
A Broader Impact and Limitation Discussion

Monitoring, estimating, and explaining performance of deployed ML models is a growing area with
significant economic and social impact. In this paper, we propose SJS, a new data distribution shift
model to consider when both labels and features shift after model deployment. We show how SJS
generalizes existing data shift models, and further propose SEES, a generic framework that efficiently
explains and estimates an ML model’s performance under SJS. This may serve as a monitoring tool
to help ML practitioners recognize performance changes, discover potential fairness issues and take
appropriate business decisions (e.g., switching to other models or debugging the existing ones). One
limitation in general is adaption to continuously changing data streams. An online algorithm for
performance estimation and explanation under SJS is in need to address this challenge. We will also
open source our prototype of SEES serving as a resource for broad community to use.

B Missing Proofs

We provide all missing proofs in this section.

B.1 Proof of Theorem 1

Proof. We prove the statement by contradiction. Suppose not. That is to say, there exists a distri-
bution pa(xxx, y), such that pa(xxx) = pt(xxx), and there exists some set J ⊂ [d], |J | ≤ m, such that
pa(xxxJ c |xxxJ , y) = ps(xxxJ c |xxxJ , y) and pa(xxx, y) ̸= pt(xxx, y). Let wa(xxx, y) ≜

pa(xxx,y)
ps(xxx,y)

denote the ratio

between this alternative distribution pa and the source distribution. Recall that w∗(xxx, y) = pt(xxx,y)
ps(xxx,y)

.
To show the contradiction, we simply need to show pa(xxx, y) = pt(xxx, y), which is equivalent to show
wa(xxx, y) = w∗(xxx, y).

By the m-SJS assumption, pt(xxxc
I |xxxI , y) = ps(xxx

c
I |xxxI , y), we have

w∗(xxx, y) =
pt(xxx, y)

ps(xxx, y)
=

pt(xxxI , y)pt(xxx
c
I |xxxI , y)

ps(xxxI , y)ps(xxxc
I |xxxI , y)

=
pt(xxxI , y)

ps(xxxI , y)

Similarly, by the assumption pa(xxx
c
J |xxxJ , y) = ps(xxx

c
J |xxxJ , y), we have

wa(xxx, y) =
pa(xxx, y)

ps(xxx, y)
=

pa(xxxJ , y)pa(xxx
c
J |xxxJ , y)

ps(xxxJ , y)ps(xxxc
J |xxxI , y)

=
pa(xxxJ , y)

ps(xxxJ , y)

Thus, we only need to show
pt(xxxI , y)

ps(xxxI , y)
=

pa(xxxJ , y)

ps(xxxJ , y)

Our approach is to show that the two ratios all satisfy a system of linear equations, which, however,
should have only a unique solution. To see this, let us first note that, for any ¯̄xxx, we have

pt(xxxIc∩J c ,xxxI∪J = x̄xxI∪J) =

d∑
y=1

pt(xxxIc∩J c ,xxxI∪J = x̄xxI∪J , y = ȳ)

=

d∑
y=1

pt(xxxIc∩J c ,xxxJ = x̄xxJ |xxxI = x̄xxI , y = ȳ)pt(xxxI = x̄xxI , y = ȳ)

=

d∑
y=1

ps(xxxIc∩J c ,xxxJ = x̄xxJ |xxxI = x̄xxI , y = ȳ)pt(xxxI = x̄xxI , y = ȳ)

=

d∑
y=1

ps(xxxIc∩J c ,xxxI∪J = x̄xxI∪J , y = ȳ)
pt(xxxI = x̄xxI , y = ȳ)

ps(xxxI = x̄xxI , y = ȳ)

Here, the first equation is by the total probability rule, the second equation is by the conditional
probability rule, the third equation is by the s-SJS assumption, and the last equation is by conditional

14

probability rule again. Similarly, we can obtain

pa(xxxIc∩J c ,xxxI∪J = x̄xxI∪J) =

d∑
y=1

pa(xxxIc∩J c ,xxxI∪J = x̄xxI∪J , y = ȳ)

=

d∑
y=1

pa(xxxIc∩J c ,xxxI = x̄xxI |xxxJ = x̄xxJ , y = ȳ)pt(xxxJ = x̄xxJ , y = ȳ)

=

d∑
y=1

ps(xxxIc∩J c ,xxxI = x̄xxI |xxxJ = x̄xxJ , y = ȳ)pt(xxxJ = x̄xxJ , y = ȳ)

=

d∑
y=1

ps(xxxIc∩J c ,xxxI∪J = x̄xxI∪J , y = ȳ)
pt(xxxJ = x̄xxJ , y = ȳ)

ps(xxxJ = x̄xxJ , y = ȳ)

where the first equation is by the total probability rule, the second equation is by the conditional
probability rule, the third equation is by the assumption that pa(xxxJc |xxxJ , y) = ps(xxxJ |xxxJ , y), and the
last equation is by conditional probability rule again. Note that we have assumed that pa(xxx) = pt(xxx).
Thus, we must have

d∑
y=1

ps(xxxIc∩J c ,xxxI∪J = x̄xxI∪J , y = ȳ)
pt(xxxI = x̄xxI , y = ȳ)

ps(xxxI = x̄xxI , y = ȳ)

=

d∑
y=1

ps(xxxIc∩J c ,xxxI∪J = x̄xxI∪J , y = ȳ)
pa(xxxJ = x̄xxJ , y = ȳ)

ps(xxxJ = x̄xxJ , y = ȳ)

which is simply

d∑
y=1

ps(xxxIc∩J c ,xxxI∪J = x̄xxI∪J , y = ȳ)

(
pt(xxxI = x̄xxI , y = ȳ)

ps(xxxI = x̄xxI , y = ȳ)
− pa(xxxJ = x̄xxJ , y = ȳ)

ps(xxxJ = x̄xxJ , y = ȳ)

)
= 0

By the assumption that {ps(xxxJ c∩Kc ,xxxJ∪I = x̄xxJ∪I , y = ȳ)}dy=1 are linearly independent, the above
system of equations implies pt(xxxI=x̄xxI ,y=ȳ)

ps(xxxI=x̄xxI ,y=ȳ) −
pa(xxxJ=x̄xxJ ,y=ȳ)
ps(xxxJ=x̄xxJ ,y=ȳ) = 0. Note that this holds for any x̄xx.

Thus, it is simply
pt(xxxI , y)

ps(xxxI , y)
=

pa(xxxJ , y)

ps(xxxJ , y)

That is to say, w∗(xxx, y) = wa(xxx, y) and thus pa(xxx, y) = pt(xxx, y), which is a contradiction. Thus, the
assumption is incorrect and (ps, pt) is identifiable, which finishes the proof.

B.2 Proof of Theorem 2

Proof. Proving the first half statement is straightforward: suppose (ps, pt) is under label shift.
Then by definition, pt(xxx|y) = ps(xxx|y). That is basically pt(xxx[d]|y,xxx∅) = ps(xxx[d]|y,xxx∅), which
corresponds to 0-SJS with I = ∅.

Next we show the proof for the second half. Suppose (ps, pt) is under sparse covariate shift, i.e.,
pt(xxxIc |xxxI) = ps(xxxIc |xxxI) for some I with size m < d, and pt(y|xxx) = ps(y|xxx). Adopting the
definition of conditional probability, pt(y|xxx) = ps(y|xxx) can be rewritten as

pt(y,xxx)

pt(xxx)
=

ps(y,xxx)

ps(xxx)

By definition of conditional probability, ps(xxx) = ps(xxxI)·ps(xxxIc |xxxI) and pt(xxx) = pt(xxxI)·pt(xxxIc |xxxI),
and thus we have

pt(y,xxx)

pt(xxxI) · pt(xxxIc |xxxI)
=

ps(y,xxx)

ps(xxxI) · ps(xxxIc |xxxI)

15

By the assumption pt(xxxIc |xxxI) = ps(xxxIc |xxxI), we can simplify this as

pt(y,xxx)

pt(xxxI)
=

ps(y,xxx)

ps(xxxI)

By definition of conditional probability, this is basically

pt(y,xxxIc |xxxI) = ps(y,xxxIc |xxxI)

which means (ps, pt) is under m-SJS.

Now we show the last piece of the statement by construction. Consider the case of d = 2. xxx1,xxx2, y
are all binary variables. Ps is generated as follows: y is first generated from Bernoulli distribution
Bern(0.5). If y = 0, xxx1,xxx2 are independently generated from Bern(0.7) and Bern(0.6). If y = 1,
xxx1,xxx2 are independently generated from Bern(0.1) and Bern(0.2). Pt is generated as follows: y is
first generated from Bern(0.6). If y = 0, xxx1,xxx2 are independently generated from Bern(0.5) and
Bern(0.6). If y = 1, xxx1,xxx2 are independently generated from Bern(0.5) and Bern(0.2).

It is easy to see that (ps, pt) is under 1-SJS with associated shift index set I = {1}, since xxx2 is
independent of xxx1 and only depends on y. However,

pt(xxx1 = 1|y = 1) = 0.5 ̸= 0.1 = ps(xxx1 = 1|y = 1)

and thus (ps, pt) is not under label shift. In addition,

pt(y = 1|xxx1 = 1,xxx2 = 1) =
0.6× 0.5× 0.2

0.6× 0.5× 0.2 + 0.4× 0.5× 0.6
=

1

3

ps(y = 1|xxx1 = 1,xxx2 = 1) =
0.5× 0.1× 0.2

0.5× 0.1× 0.2 + 0.5× 0.7× 0.6
=

1

22
̸= pt(y = 1|xxx1 = 1,xxx2 = 1)

and thus (ps, pt) is not under covaraite shift, which completes the proof.

B.3 Proof of Theorem 3

Proof. We prove the statement via three main steps. First, we show that given full access to the
distribution, the optimization over the marginal mass functions are sufficient to obtain the correct
shifted features and weights. Next, we demonstrate that a large enough number of samples ensures
the identified index set stays the same as when full access to the distribution is given with high
probability. Finally, we can prove that with high probability, the learned weight function with large
number of samples is close to the learned weight function when full distribution is known.

To proceed, let us introduce a few more notations for convenience.

• The distance used by SEES-d: dd(J,wJ) ≜
∑

κ:J⊆κ,|κ|=2m

∑L
f̄=1

∑
x̄xxκ∈Xκ

∥pt(x̄xxκ, f̄)−∑L
ȳ=1 wJ(x̄xxJ , ȳ) · ps(x̄xxκ, f̄, ȳ)∥22.

• The empirical distance used by SEES-d with finite samples: d̂d(J,wJ) ≜∑
κ:J⊆κ,|κ|=2m

∑L
f̄=1

∑
x̄xxκ∈Xκ

∥p̂t(x̄xxκ, f̄)−
∑L

ȳ=1 wJ(x̄xxJ , ȳ) · p̂s(x̄xxκ, f̄, ȳ)∥22

• The optimal weight function when the shifted feature set is fixed to J :
w∗

J ≜ argminwJ (xxx,y)

∑
κ:J⊆κ,|κ|=2m

∑L
f̄=1

∑
x̄xxκ∈Xκ

∥pt(x̄xxκ, f̄) −
∑L

ȳ=1 wJ(x̄xxJ , ȳ) ·
ps(x̄xxκ, f̄, ȳ)∥22

• The optimal weight function when the shifted feature set is fixed to J and full distri-
bution is available: w∗

J ≜ argminwJ (xxx,y)

∑
κ:J⊆κ,|κ|=2m

∑L
f̄=1

∑
x̄xxκ∈Xκ

∥pt(x̄xxκ, f̄) −∑L
ȳ=1 wJ(x̄xxJ , ȳ) · ps(x̄xxκ, f̄, ȳ)∥22

• The optimal weight function when the shifted feature set is fixed to J and only finite
samples are available: ŵ∗

J ≜ argminwJ (xxx,y)

∑
κ:J⊆κ,|κ|=2m

∑L
f̄=1

∑
x̄xxκ∈Xκ

∥p̂t(x̄xxκ, f̄)−∑L
ȳ=1 wJ(x̄xxJ , ȳ) · p̂s(x̄xxκ, f̄, ȳ)∥22

Next we offer a few useful lemmas before giving the full proof.

16

Lemma 4. Let Ω be a compact set, and zzz∗1, zzz
∗
2 be the optimal solution to the problems

min
zzz∈Ω

f1(zzz)

and
min
zzz∈Ω

f2(zzz)

where f1(·), f2(·) are two functions defined on Ω such that |f1(zzz)− f2(zzz)| ≤ ∆,∀zzz ∈ Ω. Then we
have |f1(zzz∗1)− f2(zzz

∗
2)| ≤ ∆. If f1 is strongly convex with parameter λ and Ω is the full real vector

space, then ∥zzz∗1 − zzz∗2∥22 ≤ 4∆
λ .

Proof. We start with the first half statement. By |f1(zzz)− f2(zzz)| ≤ ∆,∀zzz ∈ Ω, we have f1(zzz
∗
1) ≤

∆+ f2(zzz
∗
1). Subtracting f2(zzz

∗
2) from both sides gives

f1(zzz
∗
1)− f2(zzz

∗
2) ≤ ∆+ f2(zzz

∗
1)− f2(zzz

∗
2)

Observe that zzz∗2 is the optimal solution to minimizing f2(·) on the set Ω. Thus, f2(zzz∗1) ≤ f2(zzz
∗
2)

must hold. Thus, the above inequality becomes

f1(zzz
∗
1)− f2(zzz

∗
2) ≤ ∆

By symmetry of the two functions, we can obtain

f2(zzz
∗
2)− f1(zzz

∗
1) ≤ ∆

Combining the two inequalities gives

|f2(zzz∗2)− f1(zzz
∗
1)| ≤ ∆

Next let us turn to the second half. We first notice that |f1(zzz∗1)− f2(zzz
∗
2)| ≤ 2∆. To see this, we can

decompose the difference f1(zzz
∗
2)− f2(zzz

∗
1) as

f1(zzz
∗
2)− f1(zzz

∗
1) = f1(zzz

∗
2)− f2(zzz

∗
2) + f2(zzz

∗
2)− f2(zzz

∗
1) + f2(zzz

∗
1)− f1(zzz

∗
1)

Here, f1(zzz∗2)−f2(zzz
∗
2) ≤ ∆ and f2(zzz

∗
1)−f1(zzz

∗
1) ≤ ∆ by the assumption |f1(zzz)− f2(zzz)| ≤ ∆,∀zzz ∈

Ω. zzz∗2 is the optimal solution to minimizing f2(·), and thus f2(zzz
∗
2) − f2(zzz

∗
1) ≤ 0. Therefore,

combining all those leads to

f1(zzz
∗
2)− f1(zzz

∗
1) = f1(zzz

∗
2)− f2(zzz

∗
2) + f2(zzz

∗
2)− f2(zzz

∗
1) + f2(zzz

∗
1)− f1(zzz

∗
1) ≤ 2∆

Meanwhile, f1(zzz∗2)− f1(zzz
∗
1) ≥ 0 as zzz∗1 is the optimal solution to minimizing f1(·). That is to say,

|f1(zzz∗2)− f1(zzz
∗
1)| ≤ 2∆

Note that f1(·) is a strongly convex function with parameter λ. Thus, we have

f1(zzz
′) ≥ f1(zzz)+ <

∂f1(zzz)

∂zzz
,zzz′ − zzz > +

λ

2
∥zzz′ − zzz∥22

for any zzz′, zzz. Now let us set zzz = zzz∗1, zzz
′ = zzz∗2. Remember that zzz∗1 is the optimal solution to minimizing

f1(·) and Ω is the full space. Thus, ∂f1(zzz
∗
1)

∂zzz = 0. As a result, the above inequality becomes

f1(zzz
∗
2)− f1(zzz

∗
1) ≥

λ

2
∥zzz∗2 − zzz∗1∥22

By |f1(zzz∗2)− f1(zzz
∗
1)| ≤ 2∆, we obtain

2∆ ≥ λ

2
∥zzz∗2 − zzz∗1∥22

Rearranging the terms gives

∥zzz∗2 − zzz∗1∥22 ≤ 4∆

λ
which completes the proof.

Lemma 5. Suppose the source and target are under exact s-SJS, and for any set J ⊂ [d], |J | ≤ s
and any x̄xx ∈ X , the marginal probability mass functions {ps(f(xxx),xxxJ∪I = x̄xxJ∪I , y = ȳ)}dy=1 are
linearly independent. Then dd(J,wJ) = 0 if and only if J = I and wJ(xxxJ , y) = w∗(xxx, y).

17

Proof. Let us first relate the marginal density functions on the target domain to those on the source
domain. Recall that

w∗(xxx, y) =
pt(xxx, y)

ps(xxx, y)

denote the true weights between the target and source density functions. Since the shift is only due
to xxxI , w∗(xxx, y) only depends on xxxI . Abusing the notation a little bit, we use w∗(xxxI , y) to denote
w∗(xxx, y). Now we can write pt(xxx, y) = w∗(xxxI , y) · ps(xxx, y). Thus, the marginal distribution of
(xxxκ, f(xxx)) on the target domain can be written as

pt(x̄xxκ, f̄) =

L∑
ȳ=1

∑
zzz:zzzκ=x̄xxκ,f(zzz)=f̄

pt(xxx = zzz, y = ȳ)

=

L∑
ȳ=1

∑
zzz:zzzκ=x̄xxκ,f(zzz)=f̄

w∗(zzzI , ȳ) · ps(xxx = zzz, y = ȳ)

Now let us consider the two directions of the statement separately.

• J = I and wJ(xxxJ , y) = w∗(xxx, y) =⇒ dd(J,wJ) = 0: In this case, I = J ⊆ κ and thus
zzzI is forced to be x̄xxκ. Hence, the marginal distribution becomes

pt(x̄xxκ, f̄) =

L∑
ȳ=1

∑
zzz:zzzκ=x̄xxκ,f(zzz)=f̄

w∗(zzzI , ȳ) · ps(xxx = zzz, y = ȳ)

=

L∑
ȳ=1

w∗(x̄xxI , ȳ)
∑

zzz:zzzκ=x̄xxκ,f(zzz)=f̄

ps(xxx = zzz, y = ȳ)

=

L∑
ȳ=1

w∗(x̄xxI , ȳ)ps(xxxκ = x̄xxκ, f(xxx) = f̄, y = ȳ)

=

L∑
ȳ=1

w∗(x̄xxJ , ȳ)ps(x̄xxκ, f̄, ȳ)

where the second equation is because zzzI is fixed and does not depend on the inner summation,
the third is by applying definition of conditional probability, and the last is simply change of
notations. The above equation is simply

pt(x̄xxκ, f̄)−
L∑

ȳ=1

w∗(x̄xxJ , ȳ)ps(x̄xxκ, f̄, ȳ) =0

which holds for every κ. Since wJ(xxxJ , y) = w∗(xxxJ , y), it is equivalent to

pt(x̄xxκ, f̄)−
L∑

ȳ=1

wJ(x̄xxJ , ȳ)ps(x̄xxκ, f̄, ȳ) =0

Thus, summing over the square of it also leads to 0, i.e.,

dd(J,wJ) ≜
∑

κ:J⊆κ,|κ|=2s

L∑
f̄=1

∑
x̄xxκ∈Xκ

∥pt(x̄xxκ, f̄)−
L∑

ȳ=1

wJ(x̄xxJ , ȳ) · ps(x̄xxκ, f̄, ȳ)∥22 = 0.

• dd(J,wJ) = 0 =⇒ I = J,wJ(xxxJ , y) = w∗(xxx, y): dd(J,wJ) = 0 implies that

pt(x̄xxκ, f̄)−
L∑

ȳ=1

wJ(x̄xxJ , ȳ)ps(x̄xxκ, f̄, ȳ) =0

18

holds for each κ. In particular, consider κ that contains both I and J . Then zzzκ = x̄xxκ implies
zzzI = x̄xxI . Hence, the marginal distribution can be written as

pt(x̄xxκ, f̄) =

L∑
ȳ=1

∑
zzz:zzzκ=x̄xxκ,f(zzz)=f̄

w∗(zzzI , ȳ) · ps(xxx = zzz, y = ȳ)

=

L∑
ȳ=1

w∗(x̄xxI , ȳ)
∑

zzz:zzzκ=x̄xxκ,f(zzz)=f̄

ps(xxx = zzz, y = ȳ)

=

L∑
ȳ=1

w∗(x̄xxI , ȳ)ps(xxxκ = x̄xxκ, f(xxx) = f̄, y = ȳ)

=

L∑
ȳ=1

w∗(x̄xxI , ȳ)ps(x̄xxκ, f̄, ȳ)

where the second equation is because zzzI is fixed and does not depend on the inner summation,
the third is by applying definition of conditional probability, and the last is simply change of
notations. Comparing this with the above equation, we end up with

L∑
ȳ=1

w∗(x̄xxI , ȳ)ps(x̄xxκ, f̄, ȳ)−
L∑

ȳ=1

wJ(x̄xxJ , ȳ)ps(x̄xxκ, f̄, ȳ) =0

Or alternatively,
L∑

ȳ=1

[w∗(x̄xxI , ȳ)− wJ(x̄xxJ , ȳ)]ps(x̄xxκ, f̄, ȳ) =0

which holds for any f̄, x̄xxκ. By the linear independence assumption, this holds if and only
if all the coefficients are 0, i.e., w∗(x̄xxI , ȳ)− wJ(x̄xxJ , ȳ) = 0 for all x̄xx and ȳ. That is to say,
the two functions are identical: w∗(xxxI , y) = wJ(xxxJ , y). As wJ(xxxJ , y) and W∗(xxxJ , y) are
identical, they can only depend on variables in the set I ∩ J . That is to say, there exists
another importance weights wI∩J(xxxI∩J , y) which results in the same target distribution
produced by WI(x̄xxI , y). By the assumption, the shift among the two distribution is exactly
s-SJS. Hence, we have |I ∩ J | = s. |I| = s and I ∩ J ⊆ I implies I ∩ J = I and thus
J ⊇ I . |J | = s further implies J = I .

Therefore, dd(J,wJ) = 0⇔ I = J,wJ(xxxJ , y) = w∗(xxx, y), which completes the proof.

Lemma 6. With probability at least 1− δ, for any possible J ⊆ [d], |J | = s, we have

|dd(J,w∗
J)− d̂d(J, ŵ∗

J)|

≤3 · (2sv̄)sML2
√
2s log d+ s log v̄ + 2 logL+ log 1/δ

(√
1

2ns
+ LM

√
1

2nt

)
.

and

∥w∗
J − ŵ∗

J∥22 ≤ O

ML2

√ log 1/δ

2ns
+ LM

√
log 1/δ

2nt


Proof. Let us start by considering a fixed J . By definition of w∗

J and ŵ∗
J , we have

dd(J,w∗
J) = min

wJ (xxx,y)

∑
κ:J⊆κ,|κ|=2s

L∑
f̄=1

∑
x̄xxκ∈Xκ

∥pt(x̄xxκ, f̄)−
L∑

ȳ=1

wJ(x̄xxJ , ȳ) · ps(x̄xxκ, f̄, ȳ)∥22

and

d̂d(J, ŵ∗
J) = min

wJ (xxx,y)

∑
κ:J⊆κ,|κ|=2s

L∑
f̄=1

∑
x̄xxκ∈Xκ

∥p̂t(x̄xxκ, f̄)−
L∑

ȳ=1

wJ(x̄xxJ , ȳ) · p̂s(x̄xxκ, f̄, ȳ)∥22

19

Let us first show that the above two objective functions are close for any fixed wJ . To see this, we
first apply difference of two squares to obtain(

p̂t(x̄xxκ, f̄)−
L∑

ȳ=1

wJ(x̄xxJ , ȳ)p̂s(x̄xxκ, f̄, ȳ)

)2

−

(
pt(x̄xxκ, f̄)−

L∑
ȳ=1

wJ(x̄xxJ , ȳ)ps(x̄xxκ, f̄, ȳ)

)2

=

(
p̂t(x̄xxκ, f̄) + pt(x̄xxκ, f̄)−

L∑
ȳ=1

wJ(x̄xxJ , y)
(
p̂s(x̄xxκ, f̄, ȳ) + ps(x̄xxκ, f̄, ȳ)

))

·

(
p̂t(x̄xxκ, f̄)− pt(x̄xxκ, f̄)−

L∑
ȳ=1

wJ(x̄xxJ , y)
(
p̂s(x̄xxκ, f̄, ȳ)− ps(x̄xxκ, f̄, ȳ)

))
(B.1)

Note that all estimated probability mass must be bounded by 1, and by assumption, |wJ | ≤ M . Thus,∣∣∣∣∣p̂t(x̄xxκ, f̄) + pt(x̄xxκ, f̄)−
L∑

ȳ=1

wJ(x̄xxJ , y)
(
p̂s(x̄xxκ, f̄, ȳ) + ps(x̄xxκ, f̄, ȳ)

)∣∣∣∣∣ ≤ 2 + 2LM ≤ 3LM

(B.2)

and ∣∣∣∣∣p̂t(x̄xxκ, f̄)− pt(x̄xxκ, f̄)−
L∑

ȳ=1

wJ(x̄xxJ , ȳ)
(
p̂s(x̄xxκ, f̄, ȳ)− ps(x̄xxκ, f̄, ȳ)

)∣∣∣∣∣
≤
∣∣p̂t(x̄xxκ, f̄)− pt(x̄xxκ, f̄)

∣∣+ ∣∣∣∣∣
L∑

ȳ=1

wJ(x̄xxJ , ȳ)
(
p̂s(x̄xxκ, f̄, ȳ)− ps(x̄xxκ, f̄, ȳ)

)∣∣∣∣∣
≤
∣∣p̂t(x̄xxκ, f̄)− pt(x̄xxκ, f̄)

∣∣+ L∑
ȳ=1

wJ(x̄xxJ , ȳ)
∣∣(p̂s(x̄xxκ, f̄, ȳ)− ps(x̄xxκ, f̄, ȳ)

)∣∣
≤
∣∣p̂t(x̄xxκ, f̄)− pt(x̄xxκ, f̄)

∣∣+M

L∑
ȳ=1

∣∣(p̂s(x̄xxκ, f̄, ȳ)− ps(x̄xxκ, f̄, ȳ)
)∣∣

Observe that, p̂t(x̄xxκ, f̄) is the standard empirical estimation of pt(x̄xxκ, f̄). Therefore, applying
Hoeffding’s inequality, we have with probability 1− δ,

|p̂t(x̄xxκ, f̄)− pt(x̄xxκ, f̄)| ≤

√
log 1/δ

2ns

Similarly, with probability 1− δ,

|p̂s(x̄xxκ, f̄, ȳ)− ps(x̄xxκ, f̄, ȳ)| ≤

√
log 1/δ

2nt

Thus, with probability 1− (v̄sL+ v̄sL2)δ, the above holds for any f̄, ȳ, x̄xxκ. Thus we have

|p̂t(x̄xxκ, f̄)− pt(x̄xxκ, f̄)−
L∑

ȳ=1

wJ(x̄xxJ , ȳ)(p̂s(x̄xxκ, f̄, ȳ)− ps(x̄xxκ, f̄, ȳ))| ≤

√
log 1/δ

2ns
+ LM

√
log 1/δ

2nt

Combing this with inequalities B.1 and B.2, we have

(
p̂t(x̄xxκ, f̄)−

L∑
ȳ=1

wJ(x̄xxJ , ȳ)p̂s(x̄xxκ, f̄, ȳ)

)2

−

(
pt(x̄xxκ, f̄)−

L∑
ȳ=1

wJ(x̄xxJ , ȳ)ps(x̄xxκ, f̄, ȳ)

)2

≤3LM

√ log 1/δ

2ns
+ LM

√
log 1/δ

2nt


20

Summing over κ, x̄xxκ, f̄ , we have

∑
κ:J⊆κ∈[d],|K|=2s

L∑
f̄=1

∑
x̄xxκ∈Xκ

(
p̂t(x̄xxκ, f̄)−

L∑
ȳ=1

wJ(x̄xxJ , ȳ)p̂s(x̄xxκ, f̄, ȳ)

)2

−

(
pt(x̄xxκ, f̄)−

L∑
ȳ=1

wJ(x̄xxJ , ȳ)ps(x̄xxκ, f̄, ȳ)

)2

≤(2s)sv̄sL · 3LM

√ log 1/δ

2ns
+ LM

√
log 1/δ

2nt


That is to say, for all wJ , |dd(J,wJ) − d̂d(J,wJ)| ≤ 3(2sv̄)sML2

(√
log 1/δ
2ns

+ LM
√

log 1/δ
2nt

)
with probability 1− (v̄sL+ v̄sL2)δ. In addition, note that dd(J,wJ) is a quadratic function over wJ .
By the linear independence assumption, dd(J,wJ) must be strongly convex. Now applying Lemma
4, we have

|dd(J,w∗
J)− d̂d(J, ŵ∗

J)| ≤ 3(2sv̄)sML2

√ log 1/δ

2ns
+ LM

√
log 1/δ

2nt


and

∥w∗
J − ŵ∗

J∥22 ≤ 12

λ
(2sv̄)sML2

√ log 1/δ

2ns
+ LM

√
log 1/δ

2nt


where λ is the parameter corresponding to the strongly convexity of dd(J, ·). This holds for a fixed J

with probability 1−(v̄sL+ v̄sL2)δ. There are
(
d
s

)
many possible choices of J . Thus, with probability

at least 1− ds(v̄sL+ v̄sL2)δ ≥ 1− 2dsv̄sL2δ, the above holds. Replacing 2dsv̄sL2δ by δ gives the
desired form.

Finally we are ready to prove the statement. By Lemma 5, dd(I, w∗) = 0 and for any J ̸= I , we
have dd(J,wJ) > dd(I, w∗). Let c1 = minJ ̸=I d(J,wJ) > 0, c2 = c1

6(2mv̄)mML2 , and the constant
c = c2/c1. Now we make progresses in two steps.

• First let us show with high probability, the estimated shifted features match the true shifted
features. This is equivalent to show, with high probability, d̂d(I, ŵ∗

I) < d̂d(J, ŵ∗
J) for any

J ̸= I . To do so, let us note that, for any J ̸= I ,

d̂d(I, ŵ∗
I)− d̂d(J, ŵ∗

J)

=d̂d(I, ŵ∗
I)− dd(I, w∗

I)− (d̂d(J, ŵ∗
J)− dd(J,w∗

J)) + dd(I, w∗
I)− dd(J,w∗

J)

=d̂d(I, ŵ∗
I)− dd(I, w∗

I)− (d̂d(J, ŵ∗J)− dd(J,w∗
J)) + c1

By Lemma 6, with probability 1− δ, for any J ,

|dd(J,w∗
J)− d̂d(J, ŵ∗

J)|

≤3(2mv̄)mML2
√
2m log d+m log v̄ + 2 logL+ log 1/δ

(√
1

2ns
+ LM

√
1

2nt

)
=
1

3
c2
√
2m log d+m log v̄ + 2 logL+ log 1/δ

(√
1

2ns
+ LM

√
1

2nt

)
Therefore, we have

d̂d(I, ŵ∗
I)− d̂d(J, ŵ∗

J)

≤− 2

3
c2
√
2m log d+m log v̄ + 2 logL+ log 1/δ

(√
1

2ns
+ LM

√
1

2nt

)
+ c1

21

By the assumption,
√
2m log d+m log v̄ + 2 logL+ log 1/δ

(√
1

2ns
+ LM

√
1

2nt

)
<

c1/c2. Hence, we have

d̂d(I, ŵ∗
I)− d̂d(J, ŵ∗

J) ≤− 2

3
c2

c1
c− 2

+ c1 =
1

3
c1 < 0

for any J ̸= I . Thus, the correct shifted features are selected with probability at least 1− δ.

• Finally we show the learned ŵ∗
Ĵ

is close to the true importance weights w∗. By Lemma 6,

∥wJ − ŵJ∥22 ≤ O

ML2

√ log 1/δ

2ns
+ LM

√
log 1/δ

2nt


with high probability for all J . Thus it holds for the selected features Ĵ . We have just shown
that with high probability, the correct shifted features are selected, i.e., Ĵ = I . Thus, it
simply means

∥w∗ − ŵ∗
Ĵ
∥22 ≤ O

ML2

√ log 1/δ

2ns
+ LM

√
log 1/δ

2nt


which completes the proof.

C Additional Discussions

Here we provide additional discussions.

Motivating examples when SJS occurs. In Section 1 we give one example when SJS occurs.
Now we give two more examples to show how SJS broadly exists in different scenarios.

• Cancer diagnosis: Suppose we wish to build an ML model to diagnose cancer based on
patient health records. The model is developed based on labeled dataset in some developed
countries. However, when deploying it to hospitals in a developing country, there might be
much more young patients, and the cancer rate for the elderly can also increase. Suppose
the other features’ distribution remains unchanged given age and cancer diagnosis. Then the
distribution shift is naturally an SJS.

• Toxic text recognition: Consider a mobile app that detects and filters toxic texts based on
the content and senders’ information. Due to unexpected events (for example, disappointing
football games), the toxic texts rate, as well as the total number of texts, may both signifi-
cantly increase in some locations at different time periods. The shift of text locations and
toxic text rate is thus another example of SJS.

Understanding sparse covariate shifts. Sparse covariate shift is a special case of covariate
shift [31]. It occurs when the shifts are caused by a few variables. For example, consider two census
datasets collected in two periods. If a large population moved from one city to another between the
two periods and everything else remains the same, then there is a sparse covariate shift (location
alone). It is also related to Adversarial patches: if adversarial noises are added to a few features (or a
small number of pixels in image domains), it also corresponds to the sparse covariate shift.

D Experimental Details

Here we provide additional experimental details.

22

Table 2: Dataset statistics.

Dataset # of instances # of features Shift types

BANKCHURN 10000 10

SyntheticCOVID-19 660787 8

CREDIT 29946 23

EMPLOY 227871 16 Geography (CA,PR,IA,WI)

INCOME 245783 10 Geography (CO,CA,KS,OH)

INSURANCE 32140 19 Temporality (2014,2016,2018)

0 1 2 3
shift sparsity

10 5

10 4

10 3

10 2

M
SE

SEES-c
SEES-d
BBSE
KLIEP

(a) BANKCHURN

0 1 2 3
shift sparsity

10 3

10 2

M
SE

(b) COVID-19

0 1 2 3
shift sparsity

10 4

10 3

10 2

10 1

M
SE

(c) CREDIT

Figure 5: Effects of shift sparsity. For each dataset, we measure how the ℓ2 loss of the estimated
accuracy varies as number of shifted features increases given the same sample sizes. Overall, the
estimation error of SEES slowly grows as shift sparsity increases, but is consistently lower than
BBSE and KLIEP.

Datasets and ML tasks. We use six datasets for evaluation, namely, BANKCHURN [1], COVID-
19 [2], and CREDIT [39] for various SJS simulations, and EMPLOY, INCOME, and INSUR-
ANCE [11] for performance evaluation under real world distribution shifts. BANKCHURN [1]
contains 10 features such as gender, age, credit score and balance, and the goal is to predict whether a
bank customer may churn. COVID-19 [2] is a subset of the publicly accessible COVID-19 dataset
from the Israel government website, containing both demographic and symptom features. Here, we
select the subset that contains all tested cases in January, 2022, and aim at predicting whether a
person tests positive or negative for COVID-19. CREDIT [39] includes age, gender, education, bill
payments and several other features for 29946 individuals. The goal is to predict the default payment.
EMPLOY, INCOME, and INSURANCE are subset of the public use microdata samples from the
US census [11]. EMPLOY contain 16 features for individual samples from four different states, CA,
PR, IA, and WI and our goal is to predict if a person is employed or not. In INCOME, 245,783
anonymous census record samples from four states including CA, CO, KS, and OH are collected. The
goal is to predict if a person’s income is lower or higher than $50,000. INSURANCE contains 32140
individual samples from the state IA collected in year 2014, 2016, and 2018. The task is to predict
whether an individual is covered by an insurance plan. The dataset statistics can be found in Table 2.

Experiment setups. All experiments were run on a machine with 20 Intel Xeon E5-2660 2.6
GHz cores, 160 GB RAM, and 80 GB disk with Ubuntu 18.04 LTS as the OS. Our prototype was
implemented and tested in Python 3.8. To apply SEES-d, we discretized all continuous features. To
apply SEES-c, we set the trade-off parameter η = 0.001. For continuous features, linear functions
were used as the basis. For discrete features, indicate functions were adopted. For example, if x̄xx1 ∈ R
and x̄xx2 ∈ {0, 1}, then the basis functions consist of three components, ϕ1(x̄xx, y) = x̄xx1, ϕ2(x̄xx, y) =
1x̄xx2=0, and ϕ3(x̄xx, y) = 1x̄xx2=1. For KLIEP, the maximum number of iterations was set as 2,500.

Effects of shift sparsity. Figure 5 shows how the accuracy gap estimation performance vary as
the number of shifted features increase. For each dataset, we start with shifting no features (label
shift), to shifting 1, 2, and 3 features together with labels. Specifically, for BANKCHURN, shifts
occur for (i) labels alone (0-SJS), (ii) then both labels and geography feature (1-SJS), (iii) then
labels, geography, and gender (2-SJS), and (iv) finally labels, geography, gender, and credit card

23

owned before. For COVID-19, we start with shifting label alone (0-SJS), and then incrementally
shift features age, gender, and contact risk to simulate 1-SJS, 2-SJS, and 3–SJS, respectively. For
credits, 0-SJS, 1-SJS, 2-SJS, and 3-SJS correspond to shift in (i) labels, (ii) labels and marriage
status, (iii) labels, marriage status, and gender, and (iv) labels, marriage status, gender, and credit
balance. Overall, we observe that the estimation error of SEES-c and SEES-d slightly increases as
the number of shifted features grows, but is consistently lower than that of BBSE and KLIEP.

Robustness to data randomness. In Section 5 we mainly focus on the average performance metric
(ℓ2 loss). Here we provide additional robustness measurement: on the COVID-19 dataset, we repeat
the case study experiments 200 times with different random seeds to generate the source and target
datasets, and report the variance of the estimated accuracy gap. As shown in Table 3, we observe that
the variance for all of the methods is small: variance of SEES-c and KLIEP are are less than 0.00003,
and the variance for SEES-d is 0.003 and for BBSE is 0.0003.

Table 3: Variance of the estimated accuracy gap. The values were calculated over 200 experimental
runs. Overall, the variance of all methods is small.

Method SEES-c SEES-d KLIEP BBSE

Estimated Accuracy Gap Variance 0.000018 0.0033 0.00005 0.0003

Sensitivity of the sparsity parameter in SEES-d. SEES-d needs knowledge of the sparsity
parameter s, and thus a natural question is how sensitive its performance is when the sparsity
parameter does not exactly match the true sparsity. To study this, we first generate a source-target
pair (each containing 10,000 data points) on the COVID-19 dataset where labels and 3 features
(age, contact risk, and gender) shift, and then measure the ℓ2 loss of the estimated performance gap
by SEES-d with sparsity parameter ranging from 0 to 7 (the number of features). Here, sparsity
parameter being 0, 1, 2, 4, 5, 6, and 7 corresponds to the mismatched case. Figure 6 summarizes the
averaged ℓ2 loss over 100 experimental runs. The randomness comes from the choices of shifted
features and the samples from source and target datasets, and the shaded area indicates the standard
deviation. Overall, we observe that SEES-d is robust to small parameter mismatch: there is little
change of the estimation error when the sparsity parameter (2, 3, 4, 5) is close to the true number
of shifted features (3). When the parameter mismatch is too large, a relatively larger change in the
estimation error can be observed (though SEES-d still works better than BBSE even when the model
mismatch is large). This is because a too small sparsity parameter restricts the search space, while a
too large parameter often incurs an identifiability issue as our theory shows (i.e., different feature-label
joint distributions correspond to the same observed target feature distribution). In practice, if the user
has a prior belief that the distribution shift is not sparse (i.e. number of shifted features is > d/2),
then SEES-d may not be appropriate.

Comparison with additional baselines. For more in-depth understanding, we compare the perfor-
mance of SEES with an additional baseline DLU [25]. DLU basically adopts discriminative learning
on the union of the source and target dataset, and then uses the classifier’s prediction to reweigh the
source data. We adopt it on the COVID-19 dataset for a case study and measure the performance
of the weight and accuracy gap estimation for it along with SEES-c, SEES-d, BBSE, and KLIEP.
As shown in Table 4, DLU performs better than KLIEP, but is still much worse than SEES-c and
SEES-d. For example, the MSE of its estimated weights is 0.320, while that of SEES-d is only 0.002.
Hence, SEES-c and SEES-d still lead to the best estimated accuracy gap.

Robustness across different shifts. Real world distribution shifts may vary, and thus it is important
to understand how different methods behave when encountering different shifts. To understand this,
we study the performance of SEES-c and SEES-d along with all baselines (BBSE, KLIEP, and
DLU) on the COVID-19 dataset when different shifts occur. Specifically, we generate source-target
pair where (i) label shift, (ii) (sparse) covariate shift (feature age), and (iii) 1-SJS (both label and
feature age) occurs, separately. Table 5 gives the squared ℓ2 loss of the accuracy gap estimation
for all methods. Interestingly, we observe that SEES-c and SEES-d produce reliable accuracy gap
estimation across different shifts, while all baselines are sensitive to shift types. For example, KLIEP
and DLU achieves decent performance when there is only covariate shift, but their estimation is
much worse when label shift occurs. Similarly, the estimation error of BBSE is small when labels

24

0 1 2 3 4 5 6 7
Sparsity Parameter

0

0.02

0.04

0.06

0.08

0.1

` 2
L
o
ss

Figure 6: Sensitivity of the sparsity parameter in SEES-d on the COVID-19 dataset. On a source-
target pair where labels and 3 features shift, we measure the ℓ2 loss of the estimated model perfor-
mance gap produced by SEES-d with sparsity parameter ranging from 0 to 7 (number of features).
The performance was averaged over 100 experimental runs, where the randomness comes from
choices of shifted features and samples in the source-target pairs and the shaded area indicates the
standard deviation.. Overall, SEES-d is robust to small parameter mismatch: there is little change
of the estimation error when the sparsity parameter (2,3,4,5) is close to the true number of shifted
features (3). In addition, the estimation performance of SEES-d with small parameter mismatch is
also consistently better than all baselines.

Table 4: Performance of the weight and accuracy gap estimation on the COVID-19 case study.
Overall, SEES-c and SEES-d achieve the smallest mean square error (MSE) and largest Pearson
correlation coefficient (PCC). Thus, their estimated accuracy gap is closest to the true gap.

Method MSE PCC Est Gap True Gap

SEES-c 0.003 0.996 18.4

15.5

SEES-d 0.002 0.996 16.7
BBSE 0.144 0.857 26.3

KLIEP 0.573 -0.112 1.58

DLU 0.320 0.328 0.38

25

indeed shift but is much worse than other methods when the shift is due to covariate. On the other
hand, the performance of SEES-c and SEES-d is as good as that of the best baseline when label
or covariate shifts. For SJS, the proposed methods achieve significantly better estimation than all
baselines. Those suggest that SEES-c and SEES-d are more robust to different shifts and thus safer
to be deployed in the wild.

Table 5: Squared ℓ2 loss of the estimated accuracy gap on the COVID-19 dataset. SEES-c and
SEES-d are the only approaches providing reliable estimation across all shifts.

Method Label Shift Covariate Shift Joint Shift

SEE-c 0.0005 0.0010 0.0003

SEE-d 0.0004 0.0015 0.0019

BBSE 0.0004 0.0321 0.0135

KLIEP 0.0045 0.0008 0.0193

DLU 0.0029 0.0001 0.0251

More models on datasets with real world shifts. Next we provide the performance estimation
for more models on datasets with real world shifts. We study the estimation performance for three
models, namely, a gradient boosting, a neutral network, and a decision tree. The maximum depth of
the gradient boosting and deicision tree is 50, and the neutral network consists of two layers with
100 hidden units. As shown in Table 6, SEES often provides significant error reduction over the
compared baselines BBSE and KLIEP.

Table 6: Root mean square error of estimated accuracy gap (%) under real shifts for gradient boosting,
a neural network, and a decision tree. The numbers are averaged over all source-target pairs in each
dataset. For each dataset and ML model, SEES provides significant estimation error reduction over
baselines.

Dataset ML model
Accuracy estimation’s ℓ2 error (%)

SEES-c SEES-d BBSE KLIEP

EMPLOY

Gradient boosting 2.9 3.0 5.2 5.2

Neural network 5.2 6.0 6.2 5.6

Decision tree 4.0 3.8 5.7 5.7

INCOME

Gradient boosting 1.9 2.4 3.0 3.4

Neural network 4.4 6.4 9.8 7.6

Decision tree 2.4 2.9 3.0 3.8

INSURANCE

Gradient boosting 1.7 2.2 2.1 5.0

Neural network 2.2 4.7 10.8 7.3

Decision tree 2.0 2.5 2.4 5.9

26

