
Published in Transactions on Machine Learning Research (02/2025)

Supplementary material to
Density of states in neural networks:
an in-depth exploration of learning in parameter space

Margherita Mele margherita.mele@unitn.it
Physics Department, University of Trento, via Sommarive, 14 I-38123 Trento, Italy
INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy

Roberto Menichetti roberto.menichetti@unitn.it
Physics Department, University of Trento, via Sommarive, 14 I-38123 Trento, Italy
INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy

Alessandro Ingrosso alessandro.ingrosso@donders.ru.nl
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands

Raffaello Potestio roberto.menichetti@unitn.it
Physics Department, University of Trento, via Sommarive, 14 I-38123 Trento, Italy
INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy

Reviewed on OpenReview: https: // openreview. net/ forum? id= BLDtWlFKhn

1 Additional details on the datasets

1.1 Synthetic data

This section provides a comprehensive description of the synthetic datasets used in this study, designed to
model isotropic distributions in high-dimensional space. These datasets are structured to represent two dis-
tinct classes with configurable angular separation and inter-class distances, allowing controlled manipulation
of their mean vector orientations and spatial relationships. The flexibility in specifying the parameters λ
and ∆µ enables various configurations, from parallel to orthogonal or antiparallel class centers. This setup
allows for precise examination of class separability and interaction under different configurations, which is
essential for assessing algorithmic performance in scenarios with high-dimensional, overlapping distributions.

The synthetic datasets represent isotropic distributions in N dimensions, with two classes whose mean vectors
are derived from orthogonal normalized vectors sampled from a univariate normal distribution. Specifically,
consider two such vectors in N dimensions, with components sampled from a univariate normal distribution:

mc =
{

mc
i

∥mc∥

}N

i=1
with mc

i = N (0, 1) and c ∈ {1, 2} (1)

The mean vectors of the two classes are defined as follows:{
µ1 ≡ ∆µ · m1 class 1
µ2 ≡ ∆µ · [λ · m1 + (1 − |λ|) · m2] class 2

(2)

Here, λ ∈ [−1, 1] and ∆µ ∈ [0, +∞) are the morphing parameters controlling the angle between the two mean
vectors and the inter-class separation, respectively. When λ = 1, the two vectors are parallel (µ1 = µ2) and
the inter-class separation is zero (||µ1 − µ2|| = 0). For λ = 0, the two vectors are orthogonal since m1 ⊥ m2,

1

https://openreview.net/forum?id=BLDtWlFKhn

Published in Transactions on Machine Learning Research (02/2025)

and the inter inter-class distance is ||µ1 − µ2|| = ∆µ
√

2. Finally, when λ = −1, the two mean vectors are
antiparallel (µ1 = −µ2) and the inter-class separation is ||µ1 − µ2|| = 2∆µ. For a generic value of λ, the
inter-class distance is given by:

||µ1 − µ2|| = ∆µ
√

(1 − λ)2 + (1 − |λ|)2 (3)

The angle between the mean vectors is defined by:

θ = arccos µ1 · µ2

||µ1||||µ2||
= arccos λ√

λ2 + (1 − |λ|)2
(4)

1.2 Gaussian Clones

This section aims to report the methodology used to generate Gaussian clones, a family of synthetic datasets
designed to approximate real-world data while allowing precise control over specific statistical properties.
These datasets enable systematic exploration of how features such as mean separation and covariance struc-
ture influencing DoS properties. Two distinct types of Gaussian clones were constructed: the Gaussian
Mixture (GM) clone, which retains both the mean vector (µc) and the full covariance matrix (Σ) of each
class, and the Isotropic Gaussian Mixture (2isoGM) clone, which simplifies the covariance structure by
preserving only the mean vectors and setting the variance (v) equal across classes.

For both variants, data were sampled from a multivariate Gaussian distribution N (µc∆µ, Σ), where µc is
the class-specific mean vector in an N -dimensional space, ∆µ is a scalar parameter controlling inter-class
separation, and Σ is the covariance matrix. The covariance matrix was defined as:

Σij =
{

⟨xi − ⟨xi⟩⟩⟨xj − ⟨xj⟩⟩ for GM clones,
v δij for 2isoGM clones.

Here, δij is the Kronecker delta, and v = √
v1v2 is the geometric mean of the variance of the two classes.

The GM clone captures the real feature correlations of the data by preserving the full covariance matrix,
while the 2isoGM clone eliminates these correlations, focusing instead on isotropic variance and the effects
of mean separation. This approach provides a controlled framework for studying how statistical properties
of the data shape algorithmic performance.

2

Published in Transactions on Machine Learning Research (02/2025)

2 Additional details on the Wang-Landau algorithm

This section provides an in-depth overview of the Wang-Landau (WL) sampling method implementation,
focusing on the parameters and conditions essential for its convergence and efficiency. The WL algorithm is
an effective approach for high-dimensional sampling, dynamically adjusting probabilities to enable uniform
visitation of energy levels and accurate reconstruction of a system’s density of states. We detail the selection
of local and global moves, chosen probabilistically to ensure thorough exploration across energy states, as
well as the histogram flatness criterion, which is critical for reliable convergence and controls the reduction
of the modification factor F . These implementation details are vital for replicating our simulations and
understanding the precision of the WL method in our study. A pseudocode summary of the algorithm is
included to outline the main steps and parameter choices.

At each stage of the WL simulation, the nature of the move—local or global—is determined by a random
number c ∈ (0, 1). Specifically, if c < 0.8, the move is local, meaning that one of the N components of the
weight vector W is randomly selected and flipped to generate W ′. Conversely, when c > 0.8, another random
number is drawn to determine the number n ≤ N of components to be changed. These n components are
then randomly selected and flipped.

The flatness condition is a crucial aspect of the WL algorithm, ensuring the uniformity of the histogram of
visited energy levels. This condition is typically defined by the requirement that for each value of energy E,
the histogram value Hk(E) must not deviate significantly from the mean value ⟨Hk⟩. Mathematically, this
is expressed as:

pflat × ⟨Hk⟩ < Hk(E) < (2 − pflat) × ⟨Hk⟩,

where pflat is a predefined flatness parameter.

In the simulations performed in our study, we set pflat to 0.9. The flatness condition for the visited energy
levels was checked every 800 Monte Carlo (MC) steps. The iterative simulation scheme was continued until
the modification factor F decreased below the predefined final value, Fend = ln(fend) = 10−6.

To illustrate the implementation of the Wang-Landau algorithm in our simulations, we provide the following
pseudo-code outlining the key steps of the iterative process.

1 Initialize :
2

3 S(E) = 0 for all E // Initial entropy estimate for all energy levels
4 H(E) = 0 for all E // Initial histogram for all energy levels
5 V(E) == 0 for all E // Initial visited flag for all energy levels
6 Set modification factor F = 1
7 Initialize network state W
8 Compute initial energy E_current
9

10

11 while F > F_end:
12 // Perform n_MC Monte Carlo steps
13 for i = 1 to n_MC:
14

15 // Determine move type (local or global)
16 Generate random number c ∈ (0, 1)
17

18 if c < 0.8:
19 // Local move: Flip one random component
20 Randomly select 1 component of W
21 Flip it to generate W_trial
22

3

Published in Transactions on Machine Learning Research (02/2025)

23 else:
24 // Global move: Flip n < N+1 random components
25 Generate random number n ∈ [1, N]
26 Randomly select n components of W
27 Flip them to generate W_trial
28

29 Compute trial energy E_trial
30

31 if E_trial within energy range:
32 // Check if this is a new energy level (first time visited)
33 if V(E_trial) == 0:
34 Reset H(E) = 0 for all E // Reset histogram
35 V(E_trial) = 1
36 break // Restart the MC moves (break the loop)
37 end if
38

39 if S(E_current) > S(E_trial):
40 Accept with probability exp (-(S(E_trial) - S(E_current)))
41

42 else:
43 Accept the move
44

45 Update E_current
46 Update S(E_current) <- S(E_current) + F
47 Update H(E_current) <- H(E_current) + 1
48

49 end if
50 end for
51

52 // Check histogram flatness condition
53 Compute mean histogram value H_mean = average (H(E) for all E)
54

55 flatness_condition_met = True
56

57 for each energy level E:
58 if H(E) < p_flat * H_mean or H(E) > (2 - p_flat) * H_mean :
59 flatness_condition_met = False
60 break // Exit loop if flatness condition is not met
61

62 if flatness_condition_met :
63 Reset H(E) = 0 for all E // Reset histogram
64 Set F = F / 2 // Halve the modification factor
65

66 end if
67 end while
68

69 Output :
70 S(E), the estimated entropy for each energy level E

4

Published in Transactions on Machine Learning Research (02/2025)

3 Validation and scaling analysis

Through a rigorous application of the Wang-Landau (WL) sampling algorithm with well-defined parameters,
our approach ensures a thorough exploration of the network’s energy landscape, leading to precise estimations
of the density of states, Ω(E), for the studied neural network.

In this section, we assess the accuracy of entropy estimations obtained via WL sampling for small neural
networks. Additionally, we conduct a scaling analysis to examine how the convergence time of the algorithm
grows with increasing network size and task complexity.

3.1 Validation of entropy estimation

To validate the accuracy of entropy estimations produced by WL sampling, we analyze small neural network
architectures where an exhaustive search over the entire configuration space is feasible. This allows us
to compute exact microcanonical entropy curves ST (E) and compare them with those estimated by WL
sampling, denoted SW L(E).

Three network architectures were tested: (i) a single-layer perceptron with 15 input neurons, (ii) a one-hidden
layer network with 5 input neurons and 3 hidden neurons for binary classification (one output neuron), and
(iii) a one-hidden layer network for multi-class classification with 3 input neurons, 3 hidden neurons and 3
output neurons.

For each architecture, a dataset of P examples was generated using an identical teacher network: P = 15
for the single-layer perceptron, P = 18 for the binary classification network, and P = 15 for the multi-
class classification network. To evaluate consistency, we performed 500 independent WL simulations per
configuration, and the resulting entropy curves are shown in Figure 1.

The figure’s top panel displays the exact entropy curves (continuous red line) alongside the 500 WL-sampled
curves (black points), indicating strong agreement. We quantified this agreement by computing the percent-
age difference between the sampled and exact curves using:

dist (SW L(E), ST (E)) = |SW L(E) − ST (E)|
ST (E) (5)

The mean and standard deviation of these distances, presented in the bottom panel of Figure 1, show that
the average discrepancy remains consistently below 7e − 2. This outcome reinforces the reliability of WL
sampling in estimating entropy curves with high accuracy.

3.2 Scaling analysis of the Wang-Landau algorithm

To understand how the WL algorithm scales with system size and problem complexity, we investigated the
convergence time as a function of two key variables: the number of neurons in a single-layer perceptron and
the complexity of the learning task.

Network Size Dependence

First, we analyzed how convergence time varies with the number of neurons N in a single-layer perceptron,
keeping the learning complexity fixed at α = P

N = 1. For each N value, we generated 7 independent datasets
and ran 50 WL simulations per dataset, recording average convergence times. These times, plotted in ??,
exhibit a power-law dependency, approximately T (N) ∼ 10−6N5.

Learning Complexity Dependence

Next, we examined convergence time as a function of learning complexity α = P
N with N = 100 fixed. For

each P value, 7 datasets were generated, and 50 WL simulations were performed per dataset. As shown
in Figure 2 convergence times follow an approximate scaling of T (P) ∼ 2 × 10−6P 5, reflecting increased
computational demands as task complexity grows with larger datasets.

5

Published in Transactions on Machine Learning Research (02/2025)

Figure 1: Comparison of the true entropy curve to the output of the Wang-Landau algorithm across different
network architectures. For each architecture, 500 independent simulations are performed on the same dataset
composed of P data points. The upper panels (a-c) compare the true entropy curve (red-solid line) with the
sampled ones (black points). The lower panels (d-f) show the mean percentage difference between the true
and sampled entropy curves, with associated errors. (a) Single-layer perceptron with 15 input neurons and
P = 15. (b) one-hidden layer network for binary classification with 5 input neurons, 3 hidden neurons and
P = 18. (c) One-hidden layer network for multi-class classification with 3 input neurons, 3 hidden neurons,
3 output neurons and P = 15. The corresponding lower panels (d, e, f) illustrate the mean value of the
percentage difference between the true and sampled entropy curves with the associated error bars.

All simulations in this analysis were performed on a single core, which serves as a baseline for computational
cost. These results could be significantly improved by leveraging multi-core processing or by implementing
parallel simulations across multiple energy windows, where each window covers a specific range of the energy
spectrum. This approach allows for concurrent WL sampling within each window, reducing convergence
time and making the WL algorithm more suitable for large-scale or high-complexity tasks.

In summary, these scaling analyses indicate that WL sampling exhibits polynomial growth in computational
cost with network size and learning complexity, both with exponents near 5. This finding provides essential
insights for applying WL sampling to large neural networks or complex datasets, guiding future optimization
efforts for efficient algorithm implementation.

6

Published in Transactions on Machine Learning Research (02/2025)

Figure 2: Convergence time of the Wang-Landau algorithm executed on a single core as a function of network
size and learning complexity. (a) The scaling of convergence time with respect to the number of neurons N
in a single-layer perceptron, at a fixed learning complexity α = P

N = 1. For each value of N , 7 independent
datasets were generated, and for each dataset, 50 independent simulations were performed. The data points
represent the mean convergence time, and the dashed line represents the fitted curve with T (N) = 10−6N5.
(b) The convergence time as a function of the learning complexity α, at a fixed number of neurons N = 100.
Similarly, 7 datasets were generated for each value of P , and 50 independent simulations were conducted per
dataset. The fitted curve is T (P) = 2 × 10−6P 5.

4 Gaussian Fit

In this subsection, we analyze the density of states (DoS) curves for binary classification using a single-
layer perceptron. Our goal is to determine whether the distribution of states obtained from classifying
independent and identically distributed (i.i.d.) data follows a Gaussian distribution. Figure 3 presents the
DoS curves for different numbers of input neurons, N , along with a Gaussian fit, with the fit parameters—the
standard deviation (σ) and the mean (µ) of the Gaussian distribution— indicated in the upper left corner.
Additionally, the goodness of fit is measured by the coefficient R2, also shown in the upper left corner of
each panel. The R2 value indicates how well the Gaussian model represents the observed DoS, with values
closer to 1 signifying a better fit. Although the density of states is not continuous in the cases studied,
the DoS approaches a continuous distribution in the thermodynamic limit, where both N and the number
of patterns P increase indefinitely while maintaining a fixed ratio. This analysis demonstrates that, under
these conditions, the DoS curves closely align with a Gaussian distribution, supporting the use of Gaussian
models to describe the statistical behavior of single-layer perceptrons in binary classification tasks with i.i.d.
data.

7

Published in Transactions on Machine Learning Research (02/2025)

Figure 3: Density of States Curves for Binary Classification by a Single-Layer Perceptron and Gaussian
Fit. Each panel presents the density of states for binary classification of random data using a single-layer
perceptron with different numbers of input layer neurons, N as specified in the legend. The top left corner
of each plot provides the parameters of the Gaussian fit, including the standard deviation (σ) and the mean
(µ), as well as the coefficient of determination (R2).

Figure 4: Density of states analysis for binary classification of FashionMNIST images (T-shirt/top and
Trouser) under various class imbalances. (a) Density of states at a fixed learning complexity of P/N = 0.1,
showing the distribution for different class imbalances. The legend indicates the number of elements in class
1 (P1). Perfect class balance is achieved when P1 = P0 = P/2 (red curve). Larger deviations from this
value indicate greater class imbalance. Blue curves represent a predominance of class 0, while green curves
represent a predominance of class 1; the lighter the color, the greater the class imbalance. (b) Density of
states at a higher learning complexity of P/N = 0.5, showing similar trends with varying class imbalances.
(c) Peak energy values plotted against the absolute difference |0.5 − P1/P |, highlighting the correlation
between peak energy and class imbalance. Blue points indicate a predominance of class 0, while green points
indicate a predominance of class 1. Red points represent perfect balance (P1 = P0). Results are shown for
two values of learning complexity: P/N = 0.1 (squares) and P/N = 0.5 (diamonds).

8

Published in Transactions on Machine Learning Research (02/2025)

5 Fashion-MNIST

This section provides an analysis of a subset of the FashionMNIST dataset, focusing on the binary classifica-
tion of T-shirt/top and trouser images, to assess the generality of trends observed in the presence of different
class imbalances. As shown in Figure 4, the results mirror those presented in the main text, reinforcing the
critical role of class imbalance in modelling density of states (DoS) curves.

At lower complexity (P/N = 0.1), the DoS reveals a clear symmetry: as class imbalance increases, the peaks
shift progressively from the center of the spectrum, regardless of which class is predominant. This pattern
is maintained even at higher complexity (P/N = 0.5), where the separation of the peaks becomes more
pronounced with imbalance. In both cases, the location of these peaks reflects the degree of imbalance, with
the largest deviations from balance showing the most extreme shifts.

The correlation between peak energy and imbalance is further highlighted in the scatter plot, where the
absolute difference |0.5 − P1/P | captures the relationship between class distribution and peak shift. This
trend holds across different learning complexities, demonstrating the robustness of this behavior. These
results on FashionMNIST corroborate our findings in the main text and emphasize that the DoS landscape
is significantly influenced by structured data, with class imbalance driving non-trivial modifications in the
energy spectrum.

9

	Additional details on the datasets
	Synthetic data
	Gaussian Clones

	Additional details on the Wang-Landau algorithm
	Validation and scaling analysis
	Validation of entropy estimation
	Scaling analysis of the Wang-Landau algorithm

	Gaussian Fit
	Fashion-MNIST

