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A APPENDIX

A.1 PROOF

A.1.1 THEOREM 1

Theorem 1. When the ODE pipeline is applied to an initial distribution x0 ∼ p0, the Wasserstein
distance between the two marginal distributions at any intermediate times t and t+∆t is controlled
by the mean kinetic energy at time t:

W2[pt, pt+∆t] ≤ ∆t
√

Ex∼pt∥vθ(xt, t)∥2

Proof. From the definition of the W2 distance in Eq.7, we have:

W2[pt, pt+∆t] ≤
√
Ex∼pt∥xt+∆t − xt∥2 (21)

For the discrete ODE pipeline using the explicit Euler update:

xt+∆t = xt + vθ(xt, t)∆t (22)

Substituting this into the previous bound yields:

W2[pt, pt+∆t] ≤
√
Ex∼pt

∥vθ(xt, t)∆t∥2 (23)

= ∆t
√

Ex∼pt
∥vθ(xt, t)∥2 (24)

A.1.2 THEOREM 2

Theorem 2. From time 0 to T , the cumulative one-step W2 distances over the ODE pipeline is
controlled by the total kinetic energy Amodel:∑

t

W 2
2 [pt, pt+∆t] ≤ δt

∫ Tδt

0

Ex∼ps∥vθ(xs, s)∥2ds

Amodel :=

∫ Tδt

0

Ex∼ps
∥vθ(xs, s)∥2ds

Proof. According to Theorem 1, squaring the one-step Wasserstein distance and then summing over
the entire time horizon of the ODE pipeline yields:

T−1∑
t=0

W 2
2 [pt, pt+∆t] ≤

T−1∑
t=0

∆t2Ex∼pt
∥vθ(xt, t)∥2 (25)

For any t ∈ [0, (T − 1)δt], by applying time rescaling and the Benamou–Brenier inequality, the
discrete summation can be mapped to its continuous-time counterpart:

T−1∑
t=0

W 2
2 [pt, pt+∆t] ≤

T−1∑
t=0

δt

∫ t+δt

t

∫
∥vθ(xs, s)∥2dpsds

= δt

∫ Tδt

0

∫
∥vθ(xs, s)∥2dpsds

= δt

∫ Tδt

0

Ex∼ps
∥vθ(xs, s)∥2ds (26)

In this formulation, we define the integral term as the total kinetic energy of the velocity field:

Amodel :=

∫ Tδt

0

Ex∼ps
∥vθ(xs, s)∥2ds (27)

13
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A.1.3 CORRECTION TERM OF THE SECOND-ORDER TTM

For the second-order correction term 1
2h

2
t
dϵθ
dγt

, we first differentiate the numerator and denominator
with respect to t:

1

2
h2
t

dϵθ
dγt

=
1

2
h2
t

dϵθ/dt

dγt/dt
(28)

Then, we apply a simple finite difference scheme to compute the numerator:

dϵθ(xt, t)

dt
=

ϵθ(xt+∆t, t+∆t)− ϵθ(xt, t)

∆t
(29)

Given that γt =
√

1−ᾱ2
t

ᾱt
=

√
1
ᾱt
− ᾱt, differentiating with respect to t yields:

dγt
dt

=
1

2
(
1

ᾱt
− ᾱt)

− 1
2 · d

dt
(
1

ᾱt
− ᾱt)

=
1

2
(
1

ᾱt
− ᾱt)

− 1
2 (− 1

ᾱt
2

dᾱt

dt
− dᾱt

dt
)

= −1

2
(
1

ᾱt
− ᾱt)

− 1
2 (

1 + ᾱt
2

ᾱt
2

dᾱt

dt
)

= −1 + ᾱt
2

2ᾱt
2γt

dᾱt

dt
(30)

Since ᾱt is a predefined set of hyperparameters, its derivative with respect to t can also be approxi-
mated using finite differences. Then, substituting the above into Eq. 28, we obtain:

1

2
h2
t

dϵθ
dγt
≈ −∆γ2

t ᾱt
2γt∆ϵθt

(1 + ᾱt
2)∆ᾱt

(31)

A.2 COMPUTE Et

In Eq. 10 we define the non-optimality term Et. This section details the algorithm for computing its
cumulative sum

∑
t Et.

For clarity of notation, we denote the root-mean-square norm of the model-predicted velocity field
under the current distribution pt in Eq. 10 as Kt:√

Ex∼pt
∥vθ(xt, t)∥2 ≈

√√√√ 1

N

N∑
i=1

∥vθ(xi
t, t)∥2 := Kt (32)

Accordingly, Eq. 10 can be rewritten in a simplified form as:

Et = ∆t ·Kt −W2[pt, pt+∆t] (33)

Based on this, the cumulative sum is computed as

E0:T−1 =

T−1∑
t=0

Et (34)

This metric characterizes the discrepancy between the model-provided upper bound on kinetic en-
ergy and the true Wasserstein distance, reflecting the degree of non-optimality of the overall velocity
field relative to the optimal transport.

In our experiments, we approximate the W2 distance between consecutive time-step distributions
using an entropy-regularized Sinkhorn (Cuturi, 2013) optimal transport algorithm. The implemen-
tation employs the GeomLoss (SamplesLoss) interface with the cost function exponent set to p = 2,
corresponding to the W2 distance. To maintain numerical stability in high-dimensional sample
spaces, we set the blur parameter to 0.01 and the multi-scale scaling factor to 0.9. When iterating
on the GPU, these parameters strike a balance between accuracy and computational efficiency. We
provide pseudocode in Algorithm 1.

14
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Algorithm 1 Cumulative Non-Optimality Computation

Require:
Samples {xi

t} for times t = 0, . . . , T
Model velocity field vθ(x, t)
Time step ∆t
Sinkhorn parameters: p = 2, blur = 0.01, scaling = 0.9

Ensure: {W2t}, {Et}, cumulative error E
1: Initialize E ← 0
2: for t = 0 to T − 1 do
3: Kt ←

√
1
N

∑
i ∥vθ(xi

t, t)∥2

4: W2sqt ← Sinkhorn(xt, xt+1; p, blur, scaling), W2t ←
√
W2sqt

5: Compute non-optimality term: Et ← ∆t ·Kt −W2t
6: Update cumulative error: E ← E + Et

7: end for
8: return E

MeanSumpseudo-Gaussian

Figure 6: Eigenvalue curves from randomized SVD under different temporal compression methods.

A.3 COMPRESSING CURVATURE FEATURES ALONG TIME

In Fig. 2, we present histograms of curvature features obtained using three different methods for
compressing the temporal dimension. From the histograms, one can already discern which method is
more discriminative. Here, we further provide principal component analysis (PCA) of these different
methods.

We perform randomized SVD on the curvature features computed via temporal summation, mean,
and pseudo-Gaussian methods for both real and synthetic images, and obtain the top eigenvalues for
each principal component.

As shown in Fig. 6, we compare the top eigenvalue curves obtained from randomized SVD for the
three curvature feature extraction methods. The pseudo-Gaussian method exhibits pronounced in-
formation concentration: the first principal component is the largest, followed by an almost linear
decline until the sixth component, after which the curve flattens, indicating that the major varia-
tions are captured by a small number of components. In contrast, the summation and mean methods
show more dispersed information, with the first 15 components retaining relatively large eigenval-
ues and noticeable fluctuations, suggesting that the main information is not well concentrated. This
demonstrates that the pseudo-Gaussian approach outperforms the other two in terms of feature con-
centration, dimensionality reduction efficiency, and potential discriminative power.

Furthermore, regardless of the method, the modes of variation are largely consistent between real
and synthetic images. However, the differences between principal components of pseudo-Gaussian
features for real versus synthetic images are significantly larger than those of the other methods.

A closer examination of the pseudo-Gaussian method reveals that real images generally have higher
eigenvalues than synthetic ones, indicating that their curvature features exhibit greater variability
and richer structure in the principal component space. Synthetic images, on the other hand, show

15
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lower eigenvalues, suggesting more uniform or smoother curvature patterns. This difference serves
as a potential discriminative indicator for distinguishing real and synthetic images, and corroborates
our earlier observation that synthetic images exhibit stronger velocity field consistency and more
concentrated distributions.

We also note that, for the summation and mean methods, the eigenvalue curves of synthetic images
are slightly higher. We attribute this to the fact that summation/mean operations tend to smooth out
local details, which suppresses extreme values in real images while amplifying the more uniform
overall curvature of synthetic images, resulting in slightly higher values in the principal component
space. In contrast, the pseudo-Gaussian method better preserves local curvature information, which
we believe underlies the artifact-focused capability demonstrated in Section. 6.1.

A.4 IMPLEMENTATION DETAILS

Our experiments are conducted on an A800 GPU for a total of 15 epochs. All images are center-
cropped to 64×64 before being fed into the model. Random horizontal flipping and rotation are
applied as data augmentation. We use the AdamW optimizer, setting the learning rate of the second-
order feature pipeline to 1e-5 with a weight decay of 0.05, the zeroth-order feature pipeline to
1e-4 with a weight decay of 0.01, and the shared projection layer and classifier to 1e-3 with zero
weight decay. The learning rates are decoupled to account for the differing sensitivities of features
at different orders to input variations.

It is worth noting that the selected ODE pipeline operates in the RGB domain, and all conclusions
in this work are based on RGB images. However, we anticipate that our approach could be extended
to ODE pipelines in latent spaces, potentially supporting larger receptive fields, which remains an
avenue for future research.
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