTATION IN 3HNN

We also tried to remove the data augmentation action-value error in Eq. 3 for all game states. Fig-
ure 5 shows the learning results, which implies that the action-value learning is strongly correlated
to policy learning. That is, the action-value error is close to state-value on playing generated data,
while on randomly produced examples, it is significantly larger, presumably because randomly sam-
pled game states are seldom played by search algorithm from the beginning of the game.

C.2 ON 8×8 HEX

To show the robustness of AlphaZero-3HNN, we present additional experiment results on 8×8 Hex
in Figure 6, measured using the following datasets.

• A publicly available 8×8 Hex game set (Gao et al., 2017b) produced by strong search
algorithms in benzene. The test set contains 39373 examples.

• A set of randomly sampled but perfectly labelled game states. This set contains 58590
examples.

D VISUALIZATION

We implemented an visualization tool using HexGUI 2. Figure 3 shows an illustration of the policy
and action-value learned by 3HNN.

2accessed by https://github.com/ryanbhayward/hexgui
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Figure 7: Left subfigure is obtained by inferring the 3HNN from iteration 70 in Figure 3; right
subfigure is the ground truth of each cell (black means first player win, assuming black plays first).
For each cell, the upper number is the prior probability from policy head, the lower number is the
action estimate from action-value head. Note that the action-value is with respect to the player
to play after taking that action. The policy head provided a non-zero probabilities at only three
strongest central openings, while the action-value head provides a set of estimates that are mostly
consistent to the ground truth of each opening move.
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