
Under review as a conference paper at ICLR 2023

A SBP PYTHON OBJECTS IMPLEMENTATION

The Python implementation of the three scenarios used in this paper is shown below: the code for
avoid back-and-forth rotation appears in Fig. 8, the code for avoid turns larger than 180◦ appears
in Fig. 9, and the code for avoid turning when clear appears in Fig. 10.

def SBP avoidBackAndForthRotation():

blockedEvList = []

waitforEvList = [BEvent("SBP MoveForward"),

BEvent("SBP TurnLeft"),

BEvent("SBP TurnRight")]

while True:

lastEv = yield {waitFor: waitforEvList , block: blockedEvList}
if lastEv != BEvent("SBP TurnLeft")

and lastEv != BEvent("SBP TurnRight"):

blockedEvList = []

else:

blocked ev = BEvent("SBP TurnRight")

if lastEv == BEvent("SBP TurnLeft")

else BEvent("SBP TurnLeft")

Blocking!

blockedEvList.append(blocked ev)

Figure 8: The Python implementation of scenario avoid back-and-forth rotation. The code waits for any of
the possible events: SBP MoveForward, SBP TurnLeft and SBP TurnRight. Upon receiving SBP TurnLeft,
it blocks SBP TurnRight, and upon receiving SBP TurnRight, it blocks SBP TurnLeft. Upon receiving
SBP MoveForward, it clears any blocking.

def SBP avoid k consecuative turns():

k = 7

counter = 0

prevEv = None

blockedEvList = []

waitforEvList = [BEvent("SBP MoveForward"), BEvent("SBP TurnLeft"), \\
BEvent("SBP TurnRight")]

while True:

lastEv = yield {waitFor: waitforEvList , block: blockedEvList}
if prevEv is None or lastEv == BEvent("SBP MoveForward") or prevEv != lastEv:

prevEv = lastEv

counter = 0

blockedEvList = []

else:

if counter == k − 1:

Blocking!

blockedEvList.append(lastEv)

else:

counter += 1

Figure 9: The Python implementation of a scenario that blocks turning in the same direction more than k
consecutive times. Each turn action rotates the robot by 30◦, and so we set k to be 7.

13

Under review as a conference paper at ICLR 2023

def SBP avoid turning when clear():

blockedEvList = []

waitforEvList = [BEvent("SBP MoveForward"), BEvent("SBP TurnLeft"),\\
BEvent("SBP TurnRight")]

while True:

lastEv = yield {waitFor: waitforEvList , block: blockedEvList}
state = lastEv.data[’state’]

if state[3] > MINIMAL FWD CLEARANCE and state[2] > MINIMAL CLEARANCE and \\
state[4] > MINIMAL CLEARANCE and abs(FWD DIR − state[−2]) < FWD DIR TOLERANCE:

blockedEvList.extend([BEvent("SBP TurnLeft"), BEvent("SBP TurnRight")])

else:

blockedEvList = []

Figure 10: The Python implementation of a scenario that blocks turning if the target is straight ahead and the
path toward it is clear. The event carries data with it, which includes readings from the seven lidar sensors —
with state[3] being the front-heading sensor. State[-2] is the direction to the target.

14

Under review as a conference paper at ICLR 2023

B FORMAL VERIFICATION

B.1 FORMAL VERIFICATION OF DNNS AND DRLS

A DNN verification algorithm receives the following inputs (Katz et al., 2017): a trained DNN N ,
a precondition P on the DNN’s inputs, and a postcondition Q on N ’s output. The precondition is
used to limit the input assignments to inputs of interest, or to express some assumption the user has
regarding the environment (e.g., that an image-recognition DNN will only be presented with certain
pixel values). The postcondition typically encodes the negation of the behavior we would like N to
exhibit on inputs that satisfy P . Then, the verification algorithm searches for an input x′ that satisfies
the given conditions (i.e., P (x′) ∧ Q(N(x′))), and returns exactly one of the following outputs:
(i) SAT, indicating the query is satisfiable. Due to the postcondition Q encoding the negation of the
required property, this result indicates that the wanted property is violated in some cases. Modern
verification engines also supply a concrete input x′ that satisfies the query, and hence, a valid input
that triggers a bug, such as an incorrect classification; or (ii) UNSAT, indicating that there does not
exist such an x′, and thus — that the desired property always holds.

For example, suppose we wish to guarantee that for all non-negative inputs x = ⟨v11 , v21⟩, the DNN
in Fig. 11 always outputs a value strictly smaller than 40; i.e., that that N(x) = v14 < 40. This
property can be encoded as a verification query consisting of a precondition that restrict the inputs
to the desired range, i.e., P = (v11 ≥ 0) ∧ (v21 ≥ 0), and by setting Q = (v14 ≥ 40), which is the
negation of the desired property. In this case, a sound verifier will return SAT, alongside a feasible
counterexample such as x = ⟨2, 3⟩, which produces the output v14 = 48 ≥ 40 when fed to the DNN.
Hence, the property does not always hold.

v11

v21

v12

v22

v13

v23

v14

3

−1

5

1

ReLU

ReLU

2

−1

+3

−2

Weighted
sum ReLUInput Output

Figure 11: A toy DNN.

Originally, DNN verification engines were designed the verify the correct behaviour of feed-forward
DNNs (Katz et al., 2017; Gehr et al., 2018; Wang et al., 2018; Lyu et al., 2020; Huang et al., 2017).
However, in recent years, the verification community has also designed verification methods tailored
for DRL systems (Corsi et al., 2021; Bacci et al., 2021; Eliyahu et al., 2021; Amir et al., 2021; 2022).
These methods include techniques for encoding multiple invocations of the agent in question, when
interacting with a reactive environment over multiple time-steps.

B.2 FORMAL VERIFICATION EXPERIMENTS

As an additional means of proving the effectiveness of our method, we ran formal verification queries
relating to the aforementioned undesirable behaviors. In order to conduct a fair comparison, we
selected only models that passed our success cutoff value (85%); and for each of these models we
ran three verification queries — each checking whether the model violates a given property (SAT),

avoid back-and-forth rotation avoid turns larger than 180◦ avoid turning when clear

ALGO SAT UNSAT TIMEOUT SAT UNSAT TIMEOUT SAT UNSAT TIMEOUT

Baseline 60 0 0 51 0 9 60 0 0
SBP 22 38 0 0 41 19 9 34 17

Table 1: Results of the formal verification queries over a total of 120 trained DNNs, for each of the three
properties in question. The first row shows the results of the 60 baseline policies, and the second row shows
results of the 60 policies trained by our method, with all rules active.

15

Under review as a conference paper at ICLR 2023

or abides by it for all inputs (UNSAT). We note that a verifier might also fail to terminate, due to
TIMEOUT or MEMOUT errors. Each query ran with a TIMEOUT value of 36 hours, and a MEMOUT
value of 6 GB. Table 1 summarizes the results of our experiments.

These results show a significant change of behavior between DNNs trained with the baseline algo-
rithm, and those trained by our method. Indeed, we see that the latter policies much more often
completely abide by the specific rules, and are consequently far more reliable.

16

Under review as a conference paper at ICLR 2023

C ANALYSIS ON STANDARD BENCHMARK

To further validate our method, we provide a more intensive study of our optimized implementation
of the Lagrangian PPO (detailed in Section 4), without the additional rules (e.g., the SBP Scenar-
ios). We perform our analysis on the standard benchmark Bullet Safety Gym (Gronauer, 2021).
Bullet Safety Gym is an open source suite of different environments based on PyBullet and the most
updated versions of Python, which implements the standard environments from SafetyGym (Ray
et al., 2019), adding more robots and tasks. The crucial feature of the environments from Bullet
Safety Gym is that they implement a Constrained Markov Decision Process (CMDP). In these en-
vironments, the objective is to maximize the reward function and maintain a cost function below a
given threshold. We refer to the main paper from Ray et al. (2019) for more details. We selected
a subset of environments for our analysis: Ball Circle v0, Ball Reach v0 and Car Reach v0. A de-
tailed description of the environments can be found in the open source repository of Bullet Safety
Gym (Gronauer, 2021).

Fig. 12 shows our results on the three environments, comparing cost and reward functions obtained
with (i) the standard PPO algorithm (PPO); (ii) a standard Lagrangian PPO (Base-LPPO); and (iii)
our optimized Lagrangian PPO (LPPO) described in Section 4 of the main paper.

Overall, these results show that our algorithm can get similar performance reward-wise as PPO, and
can get the cost below the required threshold in two out of three test cases. However, in Fig. 12(a), on
the Ball Circle v0 environment, PPO reaches significantly better reward-wise performance than ours.
Moreover, in Fig. 12(f), in the Car Reach v0 environment, our algorithm fails to get the cost below
the required threshold. We leave it for future work, to study the impact of adding expert-knowledge
rules with our optimizations, and if those will enable obtaining good performance reward-wise and
cost-wise, also in those cases, for the Ball Circle v0 environment reward, shown in Fig. 12(a), and
the Car Reach v0 environment cost, shown in Fig. 12(f).

0 2000 4000 6000 8000 10000 12000 14000
episode

0

100

200

300

400

re
wa

rd

Base-LPPO
LPPO
PPO

(a) Ball Circle v0 - Reward

0 5000 10000 15000 20000 3000030000
episode

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

re
wa

rd

Base-LPPO
LPPO
PPO

(b) Ball Reach v0 - Reward

0 2500 5000 7500 10000 12500 15000 17500 20000
episode

2

1

0

1

2

3

4

re
wa

rd

Base-LPPO
LPPO
PPO

(c) Car Reach v0 - Reward

0 2000 4000 6000 8000 10000 12000 14000
episode

0

20

40

60

80

co
st

Base-LPPO
LPPO
PPO

(d) Ball Circle v0 - Cost

0 5000 10000 15000 20000 25000 30000
episode

0
5

10
15
20
25
30
35
40

co
st

Base-LPPO
LPPO
PPO

(e) Ball Reach v0 - Cost

0 2500 5000 7500 10000 12500 15000 17500 20000
episode

0

10

20

30

40

50

60

co
st

Base-LPPO
LPPO
PPO

(f) Car Reach v0 - Cost

Figure 12: A comparison between the original PPO (Schulman et al., 2017) (PPO), a standard implementation
of Lagrangian PPO (Ray et al., 2019) (Base-LPPO), and our optimized version of the Lagrangian PPO (LPPO).
The analysis is performed on the standard benchmark Bullet Safety Gym (Gronauer, 2021), and in particular on
three environments of the suite (Ball Circle v0, Ball Reach v0 and Car Reach v0).

In summarizing, Fig. 12 shows that, not surprisingly, the standard PPO reaches good performance
reward-wise but can not optimize the cost. A naı̈ve implementation of the Lagrangian PPO can
minimize the cost function but struggles to obtain good performance reward-wise.

Our optimized approach (without SBP rules) is the only one that, at the same time, succeeds in re-
ducing the cost under the given threshold in two out of three cases while reaching good performance
reward-wise. We are confident that we can define SBP rules that will help to reduce those costs as
well as further improve the reward.

17

Under review as a conference paper at ICLR 2023

D SHORT INTRODUCTION TO SBP

Scenario-based programming (SBP) (Damm & Harel, 2001; Harel & Marelly, 2003) is a paradigm
designed to facilitate the development of reactive systems by allowing engineers to program behav-
iors with a focus on inter-object system-wide behaviors. It can be regarded as a realization of the
Live Sequence Charts (LSCs) formalism (Damm & Harel, 2001), which is a visual language for
specifying scenarios. LSCs were initially used for requirement specification and later evolved into
a full-blown programming language. Today, there exist multiple implementations of SBP, such as
BPJ (BP in Java) (Harel et al., 2010), BP-Py (BP in Python) (Yaacov, 2020), and others, making
SBP accessible to many programmers and engineers.

In SBP, a system is composed of scenarios, each describing a single, desired or undesired behavioral
aspect of the system; and these scenarios are then executed together as a cohesive system. An
execution of a scenario-based (SB) program is formalized as a discrete sequence of events. At each
time-step, the scenarios synchronize with each other to determine the next event to be triggered.
Each scenario declares events that it requests and events that it blocks, corresponding to desirable
and undesirable (forbidden) behaviors from its perspective; and also events that it passively waits-
for.

After making these declarations, the scenarios are temporarily suspended by the run-time engine,
and an event-selection mechanism triggers a single event that was requested by at least one sce-
nario and blocked by none. Scenarios that requested or waited for the triggered event wake up,
perform local actions, and then synchronize again; and the process is repeated ad infinitum. The
resulting execution thus complies with the requirements and constraints of each of the individual
scenarios (Harel & Marelly, 2003; Harel et al., 2012b). For a formal definition of SBP, see (Harel
et al., 2012b).

Although SBP is implemented in many high-level languages, it is often convenient to think of sce-
narios as transition systems, where each state corresponds to a synchronization point, and each edge
corresponds to an event that could be triggered. Fig. 13 uses state-transition representation to de-
pict a simple SB program that controls the temperature and water-level in a water tank (borrowed
from (Harel et al., 2012a)).

The scenarios add hot water and add cold water repeatedly wait for WATER LOW event, and then
request three times the event Add HOT or Add COLD, respectively. Since these six events may be
triggered in any order by the event selection mechanism, a new scenario stability is added to keep
the water temperature stable, achieved by alternately blocking Add HOT and Add COLD events.
The Python implementation code of this program, with the scenarios add hot water, add cold water
and stability, appears in Fig. 14.

18

Under review as a conference paper at ICLR 2023

Block:
Add COLD

Block:
Add HOT

Add COLD

Add HOT

Add COLD

Request: Add COLD

Request: Add COLD

Request: Add COLD

Add COLD

Add COLD

Add HOT

Request: Add HOT

Request: Add HOT

Request: Add HOT

Add HOT

Add HOT

WATER LOWWATER LOW

Transitions of ‘add cold water’ scenario Transitions of ‘add hot water’ scenario

Transitions of ‘stability’ scenario

Figure 13: The state transition graphs represent the scenarios of a scenario-based program for controlling a
water tank. The add hot water and add cold water scenarios wait in their initial state for a WATER LOW event.
Once WATER LOW is triggered, they each move to their next state, requesting Add Cold and Add Hot
events, respectively. The stability scenario waits in its initial state for a Add Hot event, while blocking Add
Cold events. Once an Add Hot event is triggered, the scenario transitions to its second state, where it blocks
Add Hot events while waiting for an Add Cold event. Once an Add Cold event is triggered, the scenario
transitions back to its initial state, in which it waits for an Add Hot event while blocking Add Cold events.

def add hot water():

while True:

yield {waitFor: BEvent("WATER LOW")}
yield {request: BEvent("Add HOT")}
yield {request: BEvent("Add HOT")}
yield {request: BEvent("Add HOT")}

def add cold water():

while True:

yield {waitFor: BEvent("WATER LOW")}
yield {request: BEvent("Add COLD")}
yield {request: BEvent("Add COLD")}
yield {request: BEvent("Add COLD")}

def stability():

while True:

yield {waitFor: BEvent("Add HOT"), block: BEvent("Add COLD")}
yield {waitFor: BEvent("Add COLD"), block: BEvent("Add HOT")}

Figure 14: The Python implementation of the three scenarios: add hot water, add cold water, and stability.
The Python code will run until it reaches a synchronization point, indicated by a yield statement, where it will
stop and declare events it waits for, requests, and blocks. Once an event that the scenario requested or waited
for is triggered, the run-time engine will resume the scenario’s execution; and the code will run until its next
synchronization point, and repeat.

19

	SBP Python Objects Implementation
	Formal Verification
	Formal Verification of DNNs and DRLs
	Formal Verification Experiments

	Analysis on Standard Benchmark
	Short Introduction to SBP

