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ABSTRACT

Robustness verification that aims to formally certify the prediction behavior of
neural networks has become an important tool for understanding the behavior of a
given model and for obtaining safety guarantees. However, previous methods are
usually limited to relatively simple neural networks. In this paper, we consider the
robustness verification problem for Transformers. Transformers have very com-
plicated self-attention layers that create many challenges for verification, includ-
ing cross-nonlinearity and cross-position dependency that have not been solved in
previous work. We resolve these key challenges and develop the first verification
algorithm for Transformers. The certified robustness bounds computed by our
method are significantly tighter than those by naive Interval Bound Propagation,
and they also consistently reflect the importance of different words in sentiment
analysis and thus are meaningful in practice.

1 INTRODUCTION

Deep networks have been successfully applied to many domains. However, a major criticism is that
these black box models are difficult to analyze and their behavior is not guaranteed. Moreover, it
has been shown that the predictions of deep networks become unreliable and unstable when tested
in unseen situations, e.g., in the presence of small and adversarial perturbation to the input (Szegedy
et al., 2013; Goodfellow et al., 2014). Therefore, neural network verification has become an im-
portant tool for analyzing and understanding the behavior of neural networks, with applications in
safety-critical applications (Katz et al., 2017; Julian et al., 2019), model explanation (Shih et al.,
2018) and robustness analysis (Gehr et al., 2018; Weng et al., 2018; Singh et al., 2019).

Formally, a neural network verification algorithm aims to provably characterize the prediction of a
network within some input space. For example, given a K-way classification model f : Rd → RK ,
we can verify some linear specification (defined by a vector c) as below:

min
x

∑
i

cifi(x) s.t. x ∈ S, (1)

where S is a predefined input space. For example, in the robustness verification problem that we
are going to focus on in this paper, S = {x | ‖x − x0‖p ≤ ε} is defined as some small `p-ball
around the original example x0, and setting up c = 1y0 − 1y can verify whether the logit output of
class y0 is always greater than another class y within S. This is a nonconvex optimization problem
which makes computing the exact solution challenging, and thus algorithms are recently proposed to
find lower bounds of Eq. (1) in order to efficiently obtain a safty guarantee (Gehr et al., 2018; Weng
et al., 2018; Zhang et al., 2018; Singh et al., 2019). Moreover, extension of these algorithms can be
used for verifying some properties beyond robustness, such as rotation/shift invariance (Singh et al.,
2019) and correctness verification (Yang & Rinard, 2019).

However, most of existing verification methods only work for relatively simple neural network ar-
chitectures, such as MLP, CNN, and RNN, and cannot handle more complicated structures. In this
paper, we develop the first robustness verification algorithm for Transformers (Vaswani et al., 2017)
with self-attention layers. Transformers have been widely used in natural language processing (De-
vlin et al., 2018; Yang et al., 2019; Liu et al., 2019) and also domains beyond NLP (Parmar et al.,
2018; Kang & McAuley, 2018; Li et al., 2019b; Su et al., 2019; Li et al., 2019a). For each frame in
the input sequence, we aim to compute a lower bound ε such that when this frame is perturbed within
an `p-ball centered at the original frame and with a radius of ε, the model prediction is certified to
be unchanged. For doing this, we adopt the linear-relaxation framework – we recursively propagate
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and compute linear lower bound and upper bound for each neuron with respect to the input within
the perturbation set S.

We resolve several particular challenges in verifying Transformers. First, Transformers with self-
attention layers have a more complicated architecture. Unlike simpler networks, they cannot be
written as multiple layers of linear transformations or element-wise operations. Therefore, we need
to propagate linear bounds differently for self-attention layers. Second, dot products, softmax, and
weighted summation in self-attention layers involve multiplication or division of two variables under
perturbation, namely cross-nonlinearity, which is not present in MLP or CNN. Ko et al. (2019) han-
dled it for RNN with a gradient descent to optimize parameters for linear bounds, which is inefficient
due to hundreds of iterations. In contrast, we derive closed-form linear bounds that can be computed
in O(1) complexity. Third, neurons in each position after a self-attention layer are dependent on
all neurons in different positions before the self-attention, namely cross-position dependency. It is
different from the case in RNN where neurons in each position depend on only the previous one
position and the current input. The backward process used by previous work (Zhang et al., 2018;
Boopathy et al., 2019; Ko et al., 2019) tracks all such dependency during propagation and thus is
costly in time and memory. To resolve this, we introduce a more efficient forward process to prop-
agate bounds in a forward manner for self-attention layers, and also enable the backward process
for other layers to utilize linear bounds computed by the forward process. In this way, there is no
cross-position dependency in the backward process which is relatively slower but produces tighter
bounds. Combined with the forward process, the complexity of the backward process is reduced by
O(n) for input length n, while the computed bounds remain comparably tight.

Our contributions are summarized below:

• We propose an algorithm for verifying the robustness of Transformers with self-attention
layers. To the best of our knowledge, this is the first method for verifying Transformers.

• We resolve key challenges in verifying Transformers, including cross-nonlinearity and
cross-position dependency, for efficient and effective verification. The bounds we compute
are significantly tighter than those by a naive Interval Bound Propagation (IBP) method.

• We quantitatively and qualitatively show that the certified lower bounds we compute con-
sistently reflect the importance of different words in sentiment analysis, which justifies that
the computed bounds are meaningful in practice.

2 RELATED WORK

Robustness Verification for Neural Networks. It has been observed that neural networks are
vulnerable to small input perturbation, and thus it becomes important to verify the robustness of
neural networks. Given an input x0 and a small region Bp(x0, ε) := {x | ‖x − x0‖p ≤ ε}, the
goal is to verify whether the prediction of the neural network is unchanged within this region. This
problem can be mathematically formulated as Eq. (1). If Eq. (1) is solved, then we can derive the
minimum adversarial perturbation of x by conducting binary search on ε. Equivalently, we obtain
the maximum ε such that any perturbation within Bp(x0, ε) cannot change the predicted label.

Unfortunately, due to the nonconvexity of model f , solving Eq. (1) is NP-hard even for a simple
ReLU network (Katz et al., 2017). Therefore, we can only hope to compute the lower bound of Eq.
(1) efficiently. Many algorithms have been proposed for computing the lower bounds in the past
few years, including the convex polytope technique (Wong & Kolter, 2018), abstract interpretation
method (Gehr et al., 2018; Singh et al., 2019) and reachability analysis methods (Dvijotham et al.,
2018; Weng et al., 2018; Zhang et al., 2018; 2019; Boopathy et al., 2019; Ko et al., 2019). However,
existing methods are mostly limited to verify networks with relatively simple architectures, such as
MLP, CNN, and RNN, while none of them are able to handle complicated Transformers.

Transformers and Self-Attentive Models. Transformers (Vaswani et al., 2017) based on the self-
attention mechanism, further with pre-training on large-scale corpora, such as BERT (Devlin et al.,
2018), XLNet (Yang et al., 2019), RoBERTa (Liu et al., 2019), achieved state-of-the-art performance
on many NLP tasks. Self-attentive models are also useful beyond NLP, including VisualBERT for
extracting features from both text and images (Li et al., 2019b; Su et al., 2019), image transformer
for image generation (Parmar et al., 2018), acoustic models for speech recognition, sequential rec-
ommendation (Kang & McAuley, 2018) and graph embedding (Li et al., 2019a).
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The robustness of NLP models has been studied, especially many methods have been proposed to
generate adversarial examples (Papernot et al., 2016; Jia & Liang, 2017; Zhao et al., 2017; Alzantot
et al., 2018; Cheng et al., 2018; Ebrahimi et al., 2018). In particular, Hsieh et al. (2019) showed
that Transformers are more robust than LSTMs.However, there is not much work on robustness
verification for NLP models. Ko et al. (2019) verified RNN/LSTM. Jia et al. (2019) used Interval
Bound Propagation (IBP) for robustness training of CNN and LSTM. In this paper, we propose the
first verification method for Transformers.

3 METHODOLOGY

3.1 OVERVIEW

We aim to verify the robustness of a Transformer whose input is a sequence of frames X =
[x(1),x(2), · · · ,x(n)]. We consider a 2-class text classification task, where x(i) is a word embedding
and the model outputs a score yc(X) for each class c (c ∈ {0, 1}). Nevertheless, our method for
verifying self-attentive models is general and can also be applied in other applications.

For a clean input sequence X0 = [x
(1)
0 ,x

(2)
0 , · · · ,x(n)

0 ] correctly classified by the model, we assume
that r(1 ≤ r ≤ n) is the only perturbed position for simplicity. Therefore, the perturbed input will
belong to Sε := {X = [x(1),x(2), · · · ,x(n)] : ‖x(r)−x

(r)
0 ‖p ≤ ε, x(i) = x

(i)
0 ,∀i 6= r}. Assuming

that c is the gold class, the goal of robustness verification is to compute{
min
X∈S

yc(X)− y1−c(X)

}
:= δε(X).

If δε(X) > 0, the output score of the correct class will always be larger than the wrong one within
Sε. As mentioned previously, computing the exact values of δε(X) is NP-hard, and thus our goal is
to efficiently compute a lower bound δLε (X) ≤ δε(X).

3.2 BASE FRAMEWORK

We obtain δLε (X) by computing the bounds of each neuron when X is perturbed within Sε (δLε
can be regarded as a final neuron). A Transformer layer can be decomposed into a number of
sub-layers, where each sub-layer contains neurons after some operation, and the operations can be
classified into linear transformations, unary nonlinear functions, and operations in self-attention that
we handle specially. Each sub-layer contains n positions in the sequence and each position contains
a group of neurons. We assume that the Transformer we verify has m sub-layers in total, and the
value of the j-th neuron at the i-th position in the l-th sub-layer is Φ

(l,i)
j (X), where Φ(l,i)(X) is a

vector for the specified sub-layer and position. Specially, Φ(0,i) = x(i) taking l = 0. We aim to
compute a global lower bound f (l,i),L

j and a global upper bound f (l,i),U
j of Φ

(l,i)
j (X) for X ∈ Sε.

We compute bounds from the first sub-layer to the last sub-layer. For neurons in the l-th layer, we
aim to represent their bounds as linear functions of neurons in a previous layer, the l′-th layer:

n∑
k=1

Λ
(l,i,l′,k),L
j,: Φ(l′,k)(X) + ∆

(l,i,l′),L
j ≤ Φ

(l,i)
j (X) ≤

n∑
k=1

Λ
(l,i,l′,k),U
j,: Φ(l′,k)(X) + ∆

(l,i,l′),U
j , (2)

where Λ(l,i,l′,k),L,∆(l,i,l′),L and Λ(l,i,l′,k),U ,∆(l,i,l′),U are parameters of linear lower bounds and
upper bounds respectively. Using linear bounds enables us to efficiently compute bounds with a
reasonable tightness. We initially have Λ(l,i,l,i),L = Λ(l,i,l,i),U = I and ∆(l,i,l),L = ∆(l,i,l),U = 0.
Thereby the right-hand-side of Eq. (2) equals to Φ

(l,i)
j (X) when l′ = l. Generally, we use a

backward process to propagate the bounds to previous sub-layers, by substituting Φ(l′,i) with linear
functions of previous neurons. It can be recursively conducted until the input layer l′ = 0. Since
Φ(0,k) = x(k) = x

(k)
0 (k 6= r) is constant, we can regard the bounds as linear functions of Φ(0,r) =

x(r), and we take the global bounds for x(r) ∈ Bp(x(r)
0 , ε):

f
(l,i),L
j = −ε ‖ Λ

(l,i,0,r),L
j,: ‖q +

n∑
k=1

Λ
(l,i,0,k),L
j,: x

(k)
0 + ∆

(l,i,0),L
j , (3)
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f
(l,i),U
j = ε ‖ Λ

(l,i,0,r),U
j,: ‖q +

n∑
k=1

Λ
(l,i,0,k),U
j,: x

(k)
0 + ∆

(l,i,0),U
j , (4)

where 1/p+1/q = 1 with p, q ≥ 1. This follows the CROWN framework (Weng et al., 2018; Zhang
et al., 2018) but they only supported feed-forward networks and we will discuss how to obtain handle
self-attention layers. Moreover, we will show in Section 3.4 that we do not fully use a backward
process for self-attentive models. Instead, we combine the backward process with a forward process
to reduce the computational complexity.

3.3 LINEAR TRANSFORMATIONS AND UNARY NONLINEAR FUNCTIONS

Linear transformations and unary nonlinear functions are basic operations in neural networks. We
show how bounds Eq. (2) at the l′-th sub-layer are propagated to the (l′ − 1)-th layer.

3.3.1 LINEAR TRANSFORMATIONS

If the l′-th sub-layer is connected with the (l′ − 1)-th sub-layer with a linear transformation
Φ(l′,k)(X) = W(l′)Φ(l′−1,k)(X) +b(l′) where W(l′),b(l′) are parameters of the linear transforma-
tion, we propagate the bounds to the (l′ − 1)-th layer by substituting Φ(l′,k)(X):

Λ(l,i,l′−1,k),L/U = Λ(l,i,l′,k),L/UW(l′), ∆(l,i,l′−1),L/U = ∆(l,i,l′),L/U+(

n∑
k=1

Λ(l,i,l′,k),L/U )b(l′),

where “L/U” means that the equations hold for both lower bounds and upper bounds respectively.

3.3.2 UNARY NONLINEAR FUNCTIONS

If the l′-th layer is obtained from the (l′−1)-th layer with an unary nonlinear function Φ
(l′,k)
j (X) =

σ(l′)(Φ
(l′−1,k)
j (X)), to propagate linear bounds over the nonlinear function, we first bound

σ(l′)(Φ
(l′−1,k)
j (X)) with two linear functions of Φ

(l′−1,k)
j (X):

α
(l′,k),L
j Φ

(l′−1,k)
j (X) + β

(l′,k),L
j ≤ σ(l′)(Φ

(l′−1,k)
j (X)) ≤ α(l′,k),U

j Φ
(l′−1,k)
j (X) + β

(l′,k),U
j ,

where α(l′,k),L/U
j , β

(l′,k),L/U
j are parameters such that the inequation holds for all Φ

(l′−1,k)
j (X)

within its bounds computed previously. Such linear relaxations can be done for different functions
respectively. We provide detailed bounds for functions involved in Transformers in Appendix A.

We then back propagate the bounds:

Λ
(l,i,l′−1,k),L/U
:,j = α

(l′,k),L/U
j Λ

(l,i,l′,k),L/U
:,j,+ + α

(l′,k),U/L
j Λ

(l,i,l′,k),L/U
:,j,− ,

∆
(l,i,l′−1),L/U
j = ∆

(l,i,l′),L/U
j + (

n∑
k=1

β
(l′,k),L/U
j Λ

(l,i,l′,k),L/U
:,j,+ + β

(l′,k),U/L
j Λ

(l,i,l′,k),L/U
:,j,− ),

where Λ
(l,i,l′,k),L/U
:,j,+ and Λ

(l,i,l′,k),L/U
:,j,− mean to retain positive and negative elements in vector

Λ
(l,i,l′,k),L/U
:,j respectively and set other elements to 0.

3.4 SELF-ATTENTION MECHANISM

Self-attention layers are the most challenging parts for verifying Transformers. We assume that
Φ(l−1,i)(X) is the input to a self-attention layer. We describe our method for computing bounds for
one attention head, and bounds for different heads of the multi-head attention in Transformers can
be easily concatenated. Φ(l−1,i)(X) is first linearly projected to queries q(l,i)(X), keys k(l,i)(X),
and values v(l,i)(X) with different linear projections, and their bounds can be obtained as described
in Section 3.3. We also keep their linear bounds that are linear functions of x(r):

Ω
(l,i),q/k/v,L
j,: x(r) + Θ

(l,i),q/k/v,L
j ≤ (q/k/v)

(l,i)
j (X) ≤ Ω

(l,i),q/k/v,U
j,: x(r) + Θ

(l,i),q/k/v,U
j ,

where q/k/v and q/k/v mean that the inequation holds for queries, keys and values respectively.
We then bound the output of the self-attention layer starting from q(l,i)(X), k(l,i)(X), v(l,i)(X).
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Bounds of Multiplications and Divisions We bound multiplications and divisions in the self-
attention mechanism with linear functions. We aim to bound bivariate function z = xy or z =
x
y (y > 0) with two linear functions zL = αLx + βLy + γL and zU = αUx + βUy + γU , where
x ∈ [lx, ux], y ∈ [ly, uy] are bounds of x, y obtained previously. For z = xy, we derive optimal
parameters: αL = ly , αU = uy , βL = βU = lx, γL = −lxly , γU = −lxuy . We provide a proof in
Appendix B. However, directly bounding z = x

y is tricky; fortunately, we can bound it indirectly by
first bounding a unary function y = 1

y and then bounding the multiplication z = xy.

A Forward Process For the self-attention mechanism, instead of using the backward process like
CROWN (Zhang et al., 2018), we compute bounds with a forward process which we will show later
that it can reduce the computational complexity. Attention scores are computed from q(l,i)(X) and
k(l,i)(X): S

(l)
i,j = (q(l,i)(X))Tk(l,j)(X) =

∑dqk
k=1 q

(l,i)
k (X)k

(l,j)
k (X), where dqk is the dimension

of q(l,i)(X) and k(l,j)(X). For each multiplication q
(l,i)
k (X)k

(l,j)
k (X), it is bounded by:

q
(l,i)
k (X)k

(l,j)
k (X) ≥ α(l,i,j),L

k q
(l,i)
k (X) + β

(l,i,j),L
k k

(l,j)
k (X) + γ

(l,i,j),L
k

q
(l,i)
k (X)k

(l,j)
k (X) ≤ α(l,i,j),U

k q
(l,i)
k (X) + β

(l,i,j),U
k k

(l,j)
k (X) + γ

(l,i,j),U
k .

We then obtain the bounds of S
(l)
i,j :

Ω
(l,i),s,L
j,: x(r) + Θ

(l,i),s,L
j ≤ S

(l)
i,j ≤ Ω

(l,i),s,U
j,: x(r) + Θ

(l,i),s,U
j

Ω
(l,i),s,L/U
j,: =

∑
α

(l,i,j),L/U
k >0

α
(l,i,j),L/U
k Ω

(l,i),q,L/U
k,: +

∑
α

(l,i,j),L/U
k <0

α
(l,i,j),L/U
k Ω

(l,i),q,U/L
k,: +

∑
β
(l,i,j),L/U
k >0

β
(l,i,j),L/U
k Ω

(l,j),k,L/U
k,: +

∑
β
(l,i,j),L/U
k <0

β
(l,i,j),L/U
k Ω

(l,j),k,U/L
k,:

Θ
(l,i),s,L/U
j =

∑
α

(l,i,j),L/U
k >0

α
(l,i,j),L/U
k Θ

(l,i),q,L/U
k +

∑
α

(l,i,j),L/U
k <0

α
(l,i,j),L/U
k Θ

(l,i),q,U/L
k +

∑
β
(l,i,j),L/U
k >0

β
(l,i,j),L/U
k Θ

(l,j),k,L/U
k +

∑
β
(l,i,j),L/U
k <0

β
(l,i,j),L/U
k Θ

(l,j),k,U/L
k +

dqk∑
k=1

γ
(l,i,j),L/U
k .

In this way, linear bounds of q(l,i)(X) and k(l,i)(X) are forward propagated to S
(l)
i,j . Attention scores

are normalized into attention probabilities with a softmax, i.e. S̃
(l)
i,j = exp(S

(l)
i,j)/(

∑n
k=1 exp(S

(l)
i,k)),

where S̃
(l)
i,j is a normalized attention probability. exp(S

(l)
i,j) is an unary nonlinear function and can

be bounded by α(l),L/U
i,j S

(l)
i,j +β

(l),L/U
i,j . So we forward propagate bounds of S

(l)
i,j to bound exp(S

(l)
i,j)

with Ω
(l,i),e,L/U
j,: x(r) + Θ

(l,i),e,L/U
j , where:{

Ω
(l,i),e,L/U
j,: = α

(l),L/U
i,j Ω

(l,i),s,L/U
j,: Θ

(l,i),e,L/U
j = α

(l),L/U
i,j Θ

(l,i),s,L/U
j + β

(l),L/U
i,j α

(l),L/U
i,j ≥ 0,

Ω
(l,i),e,L/U
j,: = α

(l),L/U
i,j Ω

(l,i),s,U/L
j,: Θ

(l,i),e,L/U
j = α

(l),L/U
i,j Θ

(l,i),s,U/L
j + β

(l),L/U
i,j α

(l),L/U
i,j < 0.

By summing up bounds of each exp(S
(l)
i,k), linear bounds can be further propagated to∑n

k=1 exp(S
(l)
i,k). With bounds of exp(S

(l)
i,j) and

∑n
k=1 exp(S

(l)
i,k) ready, we forward propagate

the bounds to S̃
(l)
i,j with a division similarly to bounding q

(l,i)
k (X)k

(l,j)
k (X). The output of the

self-attention Φ(l,i)(X) is obtained with a summation of v(l,j)(X) weighted by attention proba-
blity S̃

(l)
i,k: Φ

(l,i)
j (X) =

∑n
k=1 S̃

(l)
i,kv

(l,k)
j (X), which can be regarded as a dot product of S̃

(l)
i and

ṽ
(l,j)
k (X), where ṽ

(l,j)
k (X) = v

(l,k)
j (X) whose bounds can be obtained from those of v

(l,k)
j (X)

with a transposing. Therefore, bounds of S̃
(l)
i,k and ṽ

(l,j)
k (X) can be forward propagated to Φ(l,i)(X)

similarly to bounding S
(l)
i,j . In this way, we obtain the output bounds of the self-attention.

Ω
(l′,i),Φ,L
j,: x(r) + Θ

(l′,i),Φ,L
j ≤ Φ(l′,i)(X) ≤ Ω

(l′,i),Φ,U
j,: x(r) + Θ

(l′,i),Φ,U
j . (5)
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Backward Process to Self-Attention Layers When computing bounds for a later sub-layer, the l-
th sub-layer, using the backward process, we directly propagate the bounds at the the closest previous
self-attention layer assumed to be the l′-th layer, to the input layer, and we skip other previous sub-
layers. The bounds propagated to the l′-th layer are as Eq. (2). We substitute Φ(l′,k)(X) with linear
bounds Eq. (5):

Λ
(l,i,0,k),L/U
j,: = I(k = r)

n∑
k′=1

Λ
(l,i,l′,k′),L/U
j,:,+ Ω

(l′,k),Φ,L/U
j,: + Λ

(l,i,l′,k′),L/U
j,:,− Ω

(l′,k),Φ,U/L
j,: ,

∆
(l,i,0),L/U
j = ∆

(l,i,l′,L/U)
j +

n∑
k=1

Λ
(l,i,l′,k),L/U
j,:,+ Θ

(l′,k),Φ,L/U
j + Λ

(l,i,l′,k),L/U
j,:,− Θ

(l′,k),Φ,U/L
j .

We take global bounds as Eq. (3) and Eq. (4) to obtain the bounds of the l-th layer.

Advantageous of Combining the Backward Process with a Forward Process Introducing a
forward process can significantly reduce the complexity of verifying Transformers. With the back-
ward process only, we need to compute Λ(l,i,l′,k) and ∆(l,i,l′) (l′ ≤ l), where the major cost is on
Λ(l,i,l′,k) and there are O(m2n2) such matrices to compute. The O(n2) factor is from the depen-
dency between all pairs of positions in the input and output respectively, which makes the algorithm
inefficient especially when the input sequence is long. In contrast, the forward process represents
the bounds as linear functions of the perturbed position only instead of all positions by computing
Ω(l,i) and Θ(l,i). The major cost is on Ω(l,i) while there are onlyO(mn) such matrices and the sizes
of Λ(l,i,l′,k) and Ω(l,i) are comparable. We combine the backward process and the forward process.
The number of matrices Ω is O(mn) in the forward process, and for the backward process, since
we do not propagate bounds over self-attention layers and there is no cross-position dependency in
other sub-layers, we only compute Λ(l,i,l′,k) such that i = k, and thus the number of matrices Λ is
reduced to O(m2n). So the total number of matrices Λ and Ω we compute is O(m2n) and is O(n)
times smaller than O(m2n2) when only the backward process is used. Moreover, the backward
process makes bounds tighter compared to solely the forward one, as we show in Appendix C.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on two sentiment analysis datasets: Yelp (Zhang et al., 2015) and SST-2
(Socher et al., 2013). Yelp consists of 560,000/38,000 examples in the training/test set and SST-
2 consists of 67,349/872/1,821 examples in the training/development/test set. Each example is a
sentence or a sentence segment (for the training data of SST-2 only) labeled with a sentiment polarity.

4.2 MODELS

We verify the robustness of Transformers trained from scratch. For the main experiments, we con-
sider N -layer models (N = 1, 2), with 4 attention heads, a hidden size of 256, and an intermediate
size of 512 and a ReLU activation function for feed-forward layers. We modify the layer normaliza-
tion to remove the variance term, making Transformers better to be verified and the clean accuracies
remain comparable, as we show in Appendix D. Although our method can be in principal applied
to Transformers with any number of layers, we do not use large-scale pre-trained models such as
BERT because they are too deep to be tightly verified, while even a single-layer Transformer already
contains a comparable or larger number of nonlinear operations than MLP, CNN or RNN in previous
work (Zhang et al., 2018; Boopathy et al., 2019; Ko et al., 2019).

4.3 CERTIFIED BOUNDS

We compute certified lower bounds for different models on different datasets. We consider perturba-
tion constrained by `1/`2/`∞-norms. We compare our lower bounds with upper bounds computed
by enumerating all the words in the vocabulary and finding the word closest to the perturbed one
such that the word substitution alters the predicted label, and also Interval Bound Propagation (IBP)
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Dataset N Acc. `p
Upper Lower (IBP) Lower (Ours) Ours vs Upper

Min Avg Min Avg Min Avg Min Avg

Yelp

1 91.46
`1 9.332 13.577 1.1E-4 3.1E-4 0.736 0.925 8% 7%
`2 0.708 0.988 1.1E-4 3.1E-4 0.286 0.362 40% 37%
`∞ 0.119 0.159 1.1E-4 3.1E-4 0.031 0.040 26% 25%

2 91.54
`1 11.095 16.522 1.2E-7 2.2E-7 0.331 0.490 3% 3%
`2 0.840 1.175 1.2E-7 2.2E-7 0.105 0.144 13% 12%
`∞ 0.133 0.188 1.2E-7 2.2E-7 0.010 0.013 7% 7%

SST-2

1 84.13
`1 6.887 8.859 2.6E-4 3.0E-4 2.541 2.747 37% 31%
`2 0.529 0.655 2.6E-4 3.0E-4 0.408 0.448 77% 68%
`∞ 0.088 0.110 2.6E-4 3.0E-4 0.032 0.035 36% 32%

2 83.34
`1 7.003 8.920 4.5E-7 4.7E-7 1.661 1.711 24% 19%
`2 0.536 0.665 4.5E-7 4.7E-7 0.283 0.293 53% 44%
`∞ 0.089 0.114 4.5E-7 4.7E-7 0.022 0.023 25% 20%

Table 1: Clean accuracies, upper bounds, certified lower bounds by IBP and our method respectively,
and the gap between upper bounds and our lower bounds (represented as the percentage of lower
bounds relative to upper bounds), for different models on different datasets. “Min” and “Avg” are
short for “Minimum” and “Average” respectively, standing for ways to integrate bounds computed
for different perturbed positions.

(Dvijotham et al., 2018). For each example, we integrate results from different perturbed positions
by taking the minimum or average respectively. We report the average results on 10 correctly classi-
fied random test examples with sentence lengths no more than 32. Table 1 presents the results. Our
certified lower bounds are significantly larger and thus tighter than those by IBP. The lower bounds
are consistently smaller than the upper bounds, and the gap between the upper bounds and our lower
bounds are reasonable compared with that in previous work (Weng et al., 2018; Boopathy et al.,
2019; Ko et al., 2019). This demonstrates that with the proposed method, the certified robustness
bounds for Transformers can be computed and are comparable to other simpler neural networks.

4.4 EFFECTIVENESS OF COMBINING THE BACKWARD PROCESS WITH A FORWARD PROCESS

Dataset Acc. `p
Fully-Forward Fully-Backward Backward & Forward

Min Avg Time Min Avg Time Min Avg Time

Yelp 91.29
`1 0.541 1.216 18.5 0.893 2.085 507.1 0.892 2.081 29.7
`2 1.060 2.193 16.3 1.599 3.438 505.0 1.597 3.432 35.4
`∞ 0.570 0.976 16.7 0.884 1.585 471.8 0.883 1.582 30.5

SST-2 81.87
`1 0.619 1.020 34.4 0.879 1.442 399.5 0.879 1.442 53.7
`2 0.902 1.406 28.0 1.278 1.977 396.2 1.278 1.977 60.7
`∞ 0.408 0.603 25.0 0.600 0.879 392.5 0.600 0.879 53.8

Table 2: Comparison of certified lower bounds and computation time (sec) by different methods.

In the following, we show the effectiveness of combining the backward process with a forward pro-
cess. We compare our full method (Backward & Forward) with two variations: Fully-Forward prop-
agates bounds in a forward manner for all sub-layers besides self-attention layers; Fully-Backward
computes bounds for all sub-layers including self-attention layers using the backward propagation
and without the forward process. We compare the tightness of bounds and computation time of
the three methods. We use smaller models with the hidden size and the intermediate size reduced
to 64 and 128 respectively, to accommodate Fully-Backward with large computational cost. Ex-
periments are conducted on an NVIDIA TITAN X GPU. Table 2 presents the results. Bounds by
Fully-Forward are significantly looser while Fully-Backward and Backward & Forward are com-
parable. Meanwhile, the computation time of Backward & Forward is significantly smaller of of
Fully-Backward. This demonstrates that our method combining the backward and forward process
can compute bounds much more efficiently while effectively keeping the bounds comparably tight.

4.5 IMPORTANT WORD IDENTIFICATION AND DISCUSSIONS

We further analyze whether our certified bounds are reasonable. Certified lower bounds for different
perturbed words can reflect the sensitivity of the model on the words and also the importance of each
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Type Method Score (SST) Words (Yelp)

Most
Grad 0.39 terrible, great, diner, best, best, food, slow, great, perfect, best
Upper 0.48 terrible, ., ., best, ’, and, slow, great, this, best
Ours 0.57 terrible, great, level, best, best, good, slow, great, perfect, best

Least
Grad 0.46 ., decadent, ., ., ., ., the, ., ., .
Upper 0.12 eat, dinner, typical, boba, torta, bit, new, ,, &, boba
Ours 0.05 ., our, ., ., ., a, the, ., ., .

Table 3: Average importance scores of the most/least important words identified from the examples
respectively by different methods on SST. And also words identified as the most/least important in
corresponding examples by different methods on the larger Yelp dataset, where improperly identified
words are highlighted in red and bold.

word for prediction. Words with smaller lower bounds tend to be more important and vice versa. We
analyze whether the importance of words can be better identified from certified lower bounds. We
use the 1-layer Transformer for instance, and here we only use `2-norm which appears to be more
reasonable for word embedding distance. We compare our method with two baselines that can also
to some extent estimate local vulnerability: Upper uses upper bounds; and Gradient identifies the
word whose embedding has the largest `2-norm of gradients as the most important and vice versa.

Quantitative Analysis on SST SST also contains sentiment labels for all phrases on parse trees,
where the labels range from very negative (0) to very positive (4), and 2 for neutral. For each word,
assuming its label is x, we take |x − 2|, i.e. the distance to the neutral label, as the importance
score, since more neutral words tend to be less important for the sentiment polarity of the sentence.
We evaluate on 100 random test examples and compute the average importance scores of top-K
and bottom-K (K ≤ 3) important words identified by from the examples respectively. In Table 3,
compared to those of baselines, average importance scores of top important words identified by our
lower bounds are larger while the bottom words have smaller scores. This demonstrates that our
method identifies the most and least important words more consistently with the sentiment polarities
of different words and also their importance in prediction.

Qualitative Analysis on Yelp We further qualitatively analyze the results on Yelp which is larger
for a better qualitative analysis. We use 10 random test examples and collect the words identified
as the most and least important respectively in the corresponding examples. In Table 3, most words
identified as the most important by certified lower bounds are exactly words reflecting sentiment
polarities, while those identified as the least important are mostly stopwords. And baselines identify
more words containing no sentiment polarity as the most important and vice versa. This further
demonstrates that our certified lower bounds identify word importance better than baselines and the
bounds are meaningful in practice.

Discussions Gradients provide estimation for an input x0 based on only one data point, while cer-
tified lower bounds consider a neighborhood under perturbation. Upper bounds are discrete and rely
on the distribution of words in the embedding space and thus it cannot well verify the robustness
given an input already mapped to embeddings, while our bounds are computed for continuous em-
beddings and independent on embedding distributions. Moreover, although upper bounds can also
certify the safety for discrete input in pure natural language tasks, it cannot be generalized to the
case when multiple words can be perturbed due to its complexity (Jia et al., 2019), or Transformer
applications with continuous input such as speech recognition or tasks combining images. In con-
trast, our method is general for Transformers or self-attentive models and can be efficiently extended
to other settings or applications in future work.

5 CONCLUSION

We propose the first robustness verification method for Transformers, and resolve key challenges
in verifying Transformers, including cross-nonlinearity and cross-position dependency, for efficient
and effective verification. Our method computes certified lower bounds that are significantly tighter
than those by IBP. Quantitative and qualitative analyses further show that the bounds we compute
are meaningful and can reflect the importance of different words in sentiment analysis.
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A LINEAR BOUNDS OF UNARY NONLINEAR FUNCTIONS

We show in Section 3.3.2 that linear bounds can be propagated over unary nonlinear functions as
long as the unary nonlinear functions can be bounded with linear functions. Such bounds are deter-
mined for each neuron respectively, according to the bounds of the input for the function. Specif-
ically, for a unary nonlinear function σ(x), with the bounds of x obtained previously as x ∈ [l, u],
we aim to derive a linear lower bound αLx+ βL and a linear upper bound αUx+ βU , such that

αLx+ βL ≤ σ(x) ≤ αUx+ βU (∀x ∈ [l, u])

where parameters αL, βL, αU , βU are dependent on l, u and designed for different functions σ(x)
respectively. We introduce how the parameters are determined for different unary nonlinear func-
tions involved in Transformers such that the linear bounds are valid and as tight as possible. Bounds
of ReLU and tanh has been discussed by Zhang et al. (2018), and we further derive bounds of ex,
1
x , x2,

√
x. x2 and

√
x is only used when the layer normalization is not modified for experiments

to study the impact of our modification. For the following description, we define the endpoints of
the function to be bounded within the range as (l, σ(l)) and (u, σ(u)). We describe how the lines
corresponding to the linear bounds of different functions can be determined, and thereby parameters
αL, βL, αU , βU can be determined accordingly.

ReLU For ReLU activation, σ(x) = max(x, 0). ReLU σ(x) is inherently linear on segments
(−∞, 0] and [0,∞) respectively, so we make the linear bounds exactly σ(x) for u ≤ 0 or l ≥ 0; and
for l < 0 < u, we take the line passing the two endpoints as the upper bound; and take σL(x) = 0
when u < |l| and σL(x) = 1 when u ≥ |l| as the lower bound, to minimize the gap between the
lower bound and the original function.

Tanh For tanh activation, σ(x) = 1−e−2x

1+e−2x . tanh is concave for l ≥ 0, and thus we take the line
passing the two endpoints as the lower bound and take a tangent line passing ((l+u)/2, σ((l+u)/2)
as the upper bound. For u ≤ 0, tanh is convex, and thus we take the line passing the two endpoints
as the upper bound and take a tangent line passing ((l+ u)/2, σ((l+ u)/2) as the lower bound. For
l < 0 < u, we take a tangent line passing the right endpoint and (dL, σ(dL))(dL ≤ 0) as the lower
bound, and take a tangent line passing the left endpoint and (dU , σ(dU ))(dU ≤ 0) as the upper
bound. dL and dU can be found with a binary search.

Exp σ(x) = exp(x) = ex is convex, and thus we take the line passing the two endpoints as
the upper bound and take a tangent line passing (d, σ(d)) as the lower bound. Preferably, we take
d = (l + u)/2. However, ex is always positive and used in the softmax for computing normalized
attention probabilities in self-attention layers, i.e. exp(S(l)

i,j) and
∑n
k=1 exp(S

(l)
i,k).

∑n
k=1 exp(S

(l)
i,k)

appears in the denominator of the softmax, and to make reciprocal function 1
x finitely bounded the

range of x should not pass 0. Therefore, we impose a constraint to force the lower bound function to
be always positive, i.e. σL(l) > 0, since σL(l) is monotonously increasing. σLd (x) = ed(x−d)+ed

is the tangent line passing (d, σ(d)). So the constraint σLd (l) > 0 yields d < l + 1. Hence we take
d = min((l + u)/2, l + 1 − ∆d) where ∆d is a small real value to ensure that d < l + 1 such as
∆d = 10−2.

Reciprocal For the reciprocal function, σ(x) = 1
x . It is used in the softmax and layer normaliza-

tion and its input is limited to have l > 0 by the lower bounds of exp(x), and
√
x. With l > 0, σ(x)

is convex. Therefore, we take the line passing the two endpoints as the upper bound. And we take
the tangent line passing ((l + u)/2, σ((l + u)/2)) as the lower bound.

Square For the square function, σ(x) = x2. It is convex and we take the line passing the two
endpoints as the upper bound. And we tan a tangent line passing (d, σ(d))(d ∈ [l, u]) as the lower
bound. We still prefer to take d = (l+u)/2. x2 appears in computing the variance in layer normaliza-
tion and is later passed to a square root function to compute a standard derivation. To make the input
to the square root function valid, i.e. non-negative, we impose a constraint σL(x) ≥ 0(∀x ∈ [l, u]).
σLd (x) = 2d(x − d) + d2 is the tangent line passing (d, σ(d)). For u ≤ 0, x2 is monotonously
decreasing, the constraint we impose is equivalent to σL(u) = 2du − d2 ≥ 0, and with d ≤ 0, we
have d ≥ 2u. So we take d = max((l + u)/2, 2u). For l ≥ 0, x2 is monotonously increasing, the
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constraint we impose is equivalent to σL(l) = 2dl − d2 ≥ 0, and with d ≥ 0, we have d ≤ 2l. So
we take d = max((l+ u)/2, 2l). σLd (0) = −d2 is negative for d 6= 0 and is zero for d = 0. And for
l < 0 < u, the constraint we impose is equivalent to σL(0) = −d2 ≥ 0, and thus we take d = 0.

Square root For the square root function, σ(x) =
√
x. It is used the to compute a standard

derivation in the layer normalization and its input is limited to be positive by the lower bounds of
x2 and a smoothing constant, so l > 0. σ(x) is concave, and thus we take the line passing the two
endpoints as the lower bound and take the tangent line passing ((l+u)/2, σ((l+u)/2)) as the upper
bound.

B LINEAR BOUNDS OF MULTIPLICATIONS AND DIVISIONS

We provide a mathematical proof of optimal parameters for linear bounds of multiplications used in
Section 3.4. We also show that linear bounds of division can be indirectly obtained from bounds of
multiplications and the reciprocal function.

For each multiplication, we aim to bound z = xy with two linear bounding planes zL = αLx +
βLy+γL and zU = αUx+βUy+γU , where x and y are both variables and x ∈ [lx, ux], y ∈ [ly, uy]
are concrete bounds of x, y obtained from previous layers, such that:

zL = αLx+ βLy + γL ≤ z = xy ≤ zU = αUx+ βUy + γU ∀(x, y) ∈ [lx, ux]× [ly, uy]

Our goal is to determine optimal parameters of bounding planes, i.e. αL, βL, γL, αU , βU , γU , such
that the bounds are as tight as possible.

B.1 LOWER BOUND OF MULTIPLICATIONS

We define a difference function FL(x, y) which is the difference between the original function
z = xy and the lower bound zL = αLx+ βLy + γL:

FL(x, y) = xy − (αLx+ βLy + γL)

To make the bound as tight as possible, we aim to minimize the integral of the difference function
FL(x, y) on our concerned area (x, y) ∈ [lx, ux]× [ly, uy], which is equivalent to maximizing

V L =

∫
x∈[lx,ux]

∫
y∈[ly,uy ]

αLx+ βLy + γL (6)

while FL(x, y) ≥ 0 (∀(x, y) ∈ [lx, ux]× [ly, uy]). For an optimal bounding plane, there must exist
a point (x0, y0) ∈ [lx, ux] × [ly, uy] such that FL(x0, y0) = 0 (otherwise we can validly increase
γL to make V L larger). To ensure that FL(x, y) ≥ 0 within the concerned area, we need to ensure
that the minimum value of FL(x, y) is be non-negative. We show that we only need to check cases
when (x, y) is any of (lx, ly), (lx, uy), (ux, ly), (ux, uy), i.e. points at the corner of the considered
area. The partial derivatives of FL are:

∂FL

∂x
= y − αL

∂FL

∂y
= x− βL

If there is (x1, y1) ∈ (lx, ux) × (ly, uy) such that FL(x1, y1) ≤ F (x, y) (∀(x, y) ∈ [lx, ux] ×
[ly, uy]), ∂FL

∂x (x1, y1) = ∂FL

∂y (x1, y1) = 0 should hold. Thereby ∂FL

∂x (x, y), ∂F
L

∂y (x, y) <

0 (∀(x, y) ∈ [lx, x1)× [ly, y1)), and thus FL(lx, ly) < FL(x1, y1) and (x1, y1) cannot be the point
with the minimum value of FL(x, y). On the other hand, if there is (x1, y1)(x1 = lx, y1 ∈ (ly, uy)),
i.e. on one border of the concerned area but not on any corner, ∂FL

∂y (x1, y1) = 0 should hold.

Thereby ∂FL

∂y (x, y) = ∂FL

∂y (x1, y) = 0 (∀(x, y), x = x1 = lx). So FL(x1, y1) = FL(x1, ly) =

FL(lx, ly). This property holds for the other three borders of the concerned area. Therefore, other
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points within the concerned area cannot have smaller function value FL(x, y), so we only need to
check the corners, and the constraints on FL(x, y) become

FL(x0, y0) = 0
FL(lx, ly) ≥ 0
FL(lx, uy) ≥ 0
FL(ux, ly) ≥ 0
FL(ux, uy) ≥ 0

equivalent to 
γL = x0y0 − αLx0 − βLy0

lxly − αL(lx − x0)− βL(ly − y0)− x0y0 ≥ 0
lxuy − αL(lx − x0)− βL(uy − y0)− x0y0 ≥ 0
uxly − αL(ux − x0)− βL(ly − y0)− x0y0 ≥ 0
uxuy − αL(ux − x0)− βL(uy − y0)− x0y0 ≥ 0

(7)

We substitute γL in Eq. (6) with Eq. (7), yielding

V L = V0[(lx + ux − 2x0)αL + (ly + uy − 2y0)βL + 2x0y0]

where V0 =
(ux−lx)(uy−ly)

2 .

We have shown that the minimum function value FL(x, y) within the concerned area cannot appear
in (lx, ux)× (ly, uy), i.e. it can only appear at the border, while (x0, y0) is a point with a minimum
function value FL(x0, y0) = 0, (x0, y0) can also only be chosen from the border of the concerned
area. At least one of x0 = lx and x0 = ux holds.

If we take x0 = lx:

V L1 = V0[(ux − lx)αL + (ly + uy − 2y0)βL + 2lxy0]

And from Eq. (7) we obtain

αL ≤ uxly − lxy0 − βL(ly − y0)

ux − lx

αL ≤ uxuy − lxy0 − βL(uy − y0)

ux − lx
lx ≤ βL ≤ lx ⇔ βL = lx

Then
V L1 = V0[(ux − lx)αL + lx(ly + uy)]

(ux − lx)αL ≤ −lxy0 + min(uxly − βL(ly − y0), uxuy − βL(uy − y0))

= −lxy0 + min(uxly − lx(ly − y0), uxuy − lx(uy − y0))

= (ux − lx) min(ly, uy)

= (ux − lx)ly

So
αL ≤ ly

To maximize V L1 , since now only αL is unknown in V L1 and the coefficient of αL, V0(ux− lx) ≥ 0,
we take αL = ly , and then

V L1 = V0(uxly + lxuy)

is a constant.

For the other case if we take x0 = ux:

V L2 = V0[(lx − ux)αL + (ly + uy − 2y0)βL + 2uxy0]

αL ≥ lxly − uxy0 − βL(ly − y0)

lx − ux

13
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αL ≥ lxuy − uxy0 − βL(uy − y0)

lx − ux
ux ≤ βL ≤ ux ⇔ βL = ux

V L2 = V0[(lx − ux)αL + ux(ly + uy)]

(lx − ux)αL ≤ −uxy0 + min(lxly − βL(ly − y0), lxuy − βL(uy − y0))

= min(lxly − uxly, lxuy − uxuy)

= (lx − ux) max(ly, uy)

= (lx − ux)uy

So
αL ≥ uy

We take αL = uy similarly as in the case when x0 = lx, and then

V L2 = V0(lxuy + uxly)

We notice that V L1 = V L2 , so we can simply adopt the first one. We also notice that V L1 , V
L
2 are

independent of y0, so we may take any y0 within [ly, uy] such as y0 = ly . Thereby, we obtain the a
group of optimal parameters of the lower bounding plane: αL = ly

βL = lx
γL = −lxly

B.2 UPPER BOUND OF MULTIPLICATIONS

We derive the upper bound similarly. We aim to minimize

V U = V0[(lx + ux − 2x0)αU + (ly + uy − 2y0)βU + 2x0y0]

where V0 =
(ux−lx)(uy−ly)

2 .

If we take x0 = lx:

V U1 = V0[(ux − lx)αU + (ly + uy − 2y0)βU + 2lxy0]

αU ≥ uxly − lxy0 − βU (ly − y0)

ux − lx

αU ≥ uxuy − lxy0 − βU (uy − y0)

ux − lx
lx ≤ βU ≤ lx ⇔ βU = lx

Then
V U1 = V0[(ux − lx)αU + lx(ly + uy)]

(ux − lx)αU ≥ −lxy0 + max(uxly − βU (ly − y0), uxuy − βU (uy − y0))

= max(uxly − lxly, uxuy − lxuy)

= (ux − lx) max(ly, uy)

= (ux − lx)uy

So
αU ≥ uy

To minimize V U1 , we take αU = uy , and then

V U1 = V0(lxly + uxuy)

14
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For the other case if we take x0 = ux:

V U2 = V0[(lx − ux)αU + (ly + uy − 2y0)βU + 2uxy0]

αU ≤ lxly − uxy0 − βU (ly − y0)

lx − ux

αU ≤ lxuy − uxy0 − βU (uy − y0)

lx − ux
ux ≤ βU ≤ ux ⇔ βU = ux

Then
V U2 = V0[(lx − ux)αU + ux(ly + uy)]

(lx − ux)αU ≥ −uxy0 + max(lxly − βU (ly − y0), lxuy − βU (uy − y0))

= max(lxly − uxly, lxuy − uxuy)

= (lx − ux) min(ly, uy)

= (lx − ux)ly

So
αU ≤ ly

To minimize V U2 , we take αU = ly , and then

V L2 = V0(lxly + uxuy)

Since V U1 = V U2 , we simply adopt the first case. And V U1 , V U2 are independent of y0, so we may
take any y0 within [ly, uy] such as y0 = ly . Thereby, we obtain a group of optimal parameters of the
upper bounding plane:  αU = uy

βU = lx
γU = −lxuy

B.3 LINEAR BOUNDS OF DIVISIONS

We have shown that closed-form linear bounds of multiplications can be derived. However, we find
that directly bounding z = x

y is tricky. If we try to derive a lower bound zL = αLxβLy + γ for
z = x

y as Appendix B.1, the difference function is

FL(x, y) =
x

y
− (αLx+ βLy + γL)

The partial derivatives of FL are:
∂FL

∂x
=

1

y
− αL

∂FL

∂y
= − x

y2
− βL

If there is (x1, y1) ∈ (lx, ux) × (ly, uy) such that ∂FL

∂x (x, y) = ∂FL

∂y (x, y) = 0, unlike that the
case for multiplications, none of areas [lx, x1) × [ly, y1), [lx, x1) × (y1, uy], (x1, ux] × [ly, y1)

and (x1, ux] × (y1, uy] has guarantees that ∂F
L

∂x (x, y) = ∂FL

∂y (x, y) < 0 for all (x, y) with in the
corresponding area. It is possible that (x1, y1) does have a minimum function value FL(x1, y1)
among all (x, y) ∈ [lx, ux] × [ly, uy], i.e. a minimum function value of FL(x, y) for (x, y) within
the concerned area may appear at a point other than the corners. For example, for lx = 0.05, ux =
0.15, ly = 0.05, uy = 0.15, α = 10, β = −20, γ = 2, the minimum function value of FL(x, y)
for (x, y) ∈ [0.05, 0.15] × [0.05, 0.15] appears at (0.1, 0.1) which is not a corner of [0.05, 0.15] ×
[0.05, 0.15]. This makes it more difficult to derive closed-form parameters such that the constraints
on FL(x, y) are satisfied. Fortunately, we can bound z = x

y indirectly by utilizing bounds of
multiplications and reciprocal functions. We bound z = x

y by first bounding a unary function y = 1
y

and then bounding the multiplication z = xy.
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C TIGHTNESS OF BOUNDS BY THE BACKWARD PROCESS AND FORWARD
PROCESS

We have discussed that combining the backward process with a forward process can reduce com-
putational complexity, compared to the method with the backward process only. But we only use
the forward process for self-attention layers and do not fully use the forward process for all sub-
layers, because bounds by the forward process can be looser than those by the backward process.
We compare the tightness of bounds by the forward process and the backward process respec-
tively. To illustrate the difference, for simplicity, we consider a m-layer feed-forward network
Φ(0) = x, y(l) = W(l)Φ(l−1)(x) + b(l),Φ(l)(x) = σ(y(l)(x))(0 < l ≤ m), where x is the
input vector, W(l) and b(l) are the weight matrix and the bias vector for the l-th layer, y(l)(x) is
the pre-activation vector of the l-th layer, Φ(l)(x) is the vector of neurons in the l-th layer, and σ(·)
is an activation function. Before taking global bounds, both the backward process and the forward
process bound Φ

(l)
j (x) with linear functions of x. When taking global bounds as Eq. (3) and Eq.

(4), only the norm of weight matrix is directly related to the ε in the binary search for certified lower
bounds. Therefore, we measure the tightness of the computed bounds using the difference between
weight matrices for lower bounds and upper bounds respectively. We show how it is computed for
the forward process and the backward process respectively.

C.1 THE FORWARD PROCESS

For the forward process, we bound each neuron Φ
(l)
j (x) with linear functions:

Ω
(l),L
j,: x + Θ

(l),L
j ≤ Φ

(l)
j (x) ≤ Ω

(l),U
j,: x + Θ

(l),U
j

To measure the tightness of the bounds, We are interested in Ω(l),L, Ω(l),U , and also Ω(l),U−Ω(l),L.
Initially,

Ω(0),L/U = I, Θ(0),L/U = 0, Ω(0),U −Ω(0),L = 0

We can forward propagate the bounds of Φ(l−1)(x) to y(l)(x):

Ω
(l),y,L
j,: x + Θ

(l),y,L
j ≤ y

(l)
j (x) ≤ Ω

(l),y,U
j,: x + Θ

(l),y,U
j

where
Ω

(l),y,L/U
j,: =

∑
W

(l)
j,i>0

W
(l)
j,iΩ

(l−1),L/U
i,: +

∑
W

(l)
j,i<0

W
(l)
j,iΩ

(l−1),U/L
i,:

Θ(l),y,L/U =
∑

W
(l)
j,i>0

W
(l)
j,iΘ

(l−1),L/U
i +

∑
W

(l)
j,i<0

W
(l)
j,iΘ

(l−1),U/L
i + b(l)

With global bounds of y(l)(x) which can be obtained as Eq. (3) and Eq. (4), we bound the activation
function:

α
(l),L
j y(l)(x) + β

(l),L
j ≤ σ(y

(l)
j (x)) ≤ α(l),U

j y(l)(x) + β
(l),U
j

And then bounds can be propagated from Φ(l−1)(x) to Φ(l)(x):

Ω
(l),L/U
j,: =

{
α

(l),L/U
j Ω

(l),y,L/U
j,: α

(l),L/U
j ≥ 0

α
(l),L/U
j Ω

(l),y,U/L
j,: α

(l),L/U
j < 0

Θ
(l),L/U
j =

{
α

(l),L/U
j Θ

(l),y,L/U
j + β

(l),L/U
j α

(l),L/U
j ≥ 0

α
(l),L/U
j Θ

(l),y,U/L
j + β

(l),L/U
j α

(l),L/U
j < 0

Therefore,

Ω
(l),U
j,: −Ω

(l),L
j,: = (α

(l),U
j − α(l),L

j )|W(l)
j |(Ω

(l−1),U
j,: −Ω

(l−1),L
j,: ) (8)

illustrates how the tightness of the bounds is changed from earlier layers to later layers.
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C.2 THE BACKWARD PROCESS AND DISCUSSIONS

For the backward process, we bound the neurons in the l-th layer with linear functions of neurons in
a previous layer, the l′-th layer:

Φ(l,l′),L = Λ
(l,l′),L
j,: Φ(l′)(x) + ∆

(l,l′),L
j ≤ Φ(l)(x) ≤ Λ

(l,l′),U
j,: Φ(l′)(x) + ∆

(l,l′),U
j = Φ(l,l′),U

We have shown in Section 3.2 how such bounds can be propagated to l′ = 0, for the case when the
input is sequential. For the nonsequential case we consider here, it can be regarded as a special case
when the input length is 1. So we can adopt the method in Section 3.2 to propagate bounds for the
feed-forward network we consider here. We are interested in Λ(l,l′),L, Λ(l,l′),U and also Λ(l,l′),U −
Λ(l,l′),L. Weight matrices of linear bounds before taking global bounds are Λ(l,0),L,Λ(l,0),U which
are obtained by propagating the bounds starting from Λ(l,l),L = Λ(l,l),U = I. According to bound
propagation described in Section 3.3,

Λ
(l,l′−1),U
:,j −Λ

(l,l′−1),L
:,j = (α

(l′),U
j (Λ

(l,l′),U
:,j,+ −Λ

(l,l′),L
:,j,− )−α(l′),L

j (Λ
(l,l′),L
:,j,+ −Λ

(l,l′),U
:,j,− ))W(l′) (9)

illustrates how the tightness bounds can be measured during the back propagation until l′ = 0.

There is a W(l′) in Eq. (9) instead of |W(l′)| in Eq. (8). The norm of (Ω
(l),U
j,: −Ω

(l),L
j,: ) in Eq. (8) can

easily grow larger as l increases during the forward propagation when ‖W(l)
j ‖ is greater than 1, while

this generally holds for neural networks to have ‖W(l)
j ‖ greater than 1 in feed-forward layers. While

in Eq. (9), W
(l′)
j can have both positive and negative elements and tends to allow cancellations for

different W
(l′)
j,i , and thus the norm of (Λ

(l,l′−1),U
:,j −Λ

(l,l′−1),L
:,j ) tends to be smaller. Therefore, the

bounds computed by the backward process tend to be tighter than those by the forward framework,
which is consistent with our experiment results in Table 2.

D IMPACT OF MODIFYING THE LAYER NORMALIZATION

The original Transformers have a layer normalization after the embedding layer, and two layer
normalization before and after the feed-forward part in each Transformer layer. We modify the
layer normalization, f(x) = w(x− µ)/σ+ b, where x is d-dimensional a vector to be normalized,
µ and σ are the mean and standard derivation of {xi} respectively, and w and b are gain and bias

parameters respectively. σ =
√

(1/d)
∑d
i=1(xi − µ)2 + εs where εs is a smoothing constant. It

involves (xi − µ)2 whose linear lower bound is loose and exactly 0 when the range of the xi − µ
passes 0. When the `p norm of the perturbation is relatively larger, there can be many xi − µ with
ranges passing 0, which can cause the lower bound of σ to be small and thereby the upper bound
of fi(x) to be large. This can make the certified bounds loose. To resolve this, we modify the
layer normalization into f(x) = w(x − µ) + b by removing the standard derivation term. We
use an experiment to study the impact of this modification. We compare the clean accuracies and
certified bounds of the models with modified layer normalization to models with standard layer
normalization and with no layer normalization respectively. Table 4 presents the results. Certified
lower bounds of models with no layer normalization or our modification are significantly tighter
than those of corresponding models with the standard layer normalization. Meanwhile, the clean
accuracies of models with our modification are comparable with those of the original model, and
particularly higher than the 1-layer model with no layer normalization on SST. This demonstrates
that it is worthwhile to modify the layer normalization in Transformers, to make the models better
to be verified while keeping comparable clean accuracies.
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Dataset N LayerNorm Acc. `p
Upper Lower Ours vs Upper

Min Avg Min Avg Min Avg

Yelp

1

Standard 91.64
`1 188.305 197.873 0.012 0.023 6.6E-5 1.2E-4
`2 15.115 15.363 0.010 0.020 6.7E-4 1.3E-3
`∞ 2.029 2.932 0.002 0.005 9.5E-4 1.8E-3

None 91.46
`1 8.023 12.479 0.764 0.953 10% 8%
`2 0.583 0.878 0.298 0.365 51% 42%
`∞ 0.084 0.131 0.030 0.038 36% 29%

Ours 91.46
`1 9.332 13.577 0.736 0.925 8% 7%
`2 0.708 0.988 0.286 0.362 40% 37%
`∞ 0.119 0.159 0.031 0.040 26% 25%

2

Standard 91.96
`1 191.899 201.829 0.003 0.005 1.7E-5 2.3E-5
`2 15.281 15.543 0.002 0.003 1.3E-4 2.1E-4
`∞ 2.002 3.033 0.000 0.001 1.4E-4 1.7E-4

None 91.59
`1 8.145 15.021 0.603 0.751 7% 5%
`2 0.592 1.034 0.134 0.168 23% 16%
`∞ 0.088 0.136 0.011 0.014 13% 10%

Ours 91.54
`1 11.095 16.522 0.331 0.490 3% 3%
`2 0.840 1.175 0.105 0.144 13% 12%
`∞ 0.133 0.188 0.010 0.013 7% 7%

SST

1

Standard 84.06
`1 191.424 195.492 0.008 0.015 4.1E-5 7.4E-5
`2 15.549 15.632 0.006 0.012 3.8E-4 7.9E-4
`∞ 2.262 2.503 0.001 0.003 4.6E-4 1.2E-3

None 82.58
`1 7.282 8.398 2.680 2.838 37% 34%
`2 0.549 0.623 0.437 0.474 80% 76%
`∞ 0.089 0.106 0.034 0.037 39% 35%

Ours 84.13
`1 6.887 8.859 2.541 2.747 37% 31%
`2 0.529 0.655 0.408 0.448 77% 68%
`∞ 0.088 0.110 0.032 0.035 36% 32%

2

Standard 83.23
`1 192.383 196.775 0.003 0.005 1.5E-5 2.4E-5
`2 15.561 15.670 0.002 0.004 1.2E-4 2.3E-4
`∞ 2.258 2.590 0.000 0.001 1.2E-4 2.7E-4

None 83.73
`1 6.759 8.214 1.671 1.707 25% 21%
`2 0.516 0.616 0.285 0.292 55% 47%
`∞ 0.083 0.104 0.023 0.023 27% 22%

Ours 83.34
`1 7.003 8.920 1.661 1.711 24% 19%
`2 0.536 0.665 0.283 0.293 53% 44%
`∞ 0.089 0.114 0.022 0.023 25% 20%

Table 4: Clean accuracies, upper bounds, certified lower bounds by our method of models with
different layer normalization settings.
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