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A Metric Details

In this section we provide details for the metrics reported in Table 2.

A few of the similarity measures (SNN and IntDiv) are based on the Tanimoto coe�cient. In order to
compute the Tanimoto coe�cient, the molecules are mapped to a vector of fingerprints where each bit in
the vector represents the presence (or absence) of a specific fragment.6 For molecules A, B, denote their
fingerprints by mA and mB respectively, the Tanimoto coe�cient is then calculated as the Jaccard index of
the two vectors,

JpmA, mBq “ |mA X mB |
|mA Y mB | “ |mA X mB |

|mA| ` |mB | ´ |mA X mB | . (A.1)

We denote the Tanimoto coe�cient of molecules A, B by T pA, Bq.

Unique@K report the fraction of uniquely generated valid SMILES strings amongst the K molecules
generated (validity is determined by the RDKit library). We generate 30, 000 molecules for each model and
report for K “ 1, 000 and K “ 10, 000. High uniqueness values ensure the models do not collapse into
repeatedly producing the same set of molecules.

Fréchet ChemNet Distance (FCD) is a metric for evaluating generative models in the chemical context,
the method is based on the well established Fréchet Inception Distance (FID) metric used to evaluate the
performance of generative models in computer vision (Heusel et al., 2017).

Fréchet distance measure the Wasserstein-2 distance (Vaserstein, 1969) from the distributions induced by
taking the activations of the last layer of a relevant deep neural net. In the case of FCD, molecule activations
are probed from ChemNet (Mayr et al., 2018). Given a set of generated molecules, denote by G the set of
vectors as obtained by the activations of ChemNet, one can calculate the mean and covariance µG and �G.
Similarly, denote µR and �R the mean and covariance of the set of molecules in the reference set, the FCD
is calculated as follows,

FCDpG, Rq “ }µG ´ µR}2 ` Tr
´

�G ` �R ´ 2p�G�Rq1{2
¯

. (A.2)

where TrpMq denotes the trace of the matrix M . Low FCD values indicate that the generated molecules
distribute similarly to the reference set.

Similarity to Nearest Neighbor (SNN) is the average of the Tanimoto coe�cient of the generated
molecule set denoted by G and their respective nearest neighbor in a reference set of molecules denote by
R. High SNN indicates the generated molecules have similar structures to those in the reference set. This
metric is in the range of r0, 1s.

Fragment similarity (Frag) is a fragment similarity measure based on the BRICS fragments (Degen
et al., 2008). Denote the set of BRICS fingerprints vectors of the generated molecules by G and similarly R
for the reference molecules. The fragment similarity is defined as the cosine similarity of the sum vectors,

FragpG, Rq “ cosine

˜
ÿ

gPG

g,
ÿ

rPR

r

¸
(A.3)

The Frag measure is in the range of r0, 1s, values closer to 1 indicate that the generated and reference
molecule set have a similar distribution of BRICS fragment.

6
The molecular fingerprints are obtained from RDKit (Landrum, 2006) and are based on the extended-connectivity finger-

prints (Rogers & Hahn, 2010).
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Figure 3: Proof illustration - S has a cycle and two di�erent trajectories starting from u and ending with
w (urw and uwprq. Concatenating with the trajectory from z to v we obtain two di�erent DFS trajectories
with a shared su�x.

Sca�old similarity (Sca�) is similar to the fragment similarity, instead of the BRICS fragment, Sca� is
based on mapping molecules to their Bemis–Murcko sca�olds (Bemis & Murcko, 1996).7 The measure also
has a range of r0, 1s, values closer to 1 indicate that the generated molecule set has a similar distribution of
sca�old to the reference set.

Internal diversity (IntDiv) is a mesure of the chemical diversity within a generated set of molecules G.
This metric indicates

IntDivp “ 1 ´
˜

1
|G|2

ÿ

A,BPG

T pA, Bqp

¸1{p

(A.4)

We report the internal diversity for p “ 1, 2. This measure is in the range r0, 1s. Low values indicate a lack
of diversity in the generated molecules, i.e. that the model outputs molecules with similar fingerprints.

Filters is the fraction of generated molecules that pass a certain filtering that has been applied to the
training data. The metric is in the range of r0, 1s, high values indicate that the model has learnt to generate
molecules which avoid the structures omitted by the filtering process.

Novelty is the fraction of generated molecules that does not appear in the training set. This measure is
in the range of r0, 1s and is an indication of the whether the model overfits the training data.

B Missing Proofs

In this section we show how to construct distinct DFS trajectories with common end vertex for a 2´edge
connected graph conditioned that the graph is not a cycle.

Proof. From our assumption that the graph is not a cycle, there exists at least two nodes with degree • 3.
Denote by C “ pS, T q a minimal cut of size 2 (such a cut exists from our assumption that the graph is
2-connected). Denote the edges of the minimal cut by e1 “ pu, vq and e2 “ pw, zq such that u, w P S and
v, z P T . Next, we claim that at least one of the partitions contains a cycle, otherwise there is a path
connecting S and T since there are nodes in the graph which have a degree of 3 in the original graph with a
path between them. Assume with out loss of generality that S is the partition with a cycle, therefore there
are at least 2 di�erent traversals of S that start with u and end with w. There is also a trajectory between

7
Bemis–Murcko sca�old is the ring structure of a molecule along with the bonds connecting the rings, i.e. the molecule

without the side chains.
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z and v. Putting together, there are at least 2 trajectories of the entire graph with a common su�x which
is the traversal of T . Figure 3 illustrates the proof concept.
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