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Appendix for CellPLM: Pre-training of Cell Language Model
Beyond Single Cells

A SPATIALLY-RESOLVED TRANSCRIPTOMIC DATA

Recently, spatial transcriptomic technologies are developed to spatially resolve transcriptomics
profiles Ståhl et al. (2016); Merritt et al. (2020). With spatial transcriptomics data, researchers
can learn the spatial context of cells and cell clusters within a tissue Burgess (2019). The major
technologies/platforms for spatial transcriptomics are Visium by 10x Ståhl et al. (2016), GeoMx
Digital Spatial Profiler (DSP) Merritt et al. (2020) by NanoString and CosMx Spatial Molecular
Imager (SMI) by NanoString, MERFISH, Vizgen, Resolve, Rebus, and molecular cartography. 10x
Visium does not profile at single-cell resolution, and while GeoMx DSP is capable of single-cell
resolution through user-drawn profiling regions, the scalability is limited. The most recent platform,
CosMx Spatial Molecular Imager (SMI) He et al. (2022), can profile consistently at single-cell and
even sub-cellular resolution. CosMx SMI follows much of the initial protocol as GeoMx DSP, with
barcoding and ISH hybridization. However, the SMI instrument performs 16 cycles of automated
cyclic readout, and in each cycle, the set of barcodes (readouts) are UV-cleaved and removed. These
cycles of hybridization and imaging yield spatially resolved profiling of RNA and protein at single-
cell (∼ 10µm) and subcellular (∼ 1µm) resolution. In this work, we use two published and one
unpublished dataset produced by the CosMx platform. In order to obtain the cellular level gene
expression, CellPose Stringer et al. (2021) software is applied to conduct cell segmentation.

To give a concrete example, we provide a sample field-of-view (FOV) in Fig. 4. Pre-selected types of
RNA molecules are captured by the molecular imager, which are denoted as white dots in the figures.
Colors in the first sub-figure indicate the protein molecules that are stained. These proteins contribute
to the cell segmentation process, which results in the second sub-figure. The final output from the
pipeline consists of the position of each cell and a cell-by-gene count matrix, which is produced by
counting the number of RNA molecules within each cell. The difference between scRNA-seq and
SRT data is further demonstrated in Fig. 5.

(a) Visualization of molecular image. (b) Visualization of cell segmentation.

Figure 4: (a) A sample image of protein and RNA molecules. (b) A sample image of segmented cells.

Figure 5: An illustration of the difference between scRNA-seq and SRT data.
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B 2D SINUSOID POSITIONAL ENCODINGS

Since 2D sinusoidal PE achieves a competitive performance and has a lower complexity on SRT
data Wen et al. (2023), in our transformer encoer, we generate a sinusoidal PE for cells in SRT data,
formulated as:

PE(x,y,2i) = sin
(
x/100004i/d

)
,PE(x,y,2i+1) = cos

(
x/100004i/d

)
,

PE(x,y,2j+d/2) = sin
(
y/100004j/d

)
,PE(x,y,2j+1+d/2) = cos

(
y/100004j/d

)
,

(8)

where d is the total dimension of positional encoding, i, j ∈ [0, d/4) specify a specific feature
dimension. Let C̃ ∈ RN×2 be a normalized coordinate matrix, where we normalize and truncate
coordinates in C to integers ranging in [0, 100). x, y then refer to the spatial coordinates from C̃,
e.g., x = C̃t,0 and y = C̃t,1 for cell t. In this way, we generate a PE matrix P ∈ RN×d for every
cell in SRT data, where Pi is the PE vector for cell i. Meanwhile, for scRNA-seq data, a randomly
initialized d-dimensional vector p′ is shared among all cells, which also results in a placeholder PE
matrix P.

C BROADER IMPACT

Our method lies in an emerging and important application area, single-cell analysis. Especially,
we leverage a novel type of single-cell data, Spatially Resolved Transcriptomics (SRT). SRT is a
rapidly developing technology that allows scientists to map the gene expression of individual cells in
their tissue environment. It combines traditional imaging techniques with transcriptome analysis to
provide a spatially resolved, high-resolution view of gene expression in complex tissues. Essentially,
single-cell technologies and SRT allow researchers to see where specific genes are being expressed
within a tissue sample, which can help them better understand cellular interactions and the function
of specific genes in complex biological systems.

We evaluate our method on various downstream tasks and the empirical results demonstrate the
practical value of our method. Specifically, scRNA-seq Denoising improves the data quality of
scRNA-seq data, which often suffer from technical artifacts and dropout events Svensson et al. (2017);
Qiu (2020), as well as significant batch effects between sequencing platforms and experiments Tran
et al. (2020); Argelaguet et al. (2021). SRT imputation helps to obtain more precise cell state profiles
for SRT data, while also resulting in more accurate integration and clustering between SRT data and
scRNA-seq data. Perturbation prediction has great clinical value to aid in drug design and disease
mechanism research.

While our work offers a significant contribution to the field of single-cell analysis, there are potential
negative societal impacts that are important to consider: one of the primary potential negative societal
impacts is privacy and data security. Single-cell analysis involves working with sensitive genetic
information which, if mishandled, could lead to breaches in privacy and the misuse of personal
data. Another potential negative impact is over-reliance on automated analysis. The complexity of
single-cell data requires careful interpretation, and the risk of false-positive or false-negative results
may be elevated due to computational errors or algorithmic biases. It is crucial to remember that these
tools should serve as aids to human understanding and decision-making rather than replacements.

As single-cell technologies continue to evolve, it is critical that we continue to consider and address
these broader societal impacts. Moving forward, it is crucial that our work is coupled with ongoing
discussions on best practices in data management, privacy protection, and equitable access to
technology. This includes strengthening collaborations with ethicists, policymakers, and regulatory
bodies to navigate these complex issues.

D DENOISING VARIATIONAL LOWER BOUND FOR MASKED LANGUAGE
MODELING

One of the highlights of CellPLM is the design of probabilistic latent space. Prior studies have
employed variational autoencoders for single-cell analysis, which typically assumes an isotropic
Gaussian distribution as the prior distribution of the latent space (Lopez et al., 2018; Xu et al., 2021).
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While this approach can effectively remove batch effects, it may also result in a loss of information
regarding the underlying biological structure of cell groups. To address this limitation, CellPLM
incorporates the concept of Gaussian mixture variational encoder (Dilokthanakul et al., 2016; Yang
et al., 2019; Xu et al., 2023), which utilizes a mixture of Gaussians to capture the information of
distinct functional groups of cells. Formally, for i ∈ {1, . . . , N}, the generative model of cell i can
be formulated as:

p(yi;π) = Multinomial(π),

p (zi | yi) =

L∏
i=1

N
(
µyi,l

,diag
(
σ2

yi,l

))
,

pθdec (xi | zi) = N
(
µzi

, σ2I
)
,

(9)

where yi ∈ RL represents the one-hot latent cluster variable and π is its prior; yi,l denotes the
l-th entry of yi; µyl

∈ Rdz and σ2
yl

∈ Rdz×dz denote the mean and variance of the l-th Gaussian
component, respectively; and µzi ∈ Rk and σ2I ∈ Rk×k denote the posterior mean and variance of
expression xi, respectively. In this work, we assume that σ2 is a constant and the posterior mean is
parameterized by µzi = fdec(zi; θdec).

To estimate the posterior of zi and yi, we parameterize the inference process with neural networks.
Specifically, we assume that the cluster variables y are independent of the expression xi condition on
latent variables zi. The inference model can be formulated as:

qηµ,ησ (zi | xi) = N
(
µ̂i,diag

(
σ̂2

i

))
,

qηπ
(yi | zi) = Multinomial(π̂i),

(10)

where the estimations are given by

hi = fenc(xi; ηenc),

µ̂i = fµ (hi; ηµ) ,

log
(
σ̂2

i

)
= fσ (hi; ησ) ,

π̂i = fπ (zi; ηπ) .

(11)

Here fenc(·; ηenc) represents the transformer encoder, fµ(·; ηµ), fσ(·; ησ) and fπ(·; ηπ) are neural
networks. A log-evidence lower bound (ELBO) can be derived from this generative model for
the optimization purpose (Dilokthanakul et al., 2016). However, as mentioned in Section 3.1, our
pre-training framework incorporates a cell language model, where parts of the input gene expression
matrix X are masked. This will result in a modified objective. To formalize the problem, recall
that previously we defined the masked set as M. On top of that, we denote M ∈ RN×k as a mask
indicator matrix such that

Mi,j =

{
1 if (i, j) ̸∈ M,
0 if (i, j) ∈ M.

Let X̃ ∈ RN×k be the masked gene expression matrix given by the element-wise multiplication
X̃ = M⊙X. The objective of cell language model with Gaussian mixture prior, i.e., a denoising
variational lower bound (Im Im et al., 2017), can be formulated as:

LCellLM =Eq(Z,Y|X̃)Ep(X̃|X)

[
ln

pθ(X,Z,Y)

qη(Z,Y | X̃)

]
(12)

=Eqηenc (Z|X̃)Ep(X̃|X) [log pθdec(X | Z)]︸ ︷︷ ︸
Lrecon

−Eqηπ (Y|Z)

[
KL

(
qηenc(Z | X̃)∥p(Z | Y)

)]
︸ ︷︷ ︸

Lcond

− Eqηenc (Z|X̃) [KL (qηπ
(Y | Z)∥p(Y))]︸ ︷︷ ︸

LY

.

E PRE-TRAINING SETTINGS

E.1 HYPERPARAMETER SETTINGS

We pre-trained CellPLM model with the hyperparameters specified in Table 5.
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CellPLM

encoder hidden dim 1024
encoder layers 4

latent dimension 512
decoder hidden dim 1024

decoder layers 2
model dropout 0.2
cell mask rate 0.75
gene mask rate 0.25
learning rate 2e-4
weight decay 1e-8
num of cluster

(for GMM) 16

total parameter
82,402,543

Table 5: Hyperparameters for pretraining CellPLM model.

Source Datasets

HTCA HTAN_HTAPP, HTAN_Stanford, HTAN_Vanderbilt, HTAN_BU

HCA

cxg_PBMCs, EGAS00001004571_PBMCs, eQTLAutoimmune,
covid19autoimmunityPBMCs, VanDerWijst-Human-10x5pv1,
cxg_Airways, COMBAT2022, TabulaSapiens,
PAN.A01.v01.raw_count.20210429.PFI.embedding,
GTEx_8_tissues_snRNAseq_atlas_071421.public_obs

GEO

GSE139324, GSE136246, GSE179994,GSE131907,
GSE171145, GSE139555, GSE156728_CD4,
GSE148071, PMID_34663877, Qian_et_al_2020_LC,
GSE176021, GSE156728_CD8

Other Atlas (deduplicated) MalteEtAl_LungAtlas, TICAtlas

Table 6: List of dataset and data sources. External links will be included in our github repo.

E.2 DATASETS FOR PRE-TRAINING

The dataset for pre-training contains 11.4 million cells from scRNA-seq and SRT data.
scRNA-seq data consist of 4.7 million cells from human tumor cell atlas (HTCA, https:
//humantumoratlas.org/), 1.4 million cells from human cell atlas (HCA, https://
www.humancellatlas.org/), and 2.6 million cells from Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/). All of them are public available data, elucidated
in table 6. A more detailed list and external links will be disclosed in our GitHub repository. Note that
although our CellPLM is capable to handle various input feature sets, when we concatenated these
scRNA-seq datasets, we used inner join by default of Anndata package. As a result, all scRNA-seq
datasets only contain a 13, 500 common gene set. We will address this issue and increase the size of
the gene set in future versions of CellPLM.

The SRT datasets we used are publicly available on Nanostring official website:
https://nanostring.com/products/cosmx-spatial-molecular-imager/
nsclc-ffpe-dataset/, where 2.7 million cells and 1, 000 genes are measured. Both
scRNA-seq and SRT data are preprocessed with library size normalization and log1p transformation,
following the convention in Stuart et al. (2019),

F ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide more experimental details about fine-tuning, baselines, and evaluation
metrics under each downstream task.
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F.1 SCRNA-SEQ DENOISING

Downstream Task Datasets. In scRNA-seq denoising task, we evaluate CellPLM on two datasets,
i.e., PBMC 5K and Jurkat from 10x Genomics lin (a). It is worth noting that during the prepossessing
stage, we performed sub-setting on both datasets to ensure that all the genes were included in the gene
set of pre-training data. Additionally, any genes with zero counts were removed from the analysis.
We list the statistics of them in Table 7.

Table 7: scRNA-seq denoising datasets

5K PBMC Jurkat

Number of genes 33,538 32,738
Number of cells 5,247 3,258

Num genes picked 7,197 7,618

Evaluation Metrics. Following the setting of scGNN Wang et al. (2021), scGNN2.0 Gu et al. (2022)
and DeepImpute Arisdakessian et al. (2019), we performed synthetic dropout simulation with missing
at random (MAR) setting. While scGNN only considered a simple scenario, i.e., randomly flipped
10% of the non-zero entries to zeros, DeepImpute applied cell-wise mask with masking probability
given by a multinomial distribution. Specifically, we adapted the setting from DeepImpute with
exponential kernel. For cell i that contains at least 5 expressed genes, the probability that one non-zero
count xi,j is masked during the training process is given by Exp(0, 20):

pi,j =
1

20
e−

x
20 ,

qi,j =
pi,j∑Ji

j=0 pi,j
,

where Ji is the number of non-zero counts within cell i. We masked 10% of the non-zero counts
according to {qi,j}Ji

j=0 and evaluate model performance on the masked entries. We calculate the
root mean squared error (RMSE) and mean absolute error (MAE) between the predicted values and
ground truth.

Baselines (1) DeepImpute Arisdakessian et al. (2019) employed a strategy of dividing genes into sub-
sets and constructing deep neural networks to impute scRNA-seq data. We implemented DeepImpute
with default settings in DANCE Ding et al. (2022) package. (2) scGNN2.0 Gu et al. (2022) incorpo-
rated a feature autoencoder, a cluster autoencoder and a graph attention autoencoder for simultaneous
imputation and clustering. scGNN2.0 is implemented by DANCE package with default settings.
(3) GraphSCI Rao et al. (2021) combined autoencoders with graph convolution networks among a
gene-gene similarity graph. We accommodated the implementation of GraphSCI in DANCE package.
(4) SAVER Huang et al. (2018) leveraged Poisson LASSO regression to model the scRNA-seq counts
with Poisson–gamma mixture. We utilized R package SAVER to illustrate the performance of it. (5)
DCA Eraslan et al. (2019) introduced an autoencoder framework based on zero inflated negative
binomial (ZINB) distribution. We applied DCA to aforementioned datasets with its Python pacakge.
(6) MAGIC Van Dijk et al. (2018) utilized Markov affinity to capture gene-gene relationship and
impute missing gene expression. We adapted its Python package to access the performance of it. (7)
scImpute Li & Li (2018) developed a Gamma and Gaussian mixture model to identify dropout values.
We revealed the performance of scImpute with its R pacakge.

Fine-tuning. Since denoising task requires model to recover the gene expression matrix, we can
directly get the zero shot performance of CellPLM by specifying the gene set of target dataset.
Additionally, we fine-tuned CellPLM by replacing the pre-trained decoder with a MLP head and
initializing encoder with pre-trained weights. Additionally, for methods require model selection on
validation set, we performed another 10% simulation dropout and treat masked entries as validation
set. The fine-tuned CellPLM was trained on MSE reconstruction loss, while the best model was
selected by evaluating MSE on validation set.

F.2 SPATIAL TANSCRIPTOMIC IMPUTATION

Downstream Task Datasets. To evaluate spatial tanscriptomic imputation models at single-cell
resolution, we collected two samples from MERSCOPE FFPE Human Immuno-oncology Data lin
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(b). Specifically, we chose "Lung cancer 2" and "Liver cancer 2" as our samples, and subsequently
referred to them as "Lung2" and "Liver2" respectively. The Lung2 and Liver2 datasets were subsetted
to align with the gene set of the pre-training data. Additionally, we removed the fields of view (FOVs)
that contained fewer than 100 cells and retained only the first 100 FOVs from both datasets. Note
that all baselines require reference scRNA-seq datasets to impute the unseen genes of SRT data, we
collected GSE131907 Kim et al. (2020) and GSE151530 Ma et al. (2021) for lung cancer and liver
cancer, respectively. The statistics of all datasets are illustrated in Table 8.

Table 8: Spatial tanscriptomic imputation datasets.

Lung2 Liver2 GSE131907 GSE151530

Number of genes 500 500 29,634 18,667
Number of cells 836,739 598,141 208,506 56,721

Num genes picked 462 446 All ALL
Num cells picked 40,114 20,629 All All

Evaluation Metrics. Following the evaluation pipeline proposed by Avşar et al. Avşar & Pir (2023),
we selected target genes of SRT data with stratified sampling according to gene sparsity. Specifically,
we grouped genes into four categories: low sparse, moderate sparse, high sparse, and very-high
sparse. Empirically, the boundaries were defined as [x < 75, 75 ≤ x < 90, 90 ≤ x < 95, 95 ≤ x] to
approximate the Gaussian mean and standard deviation slices. Subsequently, we randomly selected
25 genes from each sparsity group and remove them from training data. After training the models,
we calculate the evaluation metrics on the target genes. Namely, we compute the root mean squared
error (RMSE), Pearson’s correlation coefficient (PCC) and cosine similarity (Cosine) between the
ground truth values and the corresponding imputed values in a gene-wise approach.

Baselines. (1) SpaGE Abdelaal et al. (2020) relied on domain adaptation to map scRNA-seq data onto
SRT data and utilized a k-nearest-neighbor (k-NN) graph to predict unseen genes. We implemented
SpaGE with default settings on both datasets. (2) stPlus Shengquan et al. (2021) developed an
autoencoder framework for learning cell embeddings and imputing SRT genes using a weighted
k-NN approach. The performance of stPlus is accessed by its Python package. (3) gimVI Lopez
et al. (2019) introduced a variational autoencoder based model with protocol-specific treatments on
scRNA-seq data and SRT data. We applied the scvi-tools lin (c) Python package with default settings
to evaluate the performance of gimVI. (4) Tangram Biancalani et al. (2021) utilized a deep learning
approach to learn the spatial alignment of scRNA-seq data based on a reference SRT dataset with
consistent spatial maps. We evaluated Tangram with its Python package.

Fine-tuning. Similar to scRNA-seq denoising, the spatial tanscriptomic imputation task requires the
ouput of the model to be the gene expression. Thus, we directly fine-tune CellPLM on the pre-trained
weights while specifying the input genes and target genes. The last two batches were hold out for
validation.

Visualization of attention. One essential multi-cell task is cell-cell communication (CCC) infer-
ence, where CCC mainly represents biochemical signaling through ligand-receptor binding across
cells (Cang et al., 2023). Our CellPLM applies self-attention mechanism on cell level, from which
we can study the interaction strength given by cell attention matrix. As a preliminary study, we
extract the attention matrix between cells from a random chosen field of view (FOV) in Cosmx Liver
dataset. The attention matrix is treated as CCC scores, and we visualize the results following the
stream plot setting in Cang et al. (2023). As shown in the Figure 6 in our supplementary PDF, there
are some strong trends on the left side and right side of the FOV, suggesting further exploration
of specific signaling pathways for the included cells. This case study showcase the potential of
our CellPLM model in cell-cell communication research. We hope our model can facilitate more
insightful biological research in the future.

F.3 PERTURBATION PREDICTION

The perturb-seq technology has been established to examine the gene expression response at the
single-cell level when subjected to pooled perturbations (Dixit et al., 2016). By comparing the gene
expression before and after perturbation, downstream analysis of differential expression (DE) enables
the identification of genes that play a crucial role in disease progression. To assess the potential
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Figure 6: Visualization of attention matrix demonstrate cell-cell communication.

benefits of CellPLM in gene-level tasks, we conduct experiments to predict the expression value of
genes after perturbation. Following the setting of GEARS (Roohani et al., 2022), we partition the
perturbations into training, validation, and test sets, ensuring that none of the test perturbations are
encountered during the optimization process.

Two perturbation datasets are employed for evaluation: (1) the Adamson Perturb-Seq dataset (Adam-
son et al., 2016), consisting of 87 one-gene perturbations; and (2) the Norman Perturb-Seq
dataset (Norman et al., 2019), containing 131 two-gene perturbations and 105 one-gene pertur-
bations. To evaluate the performance of perturbation prediction, we employ Root Mean Square
Error (RMSE) to measure the degree of similarity between the non-zero ground-truth expression
values and corresponding predicted gene expressions. In addition, following previous settings in
GEARS (Roohani et al., 2022), we also present the RMSE calculated on the top 20 deferentially-
expressed genes.

We compare the performance between CellPLM and two baselines, i.e., a recent preprint GEARS
method (Roohani et al., 2022), and scGen (Lotfollahi et al., 2019). The results in Figure 7 imply that
CellPLM achieves the lowest RMSE values across all settings.

Adam. All Adam. DE Norman.0 All Norman.0 DE Norman.1 All Norman.1 DE0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM
SE

CellPLM
GEARS
scGEN

Figure 7: (Task 3) The RMSE performance (↓) on Adamson Perturb-Seq and the Norman Perturb-Seq
datasets. The Norman Perturb-seq dataset consists of two settings: one-gene perturbations and
two-gene perturbations, denoted as Norm.0 and Norm.1, respectively.

Downstream Task Datasets. We included the Adamson Perturb-Seq dataset Adamson et al. (2016)
for one-gene perturbations and the Norman Perturb-Seq dataset Norman et al. (2019) for two-gene
perturbations. We followed the preprocess pipeline of GEARS Roohani et al. (2022) and both datasets
were then gene-wise subsetted to fit in the gene set of pre-training data. The statistics are summaried
in Table 9.
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Table 9: Perturbation prediction datasets.

Adamson Norman

Number of genes 5,060 5,045
Number of cells 68,603 91,205

Num genes picked 3,246 2,353
Num one-gene pert. 87 105
Num two-gene pert. – 131

Evaluation Metrics. Following the setting of GEARS Roohani et al. (2022), we applied data split
such that the testing perturbation are unseen during the training process. Specifically, For Adamson
dataset, we randomly hold out 25% of the perturbations for testing and 10% of the perturbations
within the training set for validation. For Norman dataset, two settings for two-gene perturbations
are implemented for evalutation purpose: 1/2 unseen and 2/2 unseen. We excluded all two-gene
combinations in which at least one of the individual genes involved in the combination belonged
to the unseen set. Finally, we evaluate the performance by calculating the root mean squared error
(RMSE) between the predictions and the true values within the testing set.

Baselines. (1) GEARS Roohani et al. (2022) utilized gene co-expression knowledge graph and
Gene Ontology-derived knowledge graph to model the influence of perturbations. We followed
the recommended parameter settings within its Python package to access the performance. (2)
scGen Lotfollahi et al. (2019) built a conditional variational autoencoders and incoporated vector
arithmetics to model phenomena response. We implemented scGen with its Python package on both
datasets.

Fine-tuning. For one perturbation, we set the input of perturbed genes to be −100 to mimic the
gene perturbation action. During the fine-tuning process, we substituted the original batch-aware
decoder with a simplified MLP decoder. Additionally, we initialized the remaining components of
CellPLM with pre-trained weights. The final model was chosen to be the best-performed model on
the validation set.

G CELL TYPE ANNOTATION

Cell type annotation is a crucial step in single-cell analysis as it enables the identification and
characterization of distinct cell populations within a tissue or organism. This information is crucial
for understanding the functional diversity, developmental trajectories, and disease relevance of
different cell types, providing insights into biological processes and facilitating targeted therapeutic
approaches.

Downstream Task Datasets. We assess the performance of CellPLM on the task of cell type
annotation on hPancreas (Chen et al., 2023) and Multiple Sclerosis (MS) (Schirmer et al., 2019),
which are suggested by Cui et al. (2023). The hPancreas dataset contains five scRNA-seq datasets of
human pancreas cells, divided into reference and query sets with annotations, including 13 cell types
and 11 cell types, respectively. The Multiple Sclerosis dataset (M.S.), sourced from EMBL-EBI,
includes 9 healthy control and 12 M.S. samples. 3,000 highly variable genes were retained.

Evaluation Metrics. We evaluate cell type annotation performance based on two standard classifica-
tion metrics, Macro Precision and Macro F1 score.

Baselines. To benchmark the performance of CellPLM, we compare it with both pre-trained models
including scGPT Cui et al. (2023), scBERT Yang et al. (2022), as well as non-pre-trained SOTA
models including ACTINN Ma & Pellegrini (2020), CellTypist Domínguez Conde et al. (2022),
SingleCellNet Tan & Cahan (2019), and TOSICA Chen et al. (2023). For baseline methods, we
adhere to their provided guidelines and utilize the default parameter setting. The performance metrics
reported for scBERT, TOSICA and scGPT in this task are directly obtained from scGPT papers.

Fine-tuning. For CellPLM model, we attach a feed forward layer to the pre-trained encoder and
latent space and tune the downstream model on the downstream dataset with a standard cross entropy
loss.
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H ADDITIONAL VISUALIZATION

H.1 COMPARISON BETWEEN CellPLM AND SCVI

As a supplement to the zero-shot clustering experiments in Section 4.1, we add an additional
comparison with scVI (Lopez et al., 2018) on the same dataset. As shown in Figure 8, CellPLM
successfully outperforms scVI without any training or fine-tuning, while the latter was trained on this
specific dataset.

CellPLM
(ARI = 0.867, NMI = 0.823)

scVI
(ARI = 0.843, NMI = 0.823)

PatientMajor cell type

Figure 8: Visualization and comparison between CellPLM (zero-shot) and scVI on the clustering
task.

H.2 VISUALIZATION OF GENE EMBEDDINGS

In order to examine whether gene interactions can be encoded in CellPLM, we present a visualization
of pre-trained gene embeddings from the gene expression embedder in Figure 9. From the visual-
ization, the gene embeddings maintain some latent structures. To further verify the effectiveness of
the latent structure, we highlight a specific family of genes, HLA genes. There are multiple classes
of genes in HLA gene family (Cruz-Tapias & Anaya, 2021). For example, HLA class I genes (e.g.,
HLA-A, -B, and -C) present endogenous peptides to responding CD8+ T Cells while the class II
(e.g., HLA-DR, -DP, and –DQ) process exogenous peptides for presentation to CD4+ helper T Cells.
From the UMAP visualization, HLA gene embedding clusters perfectly match the functionality and
characteristics of those genes.

I ABLATION STUDY

To further verify the contribution of each component in CellPLM model, we add three new ablation
studies on two representative tasks to examine the effectiveness of proposed latent distribution
and transformer encoder, presented in Table 10. In each setting, we change one component in the
model architecture and go through the whole pre-train and fine-tune pipeline to get the downstream
performance. Specifically,

1. First, when we replace the proposed mixture of gaussian prior distribution with a gaussian
prior distribution (noted as “w/o Mixture of Gaussian", commonly used in previous methods
like scVI), the performance significantly drops on all datasets, indicating that an unsuitable
prior distribution can greatly hurt the performance. A regular Gaussian distribution cannot
accommodate the highly heterogeneous data present in the pre-train dataset, which were
collected from different people, organs, and sequencing platforms.
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Figure 9: Visualization of gene embeddings in the pre-trained CellPLM demonstrate that CellPLM
successfully captures gene interactions in the initial gene embeddings. For example, HLA Class I
genes and HLA Class II perfectly form two clusters in the gene embedding space.

2. Second, we removed the latent distribution in its entirety, noted as “w/o latent distribution",
i.e., we converted from a VAE-like probabilistic generative model to a deterministic masked
auto-encoder. The performance consistently falls between the original one and the first
ablation. On one hand, this supports our motivation of using probabilistic models with
Gaussian mixture prior distribution. The latent distribution helps model the uncertainty
of the data and address the high noise inherent in transcriptomic data, which results in a
robust cell representation. On the other hand, the selection of prior distribution is very
important because an improper prior (e.g., regular Gaussian) can be even worse than no
latent distribution.

3. Lastly, we replace the transformer encoder with an MLP encoder (noted as “w/o trans-
former"), keeping the same number of layers and hidden dimension (the total parameters
reduce from 85M to 50M). The performance significantly drops on spatial imputation task,
while the gap is relatively small on cell-type classification task. This aligns with our intuition,
as spatial transcriptomic data provide spatial location information, enabling the model to
better identify and utilize the relationships between cells. In contrast, the cell type annotation
dataset does not provide spatial location information, which makes the benefits gained from
the transformer encoder more limited.

Overall, through a series of ablation studies, we have verified that our CellPLM model can capture the
relationships between cells via the transformer encoder and enhance the performance of downstream
tasks, generating more robust and useful cell representations through appropriate prior distributions.
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Cell-type Classification
MS hPancreas

f1 precision f1 precision
CellPLM 0.766 ± 0.007 0.803 ± 0.008 0.749 ± 0.010 0.753 ± 0.010

w/o Mixture of Gaussian 0.737 ± 0.042 0.766 ± 0.069 0.711 ± 0.025 0.701 ± 0.025
w/o Latent Distribution 0.750 ± 0.024 0.809 ± 0.032 0.733 ± 0.034 0.731 ± 0.033

w/o Transformer Encoder 0.750 ± 0.050 0.794 ± 0.074 0.751 ± 0.010 0.750 ± 0.012
Spatial Imputation

Lung Liver
corr cosine corr cosine

CellPLM 0.318 ± 0.015 0.481 ± 0.011 0.328 ± 0.011 0.481 ± 0.010
w/o Mixture of Gaussian 0.258 ± 0.011 0.449 ± 0.005 0.232 ± 0.013 0.433 ± 0.008
w/o Latent Distribution 0.262 ± 0.011 0.449 ± 0.008 0.246 ± 0.017 0.428 ± 0.012

w/o Transformer Encoder 0.244 ± 0.016 0.443 ± 0.008 0.250 ± 0.032 0.440 ± 0.021

Table 10: Ablation studies on latent distribution and transformer encoder.
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