DEEP GEOMETRIC MATRIX COMPLETION: ARE WE DOING IT RIGHT?

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the problem of reconstructing a matrix from a subset of its entries. Current methods, branded as geometric matrix completion, augment classical rank regularization techniques by incorporating geometric information into the solution. This information is usually provided as graphs encoding relations between rows/columns. In this work we propose a simple spectral approach for solving the matrix completion problem, via the framework of functional maps. We introduce the zoomout loss, a multiresolution spectral geometric loss inspired by recent advances in shape correspondence, whose minimization leads to state-of-the-art results on various recommender systems datasets. Surprisingly, for some datasets we were able to achieve comparable results even without incorporating geometric information. This puts into question both the quality of such information and current methods’ ability to use it in a meaningful and efficient way.

1 INTRODUCTION

Matrix completion deals with the recovery of missing values of a matrix from a subset of its entries,

\[
\text{Find } X \text{ s.t. } X \odot S = M \odot S.
\]

Here \(X \) stands for the unknown matrix, \(M \in \mathbb{R}^{m \times n} \) for the ground truth matrix, \(S \) is a binary mask representing the input support, and \(\odot \) denotes the Hadamard product. Since problem (1) is ill-posed, it is common to assume that \(M \) belongs to some low dimensional subspace. Under this assumption, the matrix completion problem can be cast via the least-squares variant,

\[
\min_X \text{ rank } (X) + \frac{\mu}{2} \| (X - M) \odot S \|^2_F.
\]

Relaxing the intractable rank penalty to its convex envelope, namely the nuclear norm, leads to a convex problem whose solution coincides with (2) under some technical conditions (Candes & Recht 2009). Another way to enforce low rank is by explicitly parametrizing \(X \) in factorized form, \(X = YZ^\top \). The rank is upper-bounded by the inner dimensions of \(Y, Z^\top \). A recent study by Arora et al. (2019) suggests that overparametrizing \(X \) as a product of several matrices results in a low rank matrix due to an implicit regularization induced by the gradient descent trajectories. This result is surprising since such models are a priori expected to overfit the training data. Optimization approaches as described above can be thought of as instances of self supervised learning, a machine learning paradigm with the goal of finding an efficient representation of some data by observing only a part of it. Adopting the machine learning nomenclature, we shall henceforth refer to the given entries of \(M \) as training set or training examples, and denote by test set a subset of the (unknown) entries of \(M \) which we shall use for evaluation.

The advent of deep learning platforms equipped with efficient automatic differentiation tools allows the exploration of more sophisticated models that incorporate intricate regularizations, both explicit and implicit. Current approaches for matrix completion, falling under the umbrella of geometric deep learning, generalize the standard deep learning approaches, tailored for structured Euclidean domains, to domains such as general graphs and manifolds. In particular, graph convolutional neural networks (GCNNs) follow the standard architecture of Euclidean CNNs, but replace the Euclidean convolution operator with linear filters constructed using the graph Laplacian. We distinguish between graph based approaches which make use of the bi-partite graph structure of the rating matrix (e.g., Berg et al. 2017), and Geometric matrix completion techniques which make use of side information in
the form of graphs encoding relations between rows/columns (Kalofolias et al., 2014; Monti et al., 2017). While these techniques achieve state-of-the-art results in various tasks, their design is arguably cumbersome and non-intuitive. It has recently been demonstrated that simple architectures perform competitively on several graph analysis tasks (Wu et al., 2019). Such simple techniques have the advantage of being easier to analyze and reproduce.

The literature on matrix completion is vast and it is impossible to fully review it in this brief note. Of particular significance is the pioneering work of Candès & Recht (2009) which stated conditions under which the minimum rank problem (2) and its convex relaxation coincide. This initiated a line of works on nuclear norm minimization, which can be read about in the contemporary review of Li et al. (2019) and the references therein. Another way of enforcing low-rank is via matrix factorization techniques. These methods have the advantage that they do not require an expensive SVD decomposition every iteration like those that rely on nuclear norm minimization. Recent studies (Gunasekar et al., 2017; Arora et al., 2019) came up with the surprising result that given enough entries and independent of the depth, overparametrized deep matrix factorization (DMF) models are equivalent1 to nuclear norm minimization. In the data poor regime these methods differ, as an implicit regularization brought forward by the dynamics of the gradient descent algorithm provides stronger rank regularization. The deeper the network - the stronger the regularization. DMF is an example of a deep linear network, a fully linear network architecture whose popularity is on the rise due to its simplicity and ease of analysis.

Subspace methods are ubiquitous in the data sciences, and it is enough to mention principle component analysis, diffusion maps, Laplacian eigenmaps and their variants (Jolliffe, 2011; Belkin & Niyogi, 2003; Coifman & Lafon, 2006). The latter methods embed the data into the eigenspace of the Laplacian of a graph which has many interesting properties. Kalofolias et al. (2014) were the first to introduce graphs into the convex low-rank matrix recovery problem. Later approaches integrated these graphs into the deep learning framework in what is now called geometric deep learning. We note the works of Monti et al. (2017) who combined geometric matrix completion with recurrent multi-graph neural networks and Berg et al. (2017) who used a graph autoencoder framework based on differentiable message passing to predict the missing entries.

The inspiration for our paper stems from techniques for finding shape correspondence. In particular, the functional maps framework and its variants (Ovsjanikov et al., 2012; 2016), most notably the work of Litany et al. (2017) who combined functional maps with joint diagonalization to solve partial shape matching problems, and the product manifold filter (PMF) (Vestner et al., 2017) and zoomout (Melzi et al., 2019) – two greedy algorithms for correspondence refinement by gradual introduction of high frequencies. This last method lent its name to the loss we define in Section 3.

Contribution. Our contributions are as follows:

- We provide a geometric interpretation for deep matrix factorization (Arora et al., 2019) via
 the functional maps framework.
- We introduce the zoomout loss, a multiresolution spectral geometric loss inspired by recent advances in shape correspondence.
- We show that via a simple shallow and fully linear network, it is possible to obtain state-of-the-art results on various recommendation systems datasets.
- We demonstrate that in some cases the effect of the geometry is only marginal, and results on par with state-of-the-art can be achieved even without it.

2 Background

Spectral graph theory. Let $G = (V, E, \Omega)$ be a (weighted) graph specified by its vertex set V and edge set E, and let Ω be its adjacency matrix. Given a function $x \in \mathbb{R}^{|V|}$ on the vertices, we define the following quadratic form (also known as Dirichlet energy) measuring the variability of the function x on the graph,

$$x^\top L x = \sum_{(a,b) \in E} \omega_{a,b} \left(x(a) - x(b) \right)^2 .$$

1 Under some technical conditions. See (Arora et al., 2019)
The matrix L is called the (combinatorial) graph Laplacian, and is given by $L = D - \Omega$, where $D = \text{diag}(\Omega)$ is the degree matrix. L is symmetric and positive semi-definite and therefore admits a spectral decomposition $L = \Phi \Lambda \Phi^\top$. The graph Laplacian is a discrete generalization of the continuous Laplace-Beltrami operator, and therefore has similar properties. One can think of the eigenpairs (ϕ_i, λ_i) as the graph analogues of "harmonic" and "frequency". A function $x = \sum_{i=1}^{\lvert V \rvert} \alpha_i \phi_i$ on the vertices of the graph whose coefficients α_i are small for large i, demonstrates a "smooth" behaviour on the graph in the sense that the function values on nearby nodes will be similar. A standard approach to promoting such smooth functions on graphs is by using the Dirichlet energy \cite{gade2013spectral} to regularize some loss term. For example, this approach gives rise to the popular bilateral and non-local means filters \cite{gade2013spectral}.

Functional maps. Let $G_1 = (V_1, E_1, \Omega_1)$, $G_2 = (V_2, E_2, \Omega_2)$ be two graphs, and let Φ, Ψ be two orthonormal bases for functions defined on the vertices of these graphs. Given two such functions, $x = \Phi \alpha$ on G_1 and $y = \Psi \beta$ on G_2, one can define a map C between their representations α and β, i.e., $\alpha = \Phi^\top x = C \Psi^\top y = C \beta$. The matrix C represents a linear map between the functional spaces on G_1 and G_2, known as a functional map. Let X be a function defined on the product graph $G_1 \times G_2$, then the functional map is given by projecting X onto the corresponding bases Φ, Ψ, $C = \Phi^\top X \Psi$. Using the SVD, one can decompose $X = U \Sigma V^\top$ to interpret C as a mapping between a function on one graph and a function on the other. To get X back from the functional map, one can use $X = \Phi C \Psi^\top$. For computational reasons, it is common to use truncated bases Φ, Ψ, in which case the last equality holds only approximately.

The structure of the functional map depends on the properties of the chosen bases and the functions it maps. A common choice for a basis is the aforementioned Laplacian eigenbasis, building on the assumption that the signals involved are smooth with respect to the graphs. While this is a useful model, it assumes that the graphs encode the geometry in an adequate way. In real world problems these graphs are only approximate, constructed from heuristics associated with the row and the column spaces. Given better graphs, a simpler structure of the functional map emerges. For example, by introducing two orthonormal matrices P and Q, one can make the functional map $C = (\Phi P)^\top X (\Phi Q)$ diagonal. These orthonormal matrices can be thought of as a way of aligning the bases Φ, Ψ, with the principal axes of X.

3 Spectral geometric matrix completion

We assume that we are given a set of samples from the unknown matrix $M \in \mathbb{R}^{m \times n}$, encoded by a binary mask S, and two graphs G_r, G_c, encoding relations between the rows and the columns, respectively. Denote the Laplacians of these graphs and their spectral decompositions by $L_r = \Phi \Lambda_r \Phi^\top$, $L_c = \Psi \Lambda_c \Psi^\top$. Our approach relies on a minimization problem of the form

$$
\min_X E_z(X) + \mu_r \text{trace}(X^\top L_r X) + \mu_c \text{trace}(XL_cX^\top),
$$

with E_z denoting the data term that we discuss in the sequel. The other two terms in (4) are the Dirichlet energies of X computed on G_r, G_c, as defined in (3). These energies measure the variability of X along neighbouring nodes on these graphs. Using $X = \Phi C \Psi^\top$ and the spectral decompositions of L_r, L_c, we can equivalently write them in terms of C,

$$
\text{trace}(X^\top L_r X) = \text{trace}(\Psi C^\top \Phi^\top L_r \Phi C \Psi^\top) = \text{trace}(C^\top \Lambda_r C),
$$

$$
\text{trace}(XL_cX^\top) = \text{trace}(\Phi C \Psi^\top L_c \Psi C^\top \Phi^\top) = \text{trace}(C \Lambda_c C^\top).
$$

As mentioned above, the input graphs are typically constructed from a set of heuristically gathered features which may provide a poor representation of the latent geometry. One way to account for this inaccuracy could be to include the features in our optimization. This will induce, through a complicated nonlinear dependence, a different metric (i.e., adjacency matrix) and a different graph Laplacian. This approach lies at the heart of smoothing models based on conditional random fields (CRFs) used in image segmentation (see for example \cite{krevenbuehler2011spectral}). We adopt a different approach by working in the spectral domain. Switching to the spectral domain allows us to modify the metric indirectly by applying orthogonal transformations, P and Q, to the bases Ψ, Φ.

Under review as a conference paper at ICLR 2020
The purpose of these transformations is to rotate Ψ, Φ, in a way that will simplify the structure of C. For example, it is possible to diagonalize C by an appropriate choice of P, Q via the SVD decomposition.

Since our method relies on the premise that the matrix M is smooth with respect to some graphs, our interest is in modified bases $\Phi P, \Psi Q$, which arise from the eigendecomposition of a graph Laplacian. To that end, we shall use L_r, L_c, as proxies for the latent graph Laplacians, and promote bases that approximately diagonalize them by introducing two energy terms,

$$
E^r_{\text{diag}} \equiv \| \text{off} \left(P^T \Phi^T L_r \Phi P \right) \|_F^2 = \| \text{off} \left(P^T \Lambda_r P \right) \|_F^2,
$$

$$
E^c_{\text{diag}} \equiv \| \text{off} \left(Q^T \Psi^T L_c \Psi Q \right) \|_F^2 = \| \text{off} \left(Q^T \Lambda_c Q \right) \|_F^2 ,
$$

where $\text{off}(\cdot)$ denotes the off-diagonal elements. Under these modifications, the Dirichlet energy terms become,

$$
E^r_{\text{dir}} \equiv \text{trace} \left(QC^T P^T \Lambda_r PCQ^T \right),
$$

$$
E^c_{\text{dir}} \equiv \text{trace} \left(PCQ^T \Lambda_c QC^T P^T \right).
$$

Finally, we introduce the following energy terms to promote the (approximate) orthonormality of P, Q:

$$
E^r_{\text{orth}}(P) \equiv \| P^T P - I \|_F^2 ,
$$

$$
E^c_{\text{orth}}(Q) \equiv \| Q^T Q - I \|_F^2 .
$$

Zoomout loss. Let us denote the training error achieved by a matrix $X_{p,q} \equiv \Phi_{p} C_{p,q} \Psi_{q}^T$ composed from the first p vectors in Φ and the first q vectors in Ψ as $Z_{p,q} \equiv \| \left(\Phi_{p} C_{p,q} \Psi_{q}^T - M \right) \circ S \|_F^2$. We define the zoomout loss as follows:

$$
E_z = \sum_{p=1, q=1}^{m, n} w_{p,q} Z_{p,q},
$$

with the weights $w_{p,q} \geq 0$. It can be shown that it is enough to use each value of p or q only once and therefore most of the $w_{p,q}$ shall be set to 0 (see Appendix A). The zoomout loss (9) is inspired by the greedy approaches for shape correspondence proposed by Vestner et al. (2017a) and Melzi et al. (2019). These methods approximate the point-to-point map between the shapes (i.e., the correspondence) by a smoothed map obtained through the application of spectral filters, and proceed by projecting the smoothed map onto the set of point-to-point maps. By gradually increasing the filters’ bandwidth, or resolution, the correspondence becomes more refined in each step. In contrast, we advocate minimizing the training error using all resolutions at once. This simultaneous multi-resolution approach incurs a penalty on the rank of the reconstructed matrix by implicitly giving more weight to the low frequency terms. For example, the sub-matrix $C_{2,2}$ appears in all the terms $Z_{p,q}$ with $p \geq 2, q \geq 2$, emphasizing its importance. This allows us to be sloppy in the estimation of the rank of M without compromising the results by much. We explore the effect of overparameterization in Section 4. Following the discussion above, we replace Φ, Ψ with $\Phi P, \Psi Q$, obtaining $Z_{p,q} \equiv \| \left(\Phi_{p} C_{p,q} \Psi_{q}^T - M \right) \circ S \|_F^2$. With this modification, the zoomout loss (9) should favor bases $\Phi P, \Psi Q$, in which most of the energy of C is concentrated in the low frequencies, i.e., the top-left part. An interesting observation is that by setting $p = m, q = n$, we get the deep matrix factorization (DMF) method from Arora et al. (2019) (up to initialization). As we show in Section 4, this model alone, without any additional geometric priors, is sufficient to obtain results on par with the state-of-the-art on some datasets. This puts in question the quality of the geometric information in those cases. The complete minimization objective combines all the described terms weighed with the appropriate weights and minimized with respect to C, P and Q by gradient descent,

$$
\min_{C, P, Q} E_z + \mu_r E^r_{\text{dir}} + \mu_c E^c_{\text{dir}} + \rho_r E^r_{\text{diag}} + \rho_c E^c_{\text{diag}} + \alpha_r E^r_{\text{orth}} + \alpha_c E^c_{\text{orth}}.
$$

3.1 THEORETICAL DISCUSSION

In this section we discuss some physical interpretations of our approach.
Forward/Backward diffusion. The backbone of the zoomout loss are the terms $Z_{p,q}$, which measure the disparity (restricted to the training set) between M and its smoothed version, $X_{p,q} \equiv \Phi_p C_{p,q} \Psi_q^\top$. While we rely on the full spectral decomposition of L_r, L_c in order to construct $X_{p,q}$ at different resolutions, one can also construct them gradually. The process of zooming out, i.e., switching from $X_{p,q}$ to $X_{p+1,q+1}$, consists of two steps: smoothing or filtering - applying spectral filters F_p, G_q, to the functional map $C = \Phi^\top X \Psi_q$,

$$C_{p,q} = F_p (\Phi^\top X \Psi_q) G_q^\top,$$(11)

and sharpening - forming $C_{p+1,q+1}$ from $C_{p,q}$ by adding the missing frequencies, and composing $X_{p+1,q+1}$ via

$$X_{p+1,q+1} = \Phi C_{p+1,q+1} \Psi_q^\top. $$ (12)

In the algorithm described above we chose F_p, G_q to be diagonal matrices with p or q 1's on the diagonal, i.e., step filters. One can think about different kind of filters that, at least conceptually, will have a similar effect. For example, smoothing can be done with filters of the following form,

$$F_p = I - \tau_f L_r, \quad G_q = I - \tau_f L_c, $$ (13)

which correspond to a short time (forward) diffusion process, followed by a sharpening stage

$$(I + \tau_b L_r)(I - \tau_f L_r)X(I - \tau_f L_c)(I + \tau_b L_c),$$ (14)

which corresponds to backward diffusion. Forward-and-Backward (FAB) diffusion has been used for image denoising either as a nonlinear process on the original image grid (Gilboa et al. 2002), or via a linear process on a graph (Singer et al. 2009), and in shape processing for finding correspondence between non-rigid shapes (Vestner et al. 2017a). Despite backward diffusion being notoriously unstable, our algorithm exhibits a stable behaviour. In light of our experiments, we conjecture that it is possible to perform a stable backward diffusion on the product graph $G_r \times G_c$ via a controlled forward-and-backward diffusion process on each of the graphs G_r and G_c. Notice that (14) is no more than a second degree polynomial of the Laplacian applied to the signal X on both sides. Concurrent application of such polynomials result in a deep linear graph neural network. Our results and analysis support recent works such as Arora et al. (2019) and Wu et al. (2019) that argue in favor of such fully linear deep networks.

Multirate filtering. Let us look at the gradient of $Z_{p,q} = \| (\Phi_p C \Psi_q^\top - M) \odot S \|_{p, r}^2$,

$$\frac{\partial Z_{p,q}}{\partial C} = \Phi_p^\top ((\Phi_p C \Psi_q^\top - M) \odot S \odot S) \Psi_q = \Phi_p^\top (R \odot S) \Psi_q.$$ (15)

In (15) we denoted by $R \equiv X_{p,q} - M$ the residual, and used the fact that $S \odot S = S$ for a binary mask. Ideally, the gradient should be the filtered version of the full residual R, but we only have its sampled version $\hat{R} \odot S$. Is (15) a good approximation to $\Phi_p^\top R \Psi_q$?

From a signal processing perspective, it is sometimes possible to exchange the order of filtering and decimation (down-sampling). The conditions under which it is possible are known as the Noble identity for down-sampling. Informally, if the down-sampler comes before the filter, the order between the filter and the down-sampler can be exchanged, but the filter has to be modified by interleaving it with zeros between adjacent samples. However, if the filter comes first, the order can only be exchanged if it has this special "interleaved with zeros" sparse form. Effectively, if the filter is a low-pass filter, it is possible to perform the down-sampling before the filtering. Since, by virtue of (5), our X is driven towards having mostly low-frequencies, we can expect that the functional map obtained by the gradient descent iteration will be a good approximation of the true functional map.

4 RESULTS

We demonstrate the effectiveness of our approach on the following datasets: Synthetic Netflix, Flixster, Douban, Movielens (ML-100K) and Movielens-1M (ML-1M) as referenced in Table[1].

[1] Under review as a conference paper at ICLR 2020

2This does not say that this model is correct, just that if M has the structure we assume, this iteration will capture it faithfully.
A few remarkable observations can be extracted from Table 1: First, on the Douban and ML-100K we set the basis corresponding to the absent graph to identity. The initialization of \(C \) where only one of the bases was available, such as in Douban and Flixster-user only benchmarks, which is provided for each experiment alongside all the other hyper-parameters in Table 5. (16), evaluated on the validation set, does not change by more than 95% with 5% for validation. The \(\Phi \) the projection of \(M \otimes S \) on the first \(p_{\text{init}} \) eigenvectors of \(L_e \) and first \(q_{\text{init}} \) eigenvectors of \(L_e \), i.e., \(C_0 = \Phi_{p_{\text{init}}}^\top (M \otimes S) \Psi_{q_{\text{init}}} \). We use \(p_{\text{init}} = q_{\text{init}} = 1 \) in all experiments.

Stopping condition. Our stopping condition for the gradient descent iterations is based on a validation set. We use 95% of the available entries for training (i.e., in the data term (9)) and the rest 5% for validation. The 95/5 split was chosen at random. We stop the iterations when the RMSE (16), evaluated on the validation set, does not change by more than \(\text{tol} = 0.000001 \) between two consecutive iterations, \(\text{RMSE}_k - \text{RMSE}_{k-1} < \text{tol} \). Since we did not apply any optimization into the choice of the validation set, we also report the best RMSE achieved on the training set via early stopping. In this regard, the number of iterations is yet another hyper parameter that has to be tuned for best performance.

Test error. To evaluate the performance of the algorithms, we report the root mean squared error,

\[
\text{RMSE}(X, S) = \sqrt{\frac{\| (X - M) \otimes S \|^2_F}{\sum_{i,j} S_{i,j}}} \tag{16}
\]

computed on the test set provided with each dataset. Here \(X \) is the recovered matrix and \(S \) is the binary mask representing the support of the set on which the RMSE is computed.

4.1 Discussion

A few remarkable observations can be extracted from Table 1. First, on the Douban and ML-100K datasets, the simple DMF shows competitive performance with all the other methods. This suggests

\[C^{p_{\text{init}} \times q_{\text{init}}} \] is the top-left submatrix of the full size \(C^{p_{\text{max}} \times q_{\text{max}}} \). The rest of the entries are initialized with 0.
that the geometry information is not very useful for these datasets. Second, the proposed algorithm outperforms the other methods, despite its simple and fully linear architecture. This suggests that the other methods do not exploit the geometry properly, and this fact is obscured by their cumbersome architecture. Third, while some of the experiments reported in Table[1] showed only slight margins in favor of SGMC/SGMC-Z compared to DMF, the results in the Synthetic Netflix column and the ones reported on Synthetic Movielens-100K (Table[3]) suggest that when the geometric model is accurate our methods demonstrate superior results. Table[2] presents the results of Movielens-1M. First, we can deduce that a simple linear DMF model is able to match the performance of complex alternatives. Furthermore, using graphs produces slight improvements over the DMF baseline and overall provides competitive performance compared to heavily engineered methods.

4.2 SYNTHETIC DATASETS

While the experiments reported in Table[1] showed slight margins in favor of methods using geometry, we further experimented with a synthetic model generated from the ML-100K dataset. The purpose of this experiment is to investigate whether the results are due to the DMF model or due to the geometry as incorporated by SGMC/SGMC-Z. The synthetic model was generated by projecting a random matrix on the first 50 eigenvectors of L_r, L_c, and then matching the rankings histogram with that of the original ML-100K dataset. This nonlinear operation increased the rank of the matrix from 50 to about 300. See Figure[5] in the Appendix for a visualization of the full matrix, singular value distribution and the users/items graphs. The test set and training set were generated randomly and are the same size as those of the original dataset. The results reported in Table[3] and those on the Synthetic Netflix column in Table[1] clearly indicate that SGMC/SGMC-Z outperforms DMF, suggesting that when the geometric model is accurate it is possible to use it to improve the results. On Synthetic Netflix, we notice that by using SGMC, we outperform (Monti et al., 2017) by a significant margin, reducing the test RMSE by half. Furthermore, it can be observed that DMF performs poorly on both the synthetic datasets compared to SGMC/SGMC-Z, raising a question as to the quality of the graphs provided with those datasets on which DMF performed comparably.
A particularly interesting scenario in the context of recommender systems is the presence of cold-start users, referring to the users who have not rated enough movies yet. We perform an analysis of the performance of our method in the presence of such cold start users on the ML-100K dataset. In order to generate a dataset consisting of N_c cold start users, we sort the users according to the number of ratings provided by each user, and retain at most N_r ratings (chosen randomly) of the bottom N_c users (i.e., the users who provided the least ratings). We choose the values $N_c = \{50, 100, 150, 200, 300, 400, 500\}$ and $N_r = \{1, 5, 10\}$, and run our algorithms: DMF, SGMC and SGMC-Z, with the same hyperparameter settings used for obtaining Table 1. We use the official ML-100K test set for evaluation. Similar to before, we use 5% of the training samples as a validation set used for determining the stopping condition. The results presented in Figure 1 suggest that the SGMC and SGMC-Z outperform DMF significantly, indicating the importance of the geometry as data becomes scarcer. As expected, we can see that the performance drops as the number of ratings per user decreases. Furthermore, we can observe that SGMC-Z consistently outperforms SGMC by a small margin. We note that SGMC-Z, even in the presence of $N_c = 500$ cold start users with $N_r = 5$ ratings, is still able to outperform the full data performance of (Monti et al., 2017), demonstrating the strength of geometry and implicit low-rank induced by SGMC-Z.

Ablation study. We study the effects of different hyper-parameters of the algorithms on the final reconstruction of the matrix. We perform an ablation study on the effects of $\rho, \mu, p_{\text{max}}, q_{\text{max}}$ on DMF, SGMC and SGMC-Z. The results are summarized in Figures 2, 3, 4. It is interesting to note that in the case of DMF and SGMC, overparametrizing C, Q, P consistently improves the performance (see Figure 4), but it only holds up to a certain point, beyond which the overparametrization does not seem to affect the reconstruction error.

Scalability. In this work we focused on the conceptual idea of solving matrix completion via the framework of functional maps, paying little attention to the issue of scalability. The dependence of our method on eigenvalue decomposition renders it unscalable. While this did not pose a problem for the small data sets we used in this report, it is nonetheless a drawback. We intend to address this issue in our future work.

5 Conclusion

In this work we have proposed a simple spectral technique for matrix completion, extending ideas borrowed from the field of non-rigid shape analysis. Our approach combines a full multiresolution spectral loss with (implicit) metric learning. Under a suitable change of basis, we obtain a fully linear network that gives rise to a useful interpretation via the framework of functional maps. We have demonstrated state-of-the-art results on a few recommendation systems datasets, surpassing results obtained by much more complicated architectures. In addition, we have demonstrated that some results which are usually attributed to a clever use of geometry, can be obtained without any geometry altogether. We believe that this work bridges the gap between the communities of geometric deep learning, non-rigid shape analysis, deep linear networks and spectral graph theory; it allows for a new line of research in transferring the theory and algorithms across these fields.
REFERENCES

Table 4: Number of users, items and ratings for Flixster, Douban, MovieLens-100K, MovieLens-1M, Synthetic Netflix and Synthetic Movielens-100K datasets used in our experiments and their respective rating density and rating levels.

A Appendix

A.1 Spectral selection

Here we shall prove that it is enough to choose the weights \(w_{p,q} \) in (9) such that each \(p \) or \(q \) appears only once. For simplicity we shall assume \(p_{\text{max}} = q_{\text{max}} \) and that \(p_{\text{skip}} = q_{\text{skip}} = 1 \) (see Section 4).

Proposition 1. Let \(W \) denote the matrix of weights used in (9) and assume that they satisfy

\[
\sum_{p=1}^{p_{\text{max}}} w_{p,q} = 1 \quad \text{and} \quad \sum_{q=1}^{q_{\text{max}}} w_{p,q} = 1 \quad \text{with} \quad w_{p,q} \geq 0.
\]

Then it is always possible to choose weights \(a_{p,q} \in \{0, 1\} \) achieving, for the same optimal variables, a value of (9) which is at least as low as the one obtained with \(w_{p,q} \).

Proof. Let \(P^*, C^*, Q^* \) be the optimal variables obtained by solving (10) with some weights \(W \).

Then for the same optimal variables, one can find weights \(A \) achieving a value of (9) (and consequently, of (10)) which is at least as low as the one obtained with \(W \), by solving

\[
A^* = \arg \min_A \sum_{p,q} a_{p,q} Z_{p,q}(P^*, C^*, Q^*) \quad \text{s.t.} \quad \begin{cases} A1 &= 1 \\ A1^T &= 1 \\ A &\geq 0. \end{cases}
\]

Problem (18) is a linear assignment problem and therefore has an integral solution \(A_{p,q} \in \{0, 1\} \) (Schrijver, 1998). \(\square \)
Figure 2: Ablating $\rho_r = \rho_c$ and $\mu_r = \mu_c$ of SGMC on the ML-100K dataset. The rest of the parameters were set to the ones reported in Table 5. Green X denotes the baseline from Table 1.

Figure 3: Ablating ρ_r, ρ_c and μ_r, μ_c of SGMC-Z on the ML-100K dataset. The rest of the parameters were set to the ones reported in Table 5.

Figure 4: Effect of overparametrization: SGMC (left) and DMF (right). x-axis indicates the values of p_{max}, q_{max}, and y-axis presents the RMSE. Green X denotes the baseline from Table 1.
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>(p_{max} / q_{max})</th>
<th>(p_{skip} / q_{skip})</th>
<th>(\mu_r / \mu_c)</th>
<th>(\rho_r / \rho_c)</th>
<th>(\alpha_c / \alpha_c)</th>
<th>Trainable variables</th>
<th>learning rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic</td>
<td>DMF</td>
<td>200/200</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>(P, C, Q)</td>
<td>(5 \times 10^{-5})</td>
</tr>
<tr>
<td>Netflix</td>
<td>FM</td>
<td>200/200</td>
<td>1/1</td>
<td>0.4/0.4</td>
<td>-/-</td>
<td>-/-</td>
<td>(C)</td>
<td>(5 \times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td>SGMC-Z</td>
<td>20/20</td>
<td>-/-</td>
<td>0.001/0.001</td>
<td>0.1/-</td>
<td>-/-</td>
<td>(P, C)</td>
<td>(5 \times 10^{-3})</td>
</tr>
<tr>
<td>Flixster</td>
<td>DMF</td>
<td>3000/3000</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>(P, C, Q)</td>
<td>(1 \times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td>SGMC-Z</td>
<td>200/200</td>
<td>2/2</td>
<td>0.0025/0.0025</td>
<td>-/-</td>
<td>-/-</td>
<td>(P, C)</td>
<td>(5 \times 10^{-6})</td>
</tr>
<tr>
<td>(users only)</td>
<td>SGMC-Z</td>
<td>200/200</td>
<td>20/20</td>
<td>0.0025/-</td>
<td>0.001/-</td>
<td>-/-</td>
<td>(P, C, Q)</td>
<td>(5 \times 10^{-7})</td>
</tr>
<tr>
<td>Douban</td>
<td>DMF</td>
<td>3000/3000</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>(P, C, Q)</td>
<td>(6 \times 10^{-6})</td>
</tr>
<tr>
<td></td>
<td>SGMC-Z</td>
<td>2500/2500</td>
<td>-/-</td>
<td>0.001/-</td>
<td>0.001/-</td>
<td>0.001/-</td>
<td>(P, C, Q)</td>
<td>(2 \times 10^{-6})</td>
</tr>
<tr>
<td>ML-100K</td>
<td>DMF</td>
<td>2000/2000</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>(P, C, Q)</td>
<td>(5 \times 10^{-5})</td>
</tr>
<tr>
<td></td>
<td>SGMC-Z</td>
<td>4000/4000</td>
<td>-/-</td>
<td>0.0003/0.0003</td>
<td>0.0001/0.0001</td>
<td>-/-</td>
<td>(P, C, Q)</td>
<td>(5 \times 10^{-5})</td>
</tr>
<tr>
<td>ML-1M</td>
<td>DMF</td>
<td>7000/7000</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>(P, C, Q)</td>
<td>(1 \times 10^{-5})</td>
</tr>
<tr>
<td></td>
<td>SGMC-Z</td>
<td>7000/7000</td>
<td>-/-</td>
<td>0.0001/0.0001</td>
<td>-/-</td>
<td>-/-</td>
<td>(P, C)</td>
<td>(8 \times 10^{-5})</td>
</tr>
<tr>
<td>Synthetic</td>
<td>DMF</td>
<td>8000/8000</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>(P, C, Q)</td>
<td>(9 \times 10^{-5})</td>
</tr>
<tr>
<td>ML-100K</td>
<td>SGMC-Z</td>
<td>600/600</td>
<td>-/-</td>
<td>0.001/0.001</td>
<td>0.009/0.009</td>
<td>-/-</td>
<td>(P, C, Q)</td>
<td>(2 \times 10^{-5})</td>
</tr>
</tbody>
</table>

Table 5: Hyper-parameter settings for the algorithms: DMF, SGMC and SGMC-Z, reported in Tables 123.
Figure 5: Synthetic Movielens-100k. Top-left: Full matrix. Top-right: singular values of the full matrix. Bottom left & right: items & users graph. Both graphs are constructed using 10 nearest neighbors.

Figure 6: Synthetic Movielens-100k. Top-left: Full matrix. Top-right: singular values of the full matrix. Bottom left & right: items & users graph. Taken from [Monti et al., 2017].