
A Influence Function on Bias and Extension to DNN.

A.1 Deriving the Influence Function on Bias.

In this part, we provide detailed derivation of the influence function on bias in Eq. 5 in the main work.
We first start from the influence function on parameters, we can also be referred to [1, 2].

Assuming there are n training samples z1, z2..., zn, where zi = (xi, yi), and let L(z, θ) represent the
loss function of sample z under the model parameters θ, then the trained θ̂ is given by:

θ̂ = argminθR(θ) = argminθ

1

n

n∑
i=1

L(zi, θ). (1)

Study the impact of changing the weight of a training sample z on the model parameters θ. If we
increase the weight of this sample z in the training set by ϵ, then the perturbed parameters θ̂ϵ,z
obtained according to ERM (Empirical Risk Minimization) will be:

θ̂ϵ,z = argmin
θ

R(θ) + ϵL(z, θ). (2)

Define the parameter change ∆ϵ = θ̂ϵ,z − θ̂, and note that, as θ̂ doesn’t depend on ϵ, the quantity we
seek to compute can be written in terms of it:

dθ̂ϵ,z
dϵ

=
d∆ϵ

dϵ
. (3)

Since θ̂ϵ,z is a minimizer of R(θ), therefore it satisfies the first-order derivative condition, which
means the first-order derivative with respect to θ is zero:

0 = ∇R(θ̂ϵ,z) + ϵ∇L(z, θ̂ϵ,z). (4)

Next, since θ̂ϵ,z → θ̂ as ϵ → 0, we perform a Taylor expansion of the right-hand side:

0 ≈{∇R(θ̂) + ϵ∇L(z, θ̂)}+∇2R(θ̂) + ϵ∇2L(z, θ̂)∆ϵ,

where we have dropped o(∥∆ϵ∥) terms. Solving for ∆ϵ, we get:

∆ϵ ≈− {∇2R(θ̂) + ϵ∇2L(z, θ̂)}−1{∇R(θ̂) + ϵ∇L(z, θ̂)}.

Since θ̂ minimizes R, we have ∇R(θ̂) = 0. Dropping o(ϵ) terms, we have

∆ϵ ≈−∇2R(θ̂)−1∇L(z, θ̂)ϵ. (5)

Note that it is assumed that R is twice-differentiable and strongly convex in θ. we define:

Hθ̂ = ∇2R(θ̂) =
1

n

n∑
i=1

∇2
θL(zi, θ̂) (6)

exists and is positive definite. This guarantees the existence of H−1

θ̂
. The final influence function can

be written as:

Iup,params(z) =
dθ̂ϵ,zk
dϵ

∣∣∣
ϵ=0

= −H−1

θ̂
∇θ̂L(z, θ̂), (7)

Considering B(θ̂) measured on any A with any Dex, our goal is to quantify how each training point
z in the training set Dtr contributes to B(θ̂). We apply the chain rule on Eq. 7:

1

Iup,bias(zk, B(θ̂)) =
dB(θ̂ϵ,zk)

dθ̂ϵ,zk

dθ̂ϵ,zk
dϵ

∣∣∣
ϵ=0

= −∇θ̂B(θ̂)H−1

θ̂
∇θ̂L(zk, θ̂), (8)

Intuitively, this equation can be understood in two parts: the latter part calculates the impact of
removing z on the parameters. The former part corresponds to the derivative of bias with respect to
parameters, assessing how changes in parameters affect the bias. Hence, this equation quantifies the
influence of removing z on the bias.

A.2 Influence at Non-Convergence

In this part, we provide the theoretical proof of the feasibility of the influence function for deep
networks (non-convergent) in [1]. In the derivation of the influence function, it’s assumed that θ̂
could be the global minimum. However, if θ̂ is obtained in deep networks trained with SGD in a
non-convex setting, it might be a local optimum and the exact influence can hardly be computed.
Here we provide the proof in [1] on how can influence function approximate the parameter change in
deep networks.

Consider a training point z. When the model parameters θ̃ are close to but not at a local minimum,
Iup,params(z) is approximately equal to a constant (which does not depend on z) plus the change in
parameters after upweighting z and then taking a single Newton step from θ̃. The high-level idea
is that even though the gradient of the empirical risk at θ̃ is not 0, the Newton step from θ̃ can be
decomposed into a component following the existing gradient (which does not depend on the choice
of z) and a second component responding to the upweighted z (which Iup,params(z) tracks).

Let g def
= 1

n

∑n
i=1 ∇θL(zi, θ̃) be the gradient of the empirical risk at θ̃; since θ̃ is not a local minimum,

g ̸= 0. After upweighting z by ϵ, the gradient at θ̃ goes from g 7→ g + ϵ∇θL(z, θ̃), and the empirical
Hessian goes from Hθ̃ 7→ Hθ̃ + ϵ∇2

θL(z, θ̃). A Newton step from θ̃ therefore changes the parameters
by:

Nϵ,z
def
= −

[
Hθ̃ + ϵ∇2

θL(z, θ̃)
]−1 [

g + ϵ∇θL(z, θ̃)
]
. (9)

Ignoring terms in ϵg, ϵ2, and higher, we get Nϵ,z ≈ −H−1

θ̃

(
g + ϵ∇θL(z, θ̃)

)
. Therefore, the actual

change due to a Newton step Nϵ,z is equal to a constant −H−1

θ̃
g (that doesn’t depend on z) plus ϵ

times Iup,params(z) = −H−1

θ̃
∇θL(z, θ̃) (which captures the contribution of z).

B Bias Removal via Machine Unlearning

B.1 A Closer Look at the Toy Experiment

We conduct an experiment on a logistic regression task using Eq. 8. We simplify the Colored MNIST
classification task to a binary classification problem of distinguishing between only digits 3 and 8, on
a training set with a bias ratio of 0.95, 0.9 and 0.8, and a balanced test set. To be specific, a bias ratio
of 0.95 means 95% bias-aligned samples <digit3_color3, digit8_color8> and 5% bias-conflicting
samples <digit3_color8, digit8_color3> in the training set. We trained a regularized logistic regressor:
argminw∈Rd

∑n
i=1 l(w

Txi, yi) + λ∥w∥22. Fig. 1 (a) illustrates the classification results of the vanilla
classifier (trained on the 0.95-biased train set) on part of test samples. We denote Digit by shape
(triangle and rectangle) and Color by color (yellow and green). The solid line represents the learned
classification boundary and the dotted line represents the expected classification boundary. It can
be observed that the learned classifier tends to classify digits according to their color. Based on the
observed bias, we employ Eq. 8 to evaluate how each training sample contributes to the bias. In
Fig. 1(b), we select and visualize the most helpful (reduce bias) and harmful (increase bias) samples.
We found that the most harmful samples are bias-aligned while helpful samples are bias-conflicting.
With this inspiration, We further visualize the influence distribution of training samples in Fig. 2.
We denote the bias-conflicting sample with “red dot” and the bias-aligned sample with “blue dot”.
We find that most bias-aligned samples tend to be harmful while bias-conflicting samples tend to be

2

helpful. This pattern is consistent across different ratios of bias-conflicting samples. Additionally, the
influences of helpful samples are larger than those of harmful ones. Visualizations are produced with
randomly 500 samples from the training set.

(a) (b)

Figure 1: (a) Illustration of the learned pattern on our toy dataset. (b) Visualization of helpful samples
(top row) and harmful samples (bottom row).

(a) (b) (c)

Figure 2: Influences of training samples with bias ratios of (a) 0.8, (b) 0.9, (c) 0.95.

Inspired by this observation, our unlearning strategy is further refined. Hence, we propose a straight-
forward solution that further mitigates the influence of a harmful sample with a bias-conflicting
sample. Consequently, we update the parameters to unlearn the harmful samples by:

θnew = θ̂ +

K∑
k=1

H−1

θ̂
(∇θ̂L(zk, θ̂)−∇θ̂L(z̄k, θ̂)), (10)

where z̄k denotes the bias-conflicting sample of zk. Following the explanation in influence theory [1],
our unlearn mechanism removes the effect of perturbing a training point (ā, x, y) to (a, x, y). In other
words, we not only remove the influence caused by harmful sample zk, but further ensure fairness
with the corresponding counterfactual sample z̄k.

(a) (b) (c)

Figure 3: Influences of selected training sample (counterfactual) pairs in Eq. 10 with bias ratios of (a)
0.8, (b) 0.9, (c) 0.95.

To further illustrate the functionality of Eq. 10, we measure the influences of the selected harmful
and helpful sample pairs by:

Iup,bias(zk, B(θ̂)) = −∇θ̂B(θ̂)H−1

θ̂
(∇θ̂L(zk, θ̂)−∇θ̂L(z̄k, θ̂)), (11)

with visualizations in Fig. 3. By calculating the difference between the harmful samples and helpful
samples, the biased effect is significantly amplified. In this way, the unlearning becomes more
effective.

3

B.2 Deriving Alternative Efficient Unlearn

In the above sections, the unlearning process is based on the assumption that we could access the
original training sample zk to identify and evaluate biases and then forget them. However, in practice,
the training set might be too large or even unavailable in the unlearning phase. In response, we further
propose to approximate the unlearning mechanism with a small external dataset. As the influence to
be removed can be obtained from the change of the protected attribute, we can construct the same
modification to the protected attribute on external samples. In particular, we employ an external
dataset Dex as in Section 3.1 in the main work to construct counterfactual pairs for unlearning, which
redefines Eq. 10 as:

θnew = θ̂ +
∑
i

H−1

θ̂
(∇θ̂L(ci, θ̂)−∇θ̂L(c̄i, θ̂)). (12)

As Dex can be easily obtained from an external dataset rather than the training set, e.g., the test set,
the practical applicability of our method could be significantly enhanced.

We further visualize the influence of samples in the balanced external dataset in Fig. 4 (a). In the
balanced dataset, the ratio of bias-aligned and bias-conflicting samples is about 50%. We can observe
that the pattern of harmful bias-aligned samples and helpful bias-conflicting samples in the external
dataset is similar to the training set. By comparing the influence of counterfactual pairs in the external
dataset (Fig. 4 (b)) and the training set (Fig. 4 (c)), we can find the distributions are similar, which
proves the feasibility of our alternative unlearning.

(a) (b) (c)

Figure 4: Influences of samples in (a) external dataset, (b) external dataset (with counterfactual
sample pairs), (c) training set.

B.3 Alternative Efficient Unlearn vs. Directly Unlearn Training Data.

Tackling the problem that, in practice, the training set might be too large or even unavailable in
the unlearning phase, we propose an alternative unlearning strategy in Sec. 3.3 in the main work.
We approximate the change of the protected attribute by constructing the same modification to the
protected attribute on external samples. Then we unlearn the same perturbation from the model
with the constructed external dataset. In Sec. 4.4 in the main work, we provide the performance
comparison of alternative efficient unlearn (Ours) and directly unlearn training data (Eq. 7 and Eq. 8
in the main work).

In this section, we further compare the performance of alternative unlearning on Adult and simplified
Colored MNIST on logistic regression, with results reported in Tab. 1 and Tab. 2. We can find that
in five experiments, alternative learning achieves comparable performance with the two directly
unlearning strategies. Comparing Eq. 7 and Eq. 8, we can find that the modified Eq. 8 reaches
convergence taking less iteration. The number of samples used is 200 for the two datasets.

B.4 Efficient Unlearning for Deep Networks.

In our experiment, We are inspired by Sec. 5.1 and Sec. 5.2 in [1] which keep all but the top layer
in deep networks frozen and measure influence. We follow this setting so that the finetuning on
deep networks can be simplified as logistic regression. In this part, we investigate the difference in
finetuning different numbers of layers. The experiment is conducted on Colored MNIST with MLP
with 3 hidden layers.

4

Attr. Method Bias ↓ Time(s) # Iter. Acc.(%) ↑

race

Vanilla 0.0134 - - 0.8259
Eq. 7 0.0002 1394 39 0.8249
Eq. 8 0.0002 1398 10 0.8311
Ours 0.0002 0.0039 46 0.8229

gender

Vanilla 0.0494 - - 0.8259
Eq. 7 0.0001 1386 212 0.8234
Eq. 8 0.0001 1390 186 0.8252
Ours 0.0006 0.0038 252 0.8232

Table 1: Alternative Efficient Unlearn on Adult.

Attr. Method Bias ↓ Time(s) # Iter. Acc.(%) ↑

0.95

Vanilla 0.4624 - - 0.5922
Eq. 7 0.1642 183 201 0.8548
Eq. 8 0.1624 183 157 0.8617
Ours 0.1496 0.0017 74 0.8594

0.9

Vanilla 0.4086 - - 0.6517
Eq. 7 0.1599 183 212 0.9102
Eq. 8 0.1562 183 185 0.9211
Ours 0.1658 0.0018 77 0.9113

0.8

Vanilla 0.3735 - - 0.6517
Eq. 7 0.1622 183 187 0.9241
Eq. 8 0.1617 183 169 0.9312
Ours 0.1611 0.0017 67 0.9244

Table 2: Alternative Efficient Unlearn on Colored MNIST.

Discussion on Different Fine-tuning Strategies. Following Sec. 4.4 in the main work, we explore
the impact of unlearning different numbers of layers (i.e., the top one, two, three MLP) on the Colored
MNIST with three bias ratios, with results in Tab. 3. Interestingly, the accuracy excels with two layers
but decreases with three layers. Additionally, fine-tuning multiple layers takes much longer time on
computation on much more parameters. It is also worth noting that our method could achieve such
superior or competing performance even only by updating the last layer in deep models, which calls
for more in-depth analysis in the future.

Ratio Method # Lay. # Para. Acc(%) ↑ Bias ↓ Time(s)

0.995

Vanilla - - 38.59 0.5863 -
Ours1 1 1000 62.34 0.3415 3.750
Ours2 2 11000 64.18 0.3378 439.34
Ours3 3 21000 55.32 0.3519 504.12

0.99

Vanilla - - 51.34 0.4931 -
Ours1 1 1000 71.19 0.2757 3.750
Ours2 2 11000 74.18 0.3134 432.86
Ours3 3 21000 61.45 0.2949 496.44

0.95

Vanilla - - 77.63 0.2589 -
Ours1 1 1000 86.39 0.1849 3.975
Ours2 2 11000 87.34 0.1902 434.25
Ours3 3 21000 86.47 0.1914 501.24

Table 3: Ablation on # MLP Layers.

B.5 Effectiveness of Pre-calculating Hessian.

In Sec. 3.4 in the main work, we propose to pre-calculate the inverse Hessian before performing
unlearning. In this way, we approximate the Hessian as it should change with model parameters,
however, we prevent the large computation cost of updating and inverting the Hessian at every
iteration. In this part, we empirically illustrate the effectiveness of our approximation. Experiments
are conducted on Colored MNIST and Adult datasets with logistic regression tasks, with results
provided in Tab. 4 and Tab. 5. "wo/" denotes unlearning without pre-calculation. It can be observed

5

that unlearning with or without can achieve comparative performance on bias and accuracy. However,
our method can save about 40% run time on Adult and 97% run time on Colored MNIST. The reason
is that the number of parameters for Colored MNIST is much larger than Adult, so that the calculation
of inverse Hessian makes up a larger proportion of the total run time.

Attr. Method Bias ↓ Time(s) # Iter. Acc.(%) ↑

race
Vanilla 0.0134 - - 0.8259

wo/ 0.0002 0.0064 42 0.8229
Ours 0.0002 0.0039 46 0.8229

gender
Vanilla 0.0494 - - 0.8259

wo/ 0.0006 0.0066 149 0.8243
Ours 0.0006 0.0038 252 0.8232

Table 4: Efficient Hessian Computation on Adult.

Ratio Method Bias ↓ Time(s) # Iter. Acc.(%) ↑

0.95
Vanilla 0.4624 - - 0.5922

wo/ 0.1490 0.0556 59 0.8674
Ours 0.1496 0.0017 74 0.8594

0.9
Vanilla 0.6517 - - 0.4086

wo/ 0.1698 0.0498 46 0.9093
Ours 0.1658 0.0018 77 0.9113

0.8
Vanilla 0.2857 - - 0.6915

wo/ 0.1689 0.0517 34 0.9264
Ours 0.1611 0.0017 67 0.9244

Table 5: Efficient Hessian Computation on Colored MNIST.

C Experiment Details

C.1 Dataset

Colored MNIST. Colored MNIST is constructed based on the MNIST dataset [3] designed for digit
classification tasks. To build a biased correlation, ten distinct RGB values are applied on grayscale
digit images [4, 5, 6]. Digit and color distribution are paired to build biased correlations in the training
set. Bias-aligned samples are defined as fixed combinations of digit and color like Digit 1, Color 1
while bias-conflict samples are defined as other combinations like Digit 1, random Color in 2-10. In
our Experiment, we use 3 different training sets by setting different bias ratios 0.995, 0.99, 0.95 for
biased-aligned training samples where the ratio represents the partition of bias-aligned samples in the
training set. The higher the ratio, the higher the degree of bias. The split of the training set, test set,
and external set is 60000, 10000, and 10000.

CelebA. CelebA dataset [7] is a face recognition with 40 types of attributes like gender, age (young
or not), and lots of facial characteristics (such as hair color, smile, beard). The dataset contains a total
of 202,599 images which, following the official train validation split, consists of 162,770 images
for training and 9,867 images for testing. We choose Gender as the protected attribute, Hair-color
(blonde hair or not) and Attractive as the target attribute following [8, 9]. The number of selected
samples for the two target attributes is 200 and 182, which are split from the test set.

Adult Income Dataset. The Adult dataset is a publicly available dataset in the UCl repository [10]
based on 1994 U.S. census data. The goal of this dataset is to successfully predict whether an
individual earns more or less than $50,000 per year based on features such as occupation, marital
status, and education. We follow the processing procedures in [11]. In our experiment, we choose
gender and race as protected attributes following [12, 13]. We split 200 samples from the test set as
the external dataset.

6

C.2 Baselines

For the sanity check experiment on a toy Colored MNIST dataset, we use a vanilla logistic regression
model as the baseline. For experiments with deep networks, we compare our method with one
pre-processing baseline Reweigh [14], 6 in-processing debiasing baselines (LDR [15], LfF [16],
Rebias [17], DRO [8], SenSEI [18], and SenSR [19]) and 4 post-processing baselines (EqOdd [20],
CEqOdd [20], Reject [21] and PP-IF [22]). [14] utilizes the influence function to reweight the
training sample, in order to re-train a fair model targeting group fairness metrics (equal opportunity
and demographic parity). Among in-processing baselines, LDR, LfF, Rebias, and DRO are designed
explicitly to target higher accuracy (on unbiased test set or worst-group test set) and implicitly target
fairness, while SenSEI and SenSR are designed to target individual fairness. EqOdd, CEqOdd and
Reject are designed to target different group fairness metrics (equal odd and demographic parity),
while [22] proposes a post-processing algorithm for individual fairness.

D Discussion

D.1 Dataset Generation

In our experiments, we utilize approximated counterfactual samples for CelebA due to the unavailabil-
ity of strict counterfactual data. Based on attribute annotations, we select images with the same target
attributes but opposite sensitive attributes, while maintaining other attributes as much as possible.
Our method achieves the best results on the worst-case group, indicating that the approximated
counterfactual samples can also effectively enhance fairness in predictions. Similar to our approach,
[23] proposes to select pairs of counterfactual images based on attribute annotations on the CUB
dataset to produce counterfactual visual explanations. Their experiments also show that neural
networks can discern major differences (such as gender in our work) between images without strict
control (such as background).

For real-world visual datasets (like facial dataset or ImageNet), the unavailability of strict coun-
terfactual data is a common challenge. Existing methods propose to train a generative model to
create counterfactual images with altered sensitive attributes [24, 25, 26], which seems to be a viable
approach for obtaining counterfactual datasets for more diverse vision applications. Building upon
these methods, we will extend our approach to more scenarios.

D.2 Influence Estimation

In our unlearning experiment, we freeze the parameters of all other layers except the top layer.
Previous work investigates the estimation accuracy of the influence function on both multi-layer and
single-layer setups [27]. It performs a case study on the MNIST. For each test point, they select 100
training samples and compute the ground-truth influence by model re-training. Results show that
estimations are more accurate for shallow networks.

Our results in Tab. 7 in the main manuscript also validate this point. When applying FMD to
a three-layer neural net, the performance on either accuracy or bias becomes worse. This could
potentially be attributed to the inaccurate estimation of influence function on multi-layer neural nets.
In our experiments, we adhere to the set-up in [1], where the influence function is only applied to the
last layer of deep models, which proves to be effective.

As verified in [1, 27, 28], influence estimation matches closely to leave-one-out retraining for logistic
regression model. As discussed in [24], measuring influence score for the last layer can be regarded
as calculating influence from a logistic regression model on the bottleneck features (Sec. 5.1 in the
main manuscript). The same setup is followed by many influence function-based works [29, 30] and
proves to be effective.

D.3 Computational Complexity

As for bias-effect evaluation, with n training points and θ ∈ Rd , directly computing Eq. 5 (in the
main manuscript) requires O(nd2 + nd3) operations. In our experiment, we only activate the last
layer so that d is small. However, when the number of training samples is very large, performing
Eq. 5 is expensive. As for the debiasing phase, it requires O(nd2 + kd2) operations, where k is the

7

number of samples to unlearn. Note that if hessian is calculated in the bias-effect evaluation phase, it
can be directly used in the debiasing phase. Hence, the overall computational complexity using Eq. 7
and Eq. 8 is O(nd2 + kd2 + nd3) .

However, in our proposed alternative debiasing method, we only utilize an external counterfactual
dataset with a small number of k. Hence, we can omit the O(nd3) operations to compute influences
and rank the training samples. Hence, the overall computational complexity using Eq. 9 (Ours) is
O(nd2 + kd2) . Experimental comparison results can be referred to Tab. 5 (in the main manuscript).
Debiasing with Eq. 8 takes about 500x more time than Eq. 9 (in the main manuscript).

E Preliminaries

E.1 Influence Function

The origins of influence-based diagnostics can be traced back to important research papers such
as [2, 31, 32]. More recently, Koh and Liang [1] introduced the concept of influence functions
to large-scale deep learning, which numerous publications have since followed up. In their work,
[1] advocated for the use of an approximation, Eq. 2, to estimate the change in loss when a small
adjustment is made to the weights of the dataset. In practical applications involving deep models, the
Hessian matrix (H) cannot be stored in memory or inverted using standard linear algebra techniques.
However, by considering a fixed vector (v), the Hessian vector product (HVP), Hv, can be computed
in O(bp) time and memory [33], where b represents the batch size and determines the number of
training examples used to approximate H (for a given loss function L). The iterative procedure
LISSA [34], employed by [1], relies on repeated calls to the HVP to estimate the inverse HVP.

E.2 Counterfactual Fairness

Counterfactual fairness, a relatively new concept, has emerged as a means to measure fairness at
an individual level [35]. The fundamental idea behind this approach is to determine the fairness
of a decision for an individual by comparing it with the decision that would have been made in an
alternate scenario where the individual’s sensitive attributes possessed different values. This concept
builds upon earlier work [36], which introduced a causal framework for learning from biased data
by examining the relationship between sensitive features and the data. Recent advancements in
deep learning have further contributed to this field, with novel approaches [37, 38, 39, 25] proposing
methods to enhance the accuracy of decision-making models by improving the approximation of
causal inference, particularly when dealing with unobserved confounding variables.

E.3 Demographic Parity and Equal Opportunity

Demographic Parity [40]: A predictor Y satisfies demographic parity if P (Y |A = 0) = P (Y |A =
1) , where A is the sensitive attribute. The likelihood of a positive outcome should be the same
regardless of whether the person is in the protected (e.g., female) group.

Equal Opportunity [20]: “A binary predictor Y satisfies equal opportunity with respect to A and
Y if P (Y = 1|A = 0, Y = 1) = P (Y = 1|A = 1, Y = 1) ” . This means that the probability of a
person in a positive class being assigned to a positive outcome should be equal for both protected and
unprotected (female and male) group members.

8

References
[1] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.

In International conference on machine learning, pages 1885–1894. PMLR, 2017.

[2] R Dennis Cook and Sanford Weisberg. Residuals and influence in regression. New York:
Chapman and Hall, 1982.

[3] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. IEEE, 86(11):2278–2324, 1998.

[4] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learning not to
learn: Training deep neural networks with biased data. In IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

[5] Yi Li and Nuno Vasconcelos. Repair: Removing representation bias by dataset resampling. In
IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[6] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning
de-biased representations with biased representations. In International Conference on Machine
Learning, 2020.

[7] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In IEEE International Conference on Computer Vision, 2015.

[8] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. In International Conference on Learning Representations, 2020.

[9] Enzo Tartaglione, Carlo Alberto Barbano, and Marco Grangetto. End: Entangling and disentan-
gling deep representations for bias correction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 13508–13517, June 2021.

[10] Andrew Frank, Arthur Asuncion, et al. Uci machine learning repository, 2010. URL
http://archive. ics. uci. edu/ml, 15:22, 2011.

[11] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational
fair autoencoder. arXiv preprint arXiv:1511.00830, 2015.

[12] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representa-
tions. In International conference on machine learning, pages 325–333. PMLR, 2013.

[13] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regu-
larization approach. In 2011 IEEE 11th International Conference on Data Mining Workshops,
pages 643–650. IEEE, 2011.

[14] Peizhao Li and Hongfu Liu. Achieving fairness at no utility cost via data reweighing with
influence. In International Conference on Machine Learning, pages 12917–12930. PMLR,
2022.

[15] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and Jaegul Choo. Learning debi-
ased representation via disentangled feature augmentation. Advances in Neural Information
Processing Systems, 34:25123–25133, 2021.

[16] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from
failure: Training debiased classifier from biased classifier. In Advances in Neural Information
Processing Systems, 2020.

[17] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning
de-biased representations with biased representations. In International Conference on Machine
Learning (ICML), 2020.

[18] Mikhail Yurochkin and Yuekai Sun. Sensei: Sensitive set invariance for enforcing individual
fairness. arXiv preprint arXiv:2006.14168, 2020.

9

[19] Mikhail Yurochkin, Amanda Bower, and Yuekai Sun. Training individually fair ml models with
sensitive subspace robustness. arXiv preprint arXiv:1907.00020, 2019.

[20] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[21] Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory for discrimination-aware
classification. In 2012 IEEE 12th International Conference on Data Mining, pages 924–929,
2012.

[22] Felix Petersen, Debarghya Mukherjee, Yuekai Sun, and Mikhail Yurochkin. Post-processing
for individual fairness. Advances in Neural Information Processing Systems, 34:25944–25955,
2021.

[23] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counterfactual
visual explanations. In International Conference on Machine Learning, pages 2376–2384.
PMLR, 2019.

[24] Saloni Dash, Vineeth N Balasubramanian, and Amit Sharma. Evaluating and mitigating bias in
image classifiers: A causal perspective using counterfactuals. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 915–924, 2022.

[25] Hyemi Kim, Seungjae Shin, JoonHo Jang, Kyungwoo Song, Weonyoung Joo, Wanmo Kang, and
Il-Chul Moon. Counterfactual fairness with disentangled causal effect variational autoencoder.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 8128–8136,
2021.

[26] Jiaee Cheong, Sinan Kalkan, and Hatice Gunes. Counterfactual fairness for facial expression
recognition. In European Conference on Computer Vision, pages 245–261. Springer, 2022.

[27] Samyadeep Basu, Philip Pope, and Soheil Feizi. Influence functions in deep learning are fragile.
arXiv preprint arXiv:2006.14651, 2020.

[28] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence
functions are the answer, then what is the question? Advances in Neural Information Processing
Systems, 35:17953–17967, 2022.

[29] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training
data influence by tracing gradient descent. Advances in Neural Information Processing Systems,
33:19920–19930, 2020.

[30] Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point
selection for explaining deep neural networks. Advances in neural information processing
systems, 31, 2018.

[31] R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics, 22(4):495–508, 1980.

[32] R Dennis Cook and Sanford Weisberg. Residuals and influence in regression. New York:
Chapman and Hall, 1982.

[33] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–
160, 1994.

[34] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for
machine learning in linear time. The Journal of Machine Learning Research, 18(1):4148–4187,
2017.

[35] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness.
Advances in neural information processing systems, 30, 2017.

[36] Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress,
19(2), 2000.

10

[37] Yongkai Wu, Lu Zhang, and Xintao Wu. Counterfactual fairness: Unidentification, bound and
algorithm. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, 2019.

[38] Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur Taly, Ed H Chi, and Alex Beutel. Counter-
factual fairness in text classification through robustness. In Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, pages 219–226, 2019.

[39] Stephen R Pfohl, Tony Duan, Daisy Yi Ding, and Nigam H Shah. Counterfactual reasoning for
fair clinical risk prediction. In Machine Learning for Healthcare Conference, pages 325–358.
PMLR, 2019.

[40] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer science
conference, pages 214–226, 2012.

11

	Influence Function on Bias and Extension to DNN.
	Deriving the Influence Function on Bias.
	Influence at Non-Convergence

	Bias Removal via Machine Unlearning
	A Closer Look at the Toy Experiment
	Deriving Alternative Efficient Unlearn
	Alternative Efficient Unlearn vs. Directly Unlearn Training Data.
	Efficient Unlearning for Deep Networks.
	Effectiveness of Pre-calculating Hessian.

	Experiment Details
	Dataset
	Baselines

	Discussion
	Dataset Generation
	Influence Estimation
	Computational Complexity

	Preliminaries
	Influence Function
	Counterfactual Fairness
	Demographic Parity and Equal Opportunity

