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1. Abstract
We use ML and statistical methods to analyze

fMRI data from the Human Connectome Project.
The main goal is to identify key brain regions in-
volved in these tasks. Feature importance analysis
reveals unique activation patterns for each state. Ad-
ditionally, we show that the temporal structure of the
data plays a key role in forming functional connec-
tions between brain regions.

2. Description of the Experimental Data
We use fMRI data from 581 participants who per-

formed 7 tasks designed to activate different brain
regions. Each task includes 2 states of brain activ-
ity, resulting k = 14 brain states and 8134 fMRI data
units.

Table 1: Two brain states for each cognitive task

Cognitive Task State 1 State 2
Working Memory 0-back 2-back
Gambling win loss
Motor Task left hand or foot right hand or foot
Language Processing story math
Social Cognition randommotion mental interaction
Relational Processing relation similarity
Emotion Processing neutral fear

Structure of fMRI Data Unit:

• Each observation is represented as an activity
matrix Xn×m, where n is the number of brain
regions and m is the length of the time series.
The elements xij ∈ X represents the activity
of the i-th brain region at time point j, where
xij ∈ [−1, 1].

• The time series vector xi = [xi1, ..., xim] de-
scribes its activity over the entire time interval.

Data Preprocessing: In each activity matrix X,
the time series xi is averaged for each brain region
(i = 1, n). Thus, each data unit is represented as a
vector of mean brain region activities.

3. ResearchMethodology
We considered linear models (SVM, LDA, SGD,

perceptron and others) due to their interpretability,
efficiency on medium-sized data, noise resistance,
computational simplicity, scalability, and theoreti-
cal foundation. All models achieved an accuracy of
0.84˘0.92, confirming the relevance of classical algo-
rithms forMRI data analysis. We selected logistic re-
gression using the "One-vs-All" approach. The classi-
fication report is provided in Table.

Table 2: Classification Report with One-vs-All

Class name Precision Recall F1-
Score

Support

Neutral 0.88 0.88 0.88 120
Fear 0.87 0.89 0.88 124
Loss 0.78 0.69 0.73 108
Win 0.85 0.81 0.83 117
Math 0.97 0.97 0.97 120
Story 0.96 0.97 0.97 104
Randommotion 0.97 0.97 0.97 125
Mental interaction 0.95 0.98 0.97 99
0-back 0.83 0.86 0.84 127
2-back 0.78 0.89 0.83 98
Left hand or foot 0.92 0.95 0.93 129
Right hand or foot 0.99 0.97 0.98 116
Similarity 0.79 0.77 0.78 124
Relation 0.88 0.85 0.87 116

Accuracy 0.89 (1627)
Macro Avg 0.89 0.89 0.89 1627
Weighted Avg 0.89 0.89 0.89 1627

4. Identification of the Most Significant Features
Features were ranked by the absolute values of

their weights and iteratively removed, starting with
the least significant. At each step, the model was re-
trained, and accuracy (TPR at FPR = 0.05) was eval-
uated. The Fig.1 shows that feature selection can be
performed without significant accuracy loss up to a
certain threshold. If removing a feature reduced ac-
curacybymore than 5%, itwas restored, and thepro-
cess terminated. The remaining features formed the
setM of significant features.

Fig. 1: Accuracy plot depending on the number of
features

The graphs in Fig. 2 show that: Different brain
states require varying numbers of significant brain
regions for classification. For brain states with high
classification accuracy, the |M| is small, indicating
key brain regions that form these brain states
Analysis of similarity between significant fea-

tures of different classes.
For all classes, we performed pairwise compar-
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Fig. 2: The cardinality of the top feature sets

isons of the obtained sets Mi and Mj (i, j = 1, k)
and constructed a Jaccard coefficients J(Mi,Mj) ∈
[0, 1] (where 1 indicates identical sets, and 0 indicates
no common elements) matrix (Fig. 3). We observed
that high-accuracy classes have sets M with near-
zero overlap.
Analysis of Temporal Dynamics. We disrupt the

temporal structure of brain region activity to deter-
mine its importance for identifying functional con-
nections between them. For each class c = 1, ..., k,
we perform the following steps.
We extract the time series {x1, . . . ,xnc

} of signif-
icant features fromMc in the activity matrixX, and
shuffle them:

xshuffledi = [xπ(1), . . . , xπ(m)],

where π : {1, 2, . . . ,m} → {1, 2, . . . ,m} is a random
permutation of the time point indices.

Fig. 3: The Jaccard coefficient matrix

Analysis of the significance of the time struc-
ture.We construct

P1(corr(xi,xj)), P2(corr(x
shuffled
i ,xshuffledj ))

the distributions of the Pearson correlation coeffi-
cients between original and shuffled time series of

significant features i, j ∈ Mc for all activity matri-
ces of current class.
Do the two distributions P1 and P2 originate from

the same population? For each pair (i, j) we per-
form the KS-test to compare the distributions. Re-
sult: for almost all pairs of features in each class,
the p-values < α = 0.03. Thus, the distributions
of correlation coefficients between the original time
series significantly differ from the distributions be-
tween the shuffled time series.

5. Conclusions
Currently, advanced methods for working with

fMRI data, which are often available in limited quan-
tities, are being actively developed. We demon-
strated the effectiveness of classical machine learn-
ing methods in classifying fMRI data, emphasiz-
ing the importance of starting with simple meth-
ods when analyzing complex datasets like fMRI. Our
analysis revealed unique sets of significant brain re-
gions for each brain state, with minimal overlap be-
tween classes, highlighting their functional speci-
ficity. Furthermore, correlation analysis and the
Kolmogorov-Smirnov (KS) test confirmed the cru-
cial role of temporal data structure in forming func-
tional connections, as disrupting this structure sig-
nificantly alters correlation patterns. Additionally,
states with low classification accuracy were charac-
terized by a large number of significant features, in-
dicating complex and distributed activation of brain
regions. This complexity underscores the need for
further research tobetter understand theunderlying
mechanisms of these states.
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