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ABSTRACT

Accuracy and generalization of dynamics models is key to the success of model-
based reinforcement learning (MBRL). As the complexity of tasks increases, learn-
ing accurate dynamics models becomes increasingly sample inefficient. However,
many complex tasks also exhibit sparsity in dynamics, i.e., actions only have a local
effect on the system dynamics. In this paper, we exploit this property with a causal
invariance perspective in the single-task setting, introducing a new type of state
abstraction called model-invariance. Unlike previous forms of state abstractions,
model-invariant state abstraction leverages causal sparsity over state variables.
This allows for compositional generalization to unseen states, something that non-
factored forms of state abstractions cannot do. We prove that an optimal policy
can be learned over exact model-invariance state abstraction and show improved
generalization in a simple toy domain. Next, we propose a practical method to
approximately learn a model-invariant representation for complex domains and
validate our approach by showing improved modelling performance over standard
maximum likelihood approaches on challenging tasks, such as the MuJoCo-based
Humanoid. Finally, within the MBRL setting we show strong performance gains
with respect to sample efficiency across a host of continuous control tasks.

1 INTRODUCTION

Model-based reinforcement learning or MBRL [4, 15] is a popular framework for data-efficient
learning of control policies. At the core of MBRL is learning an environmental dynamics model and
using it to: 1) fully plan [14, 11], 2) augment the data used by a model-free solver [51, 54], or 3)
use as an auxiliary task while training [35, 58]. However, learning a dynamics model — similar to
other supervised learning problems — suffers from the issue of generalization, since the data we
train on is not necessarily the data we test on. This is a persistent issue that is worsened in MBRL as
even a small inaccuracy in the dynamics model or changes in the control policy can result in visiting
completely unexplored parts of the state space [1]. This advocates for the need to learn models
capable of generalizing well. Various workarounds for this issue have been explored in the past; for
example, combining local but simple models with global, more expressive models [36, 22], using an
ensemble of models to handle uncertainty in estimates [11, 33] and coupling the model and policy
learning processes [34] so that the model is always accurate to a certain threshold. However, these
approaches do not stem from a representation learning viewpoint and thus fail to leverage special
structure in dynamics for better generalization.

This paper studies how to improve generalization capabilities through careful state abstraction. In
particular, we leverage two existing concepts to define a new kind of state abstraction. The first
concept is that many real world problems exhibit sparsity in the local dynamics — given a set of state
variables, each variable at timestep t+ 1 only depends on a small subset (i.e., local) of all variables
in the previous timestep t (see Figure 1). The second concept is the principle of causal invariance,
which dictates that given a set of candidate features, we should aim to build representations that
comprise only those features that are consistently necessary for predicting the target variable of interest
across different interventions [46]. In the MBRL context, we can cast model learning with causal
invariance as a supervised objective where the target variables are the next state variables and input
features are the current state and action variables (the probable set of causal predictors of the target).
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Figure 1: Graphical model of spar-
sity across state variables. The state
variable x3t+1 (shaded in blue) only de-
pends on two variables x3t and x2t (in
the blue box). Predicting x3t+1 using
the other variables (say x1t+1) can re-
sult in spurious correlations which lead
to poor generalization.

Intuitively, since we learn a predictor that only takes into ac-
count invariant features that consistently predict the target vari-
able well, it is likely to contain the true causal features, and
therefore, will generalize well to all possible shifts in the data
distribution. The two concepts of sparsity and causality are
intertwined in that they both are forms of inductive biases that
surround the agent dynamics [23]. This paper shows how causal
invariance tools can be effectively used to exploit sparsity in dy-
namics, leading to improved model generalization. Given basic
exploratory assumptions, we analyze this question theoretically
and show empirically that we can learn a model that generalizes
well on state distributions induced by policies distinct from the
ones used while learning it. To do this, we introduce a new
state abstraction, model-invariance, which leverages sparsity
over state variables. We connect this abstraction viewpoint to a
concrete problem of generalization in model-based RL, that of
arising spurious correlations in the dynamics model, even when all state variables are task relevant.
Having built enough intuition, we then introduce a practical method that approximates learning
a model-invariant representation for more complex domains that use function approximation (i.e.,
neural networks (NNs)). We empirically observe that model invariance leads to better model general-
ization for domains such as the MuJoCo-based Humanoid. Our method is simple to implement and
shows strong performance on multiple MuJoCo tasks, outperforming state of the art model-based
methods in the low-data regime.

2 PRELIMINARIES

RL Setup. We consider the agent’s interaction with the environment as a discrete time γ-discounted
Markov Decision Process (MDP) [47] M =

(
X ,A, P,R, γ, µ0

)
, where X ⊆ Rd is a finite but

arbitrarily large state space and A is the and action space; P ≡ P
(
x′|x, a

)
is the transition kernel;

R ≡ r(x, a) is the reward function with the maximum value of Rmax; γ ∈ [0, 1) is the discount
factor; and µ0 is the initial state distribution. Let π : X → ∆A be a stationary memoryless policy,
where ∆A is the set of probability distributions on A. The value function of a policy π at a state
x ∈ X is defined as V π(x) ≡ E[

∑
t≥0 γ

tr(xt, at)|x0 = x, π]. Similarly, the action-value function
of π is defined as Qπ(x, a) = E[

∑
t≥0 γ

tr(xt, at)|x0 = x, a0 = a, π]. The Bellman optimality
operator T : R|X×A| → R|X×A| is defined as T Q(x, a) = r(x, a) + γ

〈
P (·|x, a),maxa′ Q(·, a′)

〉
.

In this work, we assume that all d state variables x1, x2, ..., xd are useful for the task in hand, i.e., we
are given the full state. Furthermore, we assume that the transition dynamics over the full state are
factorized. More formally:

Assumption 1. (Transition Factorization) For given full state vectors xt, xt+1 ∈ X , action a ∈ A,
and xi denoting the ith dimension of state x we have P

(
xt+1|xt, a

)
=
∏
i P
(
xit+1|xt, a

)
.

Note that this is a weaker assumption than factored MDPs [31, 24] as we do not assume a correspond-
ing factorization of the reward function.

Invariant Causal Prediction. Invariant causal prediction (ICP) [46] considers the problem of
learning an invariant representation w.r.t. spurious correlations that arise due to noise in the underlying
causal model (unknown) describing a given system. The key observation is that if one considers the
direct causal parents of a response/target variable of interest (Y ), then the conditional distribution
of Y given these direct causes PA(Y ) does not change across interventions on any variable except
Y . Therefore, ICP suggests collecting data into different environments (corresponding to different
interventions), and to output the set of variables Xi for which a learned predictor of Y remains the
same given Xi across the multiple environments with high probability.

State Abstractions. State abstractions allow us to map behaviorally-equivalent states into a single
abstract state, thus simplifying the learning problem, which then makes use of the (potentially
much smaller set of) abstract states instead of the original states [5]. In principle, any function
approximation architecture can act as an abstraction, since it attempts to group similar states together.
Therefore, exploring the properties of a representation learning scheme as a state abstraction help
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develop stronger intuition for building practical algorithms. In the next section, we build our
theory based on this connection. A well known state abstraction is bisimulation [19, 48, 37].
Formally, an abstraction φ : X 7→ S is a bisimulation if for any two states x1, x2 and next state
x ∈ X , abstract state s ∈ S, a ∈ A where φ(x1) = φ(x2), we have R(x1, a) = R(x2, a), and∑
x∈φ−1(s) P

(
x|x1, a

)
=
∑
x∈φ−1(s) P

(
x|x2, a

)
. Since an exact equivalence is not practical, prior

work deals with approximate variants through the notion of ε-closeness [29].

3 MODEL INVARIANCE AND ABSTRACTIONS

Current state abstractions such as bisimulation do not provide support for sparse structures. Instead,
closeness in abstract states is defined based on probabilities of all state variables together, i.e., x. To
remedy this, we introduce a new state abstraction, called model-invariance, which is specific to each
state variable xi. Formally, an invariant abstraction φi is one which has the same transition probability
of the ith next state variable xi for any two given states x1 and x2, i.e., P

(
xi|x1, a

)
= P

(
xi|x2, a

)
.

Note that if we assume factored rewards, we can define a corresponding reward-based invariant
abstraction that parallels the bisimulation abstraction more closely, but we focus here on the reward-
free setting. Since it is impractical to ensure this equivalence exactly, we can use an approximate
definition which ensures an ε-closeness.
Definition 1. (Approximate Model Invariance) φ is εi,P -model-invariant if for each index i,

sup
a∈A,x,x1,x2∈X ,φ(x1):=φ(x2)

∥∥P (xi|x1, a
)
− P

(
xi|x2, a

)∥∥ ≤ εi,P .
φ is εR-model-invariant if εR = supa∈A,x1,x2∈X ,φ(x1)=φ(x2)

∣∣R(x1, a)−R(x2, a)
∣∣ .

Based on the definition, it intuitively seems like applying the abstraction over the original transition
distribution should be close to the transition distribution over abstract states. This can be precisely
written in the following lemma, which is a necessary result in ensuring that an optimal policy can still
be learnt over a model-invariant abstraction:
Lemma 1. (Model Error Bound) Let φ be an εi,P -approximate model-invariant abstraction on MDP
M . Given any distributions psi : si ∈ φi(X ) where psi is supported on φ−1(si) and ps =

∏d
i=1 psi ,

we define Mφ = (φ(X ),A, Pφ, Rφ, γ) where Pφ(s, a) = Ex∼ps
[
P (·|x, a)

]
and Rφ = Ex∼ps[

R(x, a)
]
. Then for any x ∈ X , a ∈ A,

‖Pφ(s, a)− ΦP (x, a)‖ ≤
d∑
i=1

εi,P ,

where ΦP denotes the lifted version of P , where we take the next-step transition distribution from
observation space X and lift it to latent space S (Proof in Appendix 2). Pφ refers to the transition
probability of a MDP that acts on the states Φ(X ), rather than the original MDP. Finally, note that
we are particularly concerned with the case where each xi is atomic in nature, i.e., it is not further
divisible. Such a property ensures that model-invariance does not collapse to bisimulation1.

4 CAUSAL INVARIANCE IN MODEL LEARNING

Having defined model-invariant abstractions, we are now ready to provide connections between
causal invariance and model learning in RL. For simplicity, we can assume that there exists a linear
structural equation model [45] that consists of the d state variables and action a as the features X and
the next state variable xit+1 as the target Y , for each index i. Similar to the ICP setting(Section 2),
we can define the different environments as follows:
Assumption 2. (ICP Environments) For each e ∈ E: the experimental setting e arises due to
one or several interventions on variables from

(
x1
t , ..., x

d
t , at

)
but not on xit+1; here, we allow for

do-interventions [44] or soft-interventions [18].

1In the simplest case index i describes each state dimension, i.e., being atomic. However in general the index
could be a grouping of different dimensions as well. Consider the case where there is only one index over which
we build a model invariance abstraction. Now x1 would then correspond to the entire state x. Since Definition 1
would be satisfied trivially, we do not gain anything on the sparsity level, thus collapsing to bisimulation.
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For our purposes, each intervention corresponds to a change in the current state and action distribution.
This change in distribution can be realized as a change in the policy. Therefore, each policy π defines
an ICP environment e. It can be shown that under Assumption 2 the direct causes, i.e., parents of
xit+1, define a valid support over invariant predictors, namely S∗ = PA(xit+1). 2. The key idea
therefore is to make sure that in predicting each next state variable xit+1 we use only its set of invariant
predictors and not all state variables and actions (see Figure 1). With this intuition, it becomes clearer
why our original model learning problem is inherently tied with learning better representations, in
that having access to a representation that discards excess information for each state variable (more
formally, a causally invariant representation), would be more robust to spurious correlations and
thus, at least in principle, lead to improved generalization performance across different parts of the
state space. In fact, such a causally invariant representation obeys the properties of a model-invariant
abstraction. Formally,
Proposition 1. For the abstraction φi(x) = [x]Si , where Si = PA(xit+1), φi is model-invariant.

Proof is provided in Appendix 2. It now becomes easy to see that sparsity in dynamics is central to
what we have discussed so far, since if we do not have sparsity, the causally invariant representation
trivially reduces to the original state x, thus resulting in no state aggregation. However, when sparsity
is present, following the above definition leads to a representation φ such that any two components
φi and φj are decorrelated, since each encodes information about a different subset of state variables.
Finally, we show that learning a transition model over a model-invariant abstraction φ and then
planning over this model is optimal.
Theorem 1. (Value bound) If φ is an εR, εi,P approximate model-invariant abstraction on MDP M ,
and Mφ is the abstract MDP formed using φ, then we can bound the loss in the optimal state action
value function in both the MDPs as:∥∥∥[Q∗Mφ

]M −Q∗M
∥∥∥

2,ν
≤
√
C

1− γ

∥∥∥[Q∗Mφ
]M − T [Q∗Mφ

]M

∥∥∥
2,µ

,

∥∥∥[Q∗Mφ
]M − T [Q∗Mφ

]M

∥∥∥
2,µ
≤ εR + γ

( d∑
i=1

εi,P

) Rmax

2(1− γ)
,

where C refers to the concentrability coefficient as defined in [9]. Here, an admissible distribution
ν refers to any distribution that can be realized in the given MDP by following a policy for some
timesteps, while µ refers to the distribution from which the data is generated. Proof and all details
surrounding the theoretical results are provided in Appendix 2. This result is important because
we can follow this with standard sample complexity arguments that will have a logarithmic in |φ|
dependence, thus guaranteeing that learning in this abstract MDP is faster and only incurs the above
described sub-optimality.

So far, we have embedded the RL model learning problem in the ICP framework. This highlights the
connection between generalization issues in MBRL and arising spurious correlations in identifying
the true causal predictors of each state variable. Furthermore, we have explored the state abstraction
properties of the causally invariant representations which avoid spurious correlations. In the next
section, we now show how ICP can be used as a sub-routine in learning a more generalized model in
the simple setting of a linear MDP.

5 LINEAR CASE: CERTAINTY EQUIVALENCE

In the simpler setting of tabular RL, estimating the model using transition samples and then planning
over the learned model is referred to as certainty equivalence [6]. Particularly for estimating the
transition model, it considers the case where we are provided with n transition samples per state-action
pair, (xt, at) in the dataset Dx,a, and estimate the model as

P
(
xt+1|xt, at

)
=

1

n

∑
x̄∈Dx,a

I(x̄ = xt+1) .

2The proof follows directly by applying Proposition 1 of Peters et al. [46] (which itself follows from
construction) to each state variable indexed by dimension i
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Now, when next state components do not depend on each other given the previous state and action
(i.e., Assumption 1), we can re-write P

(
xt+1|xt, at

)
as
∏
i P
(
xit+1|xt, at

)
. Furthermore, if we know

the causal parents of xit+1, we can instead empirically estimate the true transition probabilities as

P
(
xit+1|xt, at

)
= P

(
xit+1|PA(xit+1), at

)
=

1

nk

∑
x̄∈D

I(x̄ = xit+1) , (1)

where D =

k⋃
i=1

Dx,a, x ∈ φ−1
i (x̄). From Proposition 1, we know that such an invariant solution

exists, and is defined by the causal parents of each state variable. Therefore, in the linear dynamics
case, given data from multiple environments (different policies), we can use ICP to learn the causal
parents of each state variable and then estimate the probability of a certain transition using Eq. 13. We
refer to this as the invariant model learner and detail the procedure in Algorithm 1. On the other hand,
if we do extract the causal parent variables and instead use all state variables in Eq. 1, we would get
the standard maximum likelihood (MLE) learner.

Algorithm 1 Linear Model-Invariant MBRL
1: Input Replay buffer D containing data from multi-

ple policies/envs, confidence parameter α;
2: for state variable i = 1, . . . , d do
3: Si ← ICP(i,D, α); (Appendix ??)
4: Estimate P̂i from D using Eq. 1;
5: end for
6: Estimate transition probability kernel P̂ ← ΠiP̂i
7: for state sj , j = 1, . . . , N do
8: πR(sj)← Plan(R, P̂ , sj)
9: end for

The invariance based solution avoids spurious
correlations more than the MLE learner, result-
ing in better generalization. To see this, con-
sider a simple linear MDP with three state vari-
ables (x1, x2, x3), each depending only on its
own (PA(xit+1) = xit), and taking integer val-
ues between [−10, 10]. The exact details of the
MDP are described in Appendix 3.1. We con-
sider three different distributions corresponding
to three different policies, each describing an
ICP environment. In Table 1, we compare our
invariant learner with a standard MLE learner

and show how their error with the true probability of transition varies as the number of samples
grows.

Samples MLE Model-Invariance
100 - ± - 9.3 ± 1.3
200 24.6 ± 9.23 5.7 ± 1.5
500 14.5 ± 2.75 2.7 ± 0.7

2000 9.6 ± 1.72 1.8 ± 0.3
5000 6.4 ± 1.46 1.6 ± 0.3

Table 1: Linear MDP Transition Prediction Error.
Consider the simple linear MDP from Appendix 3.1.
We compare the estimated transition probability of our
invariant learner with the MLE learner (lower is better).
The invariant learner converges faster and more stably
to the true solution. Mean and std. err. over 15 random
seeds. Order of magnitude of the errors is 1e-3.

Note that Table 1 represents the results for one
environment, specified by a fixed policy that is
used for data collection. If the policy changes,
it would result in a different environment as de-
scribed in Section 3. Our ideal scenario is to
find a predictive model that is closest to the true
model for all environments. We find that the
invariant learner quickly converges to approxi-
mately the same solution across all training envi-
ronments, with just a few data samples. On the
other hand, the standard MLE learner results in
different solutions for each training environment
in the low data regime. The solution provided at
test time in such a case is an average of all such

solutions found during training, which is clearly off the true probability (higher error in Table 1).

It is worth noting that this example assumes linearity in dynamics, which allows us to use the ICP
procedure from Peters et al. [46]. In the general non-linear case, this is not possible. To that end, in
the next section we will describe a practical method that leverages ideas from self-supervised learning
to exploit sparsity in an end-to-end manner.

6 NON-LINEAR CASE: LEARNING PRACTICAL MODEL-INVARIANT
REPRESENTATIONS

We now introduce a practical algorithm for learning model-invariant representations where we relax
the following assumptions: linearity in dynamics, having access to data from multiple environments,

3Using Theorem 1, we know that performing planning over this estimated dynamics model would be
ε-optimal.
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Algorithm 2 Non-linear Model-Invariant MBRL
1: Input Replay buffer D = ∅; Value and policy

network parameters θQ, θπ , model parameters θr ,
θf for any MBRL algorithm;

2: for environment steps t = 1, . . . , T do
3: Take action at ∼ π(·|xt), observe rt and xt+1,

and add to the replay buffer D;
4: for Mmodel-free updates do
5: Sample batch {xj , aj , rj , xj+1}Nj=1 from D;
6: Run gradient update for the model free com-

ponents of the algorithm (e.g., θπ , θQ etc.);
7: end for
8: for Mmodel updates do
9: Sample batch {xj , aj , rj , xj+1}Nj=1 from D;

10: Update reward model (θr);
11: Update invariant dynamics model: θf ←

invariant_update(θf ,∇θfLf ) (Appendix 3.2
or Eq. 2);

12: end for
13: end for

State Variable

Softmax

Figure 2: Architecture for learning model-invariant
representations. Model-invariance uses two (or more)
transition dynamics models, denoted by f and h, over a
common representation φ. The critic g provides a score
for a chosen dimension/state variable of the output of
f and h models.

and being in the strictly batch setting. Having connected the abstraction viewpoint to the problem of
spurious correlations arising in dynamics models, we wish to come up with NN representations that
abstract away irrelevant information on a per-state-variable level (i.e., xit, not xt) and learn them in an
end-to-end manner. To that end, we view the task of learning such representations as a self-supervised
objective where we want to be invariant to models that exhibit spurious correlations. Consider two
(or more) randomly initialized and independently trained (on different samples) dynamics models
attached to a common representation φ. We can view these models as augmented versions of the true
dynamics models since each model captures different spurious correlations. We must be invariant to
augmentations in the model space on a per-state-variable level (since spurious correlations arise for
individual state variable dynamics).

To instantiate this idea, we take inspiration from a recent method called ReLIC [40], which uses a
contrastive loss [41] over augmented views of the same data sample and an invariance loss to enforce
consistency. ReLIC was shown to be closely connected to doing causal interventions over input
variables and enforcing invariance over certain functions (like data augmentations). Here we are
exploiting the same connection, with additional modifications. Instead of using augmentations over
inputs, we induce augmentations over models and then define the invariance loss for a particular
dimension — the goal is to eliminate the contribution of spurious features when predicting a particular
state variable. Note that doing exact causal interventions is not possible in the large state-action
spaces in RL but we can still make strong connections to the causal literature and also use it in simpler
settings, as we do in Section 5 (linear case) where we deploy exact invariance tools.

After randomizing two (or more) identical models at the start of training, a model is sampled
randomly and is used for minimizing the standard MLE model predictive loss at each optimization
step. Simultaneously, an invariance loss defined over the predictions of both models augments
the MLE loss. The invariance loss enforces consistency in the prediction of both (all) models by
minimizing the difference in similarities between the prediction of one model w.r.t. the prediction
of the other model and vice versa (Eq. 2). This similarity is computed for a single (randomly
selected) state variable at each optimization step, with the specifics being borrowed from the ReLIC
objective Mitrovic et al. [40]. Finally, further consistency is encouraged because all models have a
common representation with a a bottleneck structure. Our implementation is detailed in Figure 2
and as pseudocode in Appendix 3.2. Although this method is designed to be robust to spurious
correlations in dynamics models, in our experiments we will show that the representations learnt
for each index i, φi actually end up being sparse, a property that motivated the model invariance
abstraction back in Definition 1. The overall model invariance loss is:

Lf = Ex∼D
[ (
f(xt, at)− xt+1

)2

︸ ︷︷ ︸
MLE Loss

+ KL
(
pfh, phf

)
︸ ︷︷ ︸

Invariance Loss

]
, pfh = softmax

(
ψi(f, h)

)
, (2)

6



Under review as a conference paper at ICLR 2022

mean corr. in φi
w/o model-inv. 1.63 ± 0.48

w/ model-inv. 1.25 ± 0.53

Figure 4: Invariant Model Learning on Humanoid-v2. Left plot: test model learning error for different
horizon values. Mean and std. err. over 10 random seeds. Middle plot: modelling error when we enforce
per-state vs per-dim invariance. Table: mean correlation metric; order of magnitude is 103.

where ψi(f, h) =
〈
g
(
f i(xt, at)

)
, g
(
hi(xt, at)

)〉
is the cosine similarity between the predictions for

the models f and h for the state variable indexed by i. The output of the inner product is normalized
for each sample and thus the resulting vector g

(
f i(xt, at)

)
is a probability distribution. In our

implementation, the function g is a fully connected neural network and is used to project the outputs
of the models f and h. It is often called the critic network in self-supervised learning losses [10].
Note that the matrix ψi is not symmetric since the values at any two symmetric indices are different
(they are computed for different samples) — the KL loss remains well-defined.

We will use the invariant model learner described above within a model-based RL algorithm and
compare its policy performance to a standard MLE based model learner. A general framework that
uses an invariant model learner is outlined in Algorithm 2. For the purposes of this paper, we employ a
simple actor-critic setup where the model is used to compute multi-step estimates of the Q value used
by the actor learner. A specific instantiation of this idea of model value expansion is the SAC-SVG
algorithm proposed in Amos et al. [2] (see Appendix 3.3 for details). It is important to note that the
proposed version of model-invariance can be used in combination with any MBRL method and with
any type of dynamics model architecture, such as ensembles or recurrent architectures.

7 EXPERIMENTS

(a) Horizon=3 (b) Horizon=5

Figure 3: Effect of spurious correlation on
model learning test loss of Humanoid-v2 for
a single dimension (knee joint) with two set-
tings: Mask and No_mask. 10 seeds, 1 std.
dev. shaded. Y-axis magnitude order is 1e-3.

Presence of Spurious Correlations. We first test the pres-
ence of spurious correlations in the Humanoid-v2 [53] task
by choosing to predict a single dimension (the knee joint)
in two contrasting settings; 1) No_Mask: when all state
and action variables are provided as input and, 2) Mask:
when the state variables that are likely uncorrelated to the
knee joint are masked (see Appendix 3.5). Having trained
different models for the two settings, we observe that 1)
No_Mask: performs worse than 2) Mask:, for both hori-
zon values in {3, 5} (see Figure 3). This verifies that there
indeed is an invariant, causal set of parents among the state
dimensions and that there could be some interference due
to spurious correlations in 1), and thus, it performs worse
than case 2). Furthermore, when the dimensions that are
likely to be useful in predicting the knee joint are masked,
then the model error is the highest (worst; not shown in figure). Note that since all variables are
necessary for the task in hand, simply discarding some of them is a not a solution to the spurious
correlation problem.

Invariant Model Learning on Humanoid-v2. We compare the invariant model learner to a standard
MLE learner for the Humanoid-v2 task. To observe the effect of the invariance loss clearly, we
decouple the model learning component from the policy optimization component by testing the model
on data coming from the replay buffer of a pre-trained model-free SAC agent. Such a setup ensures
that the changes in state distribution according to changes in policy are still present but any changes
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in the model do not actively affect this distribution, thus clearly reflecting the effect of model learning
only.

We observe that our invariant model learner performs much better than the standard model learner,
especially when the number of samples available is low, i.e., around the 200K to 500K mark (see
Figure 4, left plot). As the number of samples increases, the performance between both models
converges, just as observed in the tabular case. This is expected since in the infinite data regime, both
solutions (MLE and invariance based) approach the true model. Furthermore, we observe that the
number of samples it takes for convergence between the standard and the invariant model learners
increases as the rollout horizon (H in Figure 4) of the model learner is increased. Next, we plot
the test error when the invariance loss is computed for all state variables and compare it to when it
computed for a particular state variable (Figure 4, middle plot). We see that the per-state version
performs worse than the per-state-variable or per-dim version, showing the importance of enforcing
invariance at the state variable level. Finally, we test the mean correlation in the dimensions of the
learnt representation φ with and without model-invariance (Figure 4, right table). We see that the
mean correlation is lower with model-invariance than without, suggesting that the practical algorithm
does induce the sparsity property discussed in the earlier part of the paper.

POPLIN Cheetah Walker Hopper Ant
*PETS 2288 ±510 282 ± 250 114 ± 311 1165 ± 113

*POPLIN-A 1562 ±568 -105 ± 125 202 ± 481 1148 ± 219

*POPLIN-P 4235 ±566 597 ± 239 2055 ± 206 2330 ± 160
∗METRPO 2283 ± 450 -1609 ±328 1272 ± 250 282 ± 9

*SAC 4035 ± 134 -382 ± 424 2020 ± 346 836 ± 34

SAC-SVG H-3 6530 ±382 80 ± 472 1108 ±263 2293 ± 397

OURS H-3 7067 ±269 -150 ± 556 1724 ± 271 3124 ± 199

Table 2: POPLIN Invariant MBRL performance Invariant MBRL performance reported at 200k steps on
four MuJoCo based domains from POPLIN [55]. * represents performance reported by POPLIN. Standard
error with 10 seeds reported. We bold the scores with larger mean values.

MBPO Cheetah Walker Hopper Ant Humanoid
SAC-SVG H-3 8957 ±532 3795 ±503 3201 ± 101 3997 ± 153 1712 ± 415

OURS H-3 9109 ±334 3961 ±239 3382 ± 84 4546 ± 286 2443 ± 561

SAC-SVG H-4 8327 ±870 3494 ±392 3291 ±232 4470 ± 307 2404 ± 495

OURS H-4 9663 ± 487 4347 ±136 3489 ± 19 4565 ±221 3506 ± 538

SAC-SVG H-5 5710 ±1329 2773 ±492 3059 ± 276 3808 ±531 3190 ± 601

OURS H-5 5796 ±855 3326 ±430 3207 ± 210 3817 ±488 3446 ± 481

Table 3: MBPO Invariant MBRL performance Invariant MBRL performance reported at 200k steps on five
MuJoCo based domains from MBPO [28]. Standard error with 10 seeds reported. We bold the scores with
larger mean values.

Invariant Model-based Reinforcement Learning. Finally, we evaluate the invariant model learner
within the policy optimization setting of SAC-SVG [2]. We compare the difference in performance to
SAC-SVG when the horizon length is varied (see MBPO environments in Table 3 and Appendix 3.4)
and then compare the performance of our method against multiple model based methods including
PETS [11], POPLIN [55], METRPO [32], and the model free SAC [27] algorithm (see POPLIN
environments in Table 2 and Appendix 3.4). The results in Table 3 show a consistent improvement
in performance when the invariant model learner (OURS) is used instead of the standard model
learner (SAC-SVG) across most tasks, including the Humanoid-v2. Furthermore, we see that as the
horizon length is increased, the difference in performance between the invariant and standard learners
increases for most tasks. A comparison of model training errors for both cases is provided in Table 5
in Appendix. We see a consistently higher training loss for the invariant learner, indicating less over
fitting. Finally, in Table 2 we see that the invariant learner outperforms all six baselines on 3 out 4
tasks, with the exception of Walker, where most methods fail to reach a positive score. Combining our
invariant model learner with other policy optimization algorithms is therefore a promising direction
for future investigation.
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8 RELATED WORK

Planning based on structural assumptions on the underlying MDP have been explored in significant
detail in the past [7]. The most closely related setting is of factored MDPs, but approaches that
build on the factored MDP assumption have predominantly also assumed a known graph structure
for the transition factorization [31, 50, 42]. The factored MDPs literature has carried two distinct
ideas all along, one of sparsity and the other of factorized transitions/rewards. This paper focuses
predominantly on sparsity. We rely on factorization for some theoretical results but the practical
algorithm does not require factorization to work. Sparsity leads to the abstraction viewpoint introduced
in this work, which allows us to scale our formalism to practical methods. It allows us to connect the
initial formalism to the concrete problem of neural network generalization (without an abstraction-
based formalism, it does not make sense to use neural networks).

On a separate axis, papers that deal with learning the graph structure and then doing RL [50, 16, 26],
do so by constructing close to optimal transition functions, and then planning. In our practical method,
we focus on only avoiding spurious correlations, which is computationally more efficient since by
the time an exact model of the MDP can be learnt (usually done by checking all possible parent set
candidates), most model-free methods can just learn the reward function and perform much better.
Degris et al. [13] learn decision tree based models online while we focus on learning NN based
models. Extending such exact methods to NN models remains an open problem. Guestrin et al. [25]
state a similar idea to this work but simply assume that one is given basis functions that have limited
scope (model-invariant abstractions).

As mentioned, other forms of state abstraction such as bisimulation [37, 58] do not consider sparsity
whereas model-invariance does. Therefore, both forms of abstraction are in fact orthogonal to each
other, and therefore can be combined on top of one another. In similar essence, a lot of works
have proposed value-aware model learning objectives, which only model the minimal information
required to predict the value function of the task [20, 17, 12]. This is again a complimentary idea to
model-invariance, since we consider states spaces that are already minimal w.r.t. the value function,
i.e., no task irrelevant information is present.

9 CONCLUSION AND FUTURE DIRECTIONS

This paper introduced a new type of state abstraction for MBRL that exploits the inherent sparsity
present in many complex tasks. We first showed that a representation that only depends on the
causal parents of each state variable follows this definition and is provably optimal. Following, we
introduced a novel approach for learning model-invariant abstractions in practice, which can be
plugged in any given MBRL method. Experimental results show that this approach measurably
improves the generalization ability of the learnt models. This stands as an important first step to
building more advanced algorithms with improved generalization for systems that possess sparse
dynamics.

In terms of future work, there remain multiple exciting directions and open questions. First, to
enable model-invariance, we could also look at other kind of approaches proposed recently such
as the AND mask [43]. The AND mask specifically requires the data to be separated into multiple
environments, and thus naturally suits the offline RL setting. Second, moving to pixel based input,
the representation learning task becomes two-fold, including learning to abstract away the irrelevant
information present in the pixels and then learning a model-invariant representation. Third, note
that our theoretical results do not involve an explicit dependence on a sparsity measure, for example,
the maximum number of parents any state variable could have. Including such a dependence would
ensure tighter bounds. Fourth, it is worth asking how such an explicit constraint on model-invariance
can perform as a standalone representation learning objective, considering the strong progress made
by self-supervised RL.
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Appendix
1 WHY CAUSAL INVARIANCE?

Out of distribution (OOD) generalization has been attributed to learnt correlations that do not follow
the underlying causal structure of the system. These are referred to as spurious correlations. With
the use of deep neural networks, spurious correlations can arise due to 1) the way we collect data,
or selection bias, 2) overparameterization of the neural networks, and 3) presence of irrelevant
information in the data (ex. the background might be irrelevant for an object classification task). For
the setting in this paper, such issues are relevant since we use NNs to learn the dynamics model of the
RL environment. Even if these issues are attended to, spurious correlation could still arise. However,
this time it would be due to the causal structure assumed and not the modelling technique (NNs) we
use over it. Two such causes are 4) hidden confounders in the causal graph and 5) conditioning on
anti-causal parts of input x. For our case, 4) could correspond to a hidden non-stationarity in the
system such as the friction coefficient between the robot and the floor. Since we are only concerned
with the xt to xt+1 causal diagram, 5) may not be as apparent. Nevertheless, we include it for
completeness. Therefore, in principle, choosing the right variables and deploying techniques that
discover an invariant Y conditioned on a given X helps us avoid spurious correlations. This in turn
leads to better OOD generalization.

NOTES ON ASSUMPTIONS

• There is a linearity assumption on the dynamics that is implicitly placed when we borrow
the generalization results of Peters et al. [46]. These ensure that given data divided into
multiple environments (minimum 2) (in our case that refers to data from multiple single
policies), the causal representation results in a model that generalizes over all environments.
When the dynamics are non-linear, Arjovsky et al. [3] showed that a similar argument
toward generalization can still be made, with the added requirement of having data from
at least a fixed amount (ne ≥ 2) of environments. However, recent work [49] has argued
that such an analysis is not accurate and thus more investigation is required to ensure OOD
generalization. For the proof of concept experiment in Section 5, the dynamics are linear
and thus we can deploy ICP for learning the causal parents of each state variable and ensure
that the zero-shot generalization shown actually persists for any arbitrarily different policy
from the ones used for training the invariant learner. When we move to Section 6 we do
away with this assumption since the dynamics are no longer linear. Moreover, we do not
restrict ourselves to a multiple environment based regime, the likes of which are required by
Peters et al. [46].
• The transition factorization assumption, i.e., Assumption 1, seems like a strict condition

in theory when we move to complex domains, however, it is in fact a natural outcome of
how we model the agent dynamics in practice. In practice, each state variable of the next
state xt+1 is set to only be dependent on the previous state xt and action at. We can see this
for example in neural network based dynamics models where the next state as a whole (all
state variables simultaneously) is predicted given the previous state and action. Therefore,
even though it may seem as an over constraining assumption, in practice it is present by
default. In fact, this shows that we should focus more on theoretical results that build on
assumptions like transition factorization.
• A constraint on the exploration issue is usually dealt with by the concentrability assumption

in literature. A recent method to get around such an assumption is by coupling the policy
optimization algorithm with a exploration algorithm that maintains a set of exploratory
policies (policy cover in Misra et al. [38]) which slowly keeps expanding.
• When describing the practical invariant model learner (Section 6), we do not explicitly focus

on finding the exact causal parents for each state variable. On the other hand, we resort to
forcing such a constraint implicitly by describing a direct, differentiable invariance-based
loss. One benefit of this approach is that the overall method remains end-to-end. The
downside of course is that we do not always ensure that the right set of causal parents is
found.
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2 PROOFS

Proposition 2. For the abstraction φi(x) = [x]Si , where Si = PA(xit+1), φi is model-invariant.
Furthermore, if φ follows such a definition for all state variables indexed by i, φ is a reward free
model irrelevant state abstraction.

Proof. We first prove that φi is model-invariant. In the case where φi(x) = φi(x
′) for some state

variable indexed by i, we have:

P (x̄i|x, a) = P (x̄i|[x]Si , a)

= P (x̄i|φi(x), a)

= P (x̄i|φi(x′), a).

Following the same steps backwards for φi(x′) concludes the proof.

We now prove the latter statement in the theorem. Note that for such a statement to be meaningful,
we require that the state space X includes some irrelevant state variables for the downstream task
in hand. For example, we could have some unnecessary noise variables appended to the full state
variables. In such a case, the full state variables are relevant for the downstream task whereas the
noise variables are irrelevant for the downstream task. Now, if φ(x) = φ(x′), i.e., φi(x) = φi(x

′)
for all relevant state variables indexed by i, φ is a reward free model irrelevant state abstraction, i.e.,

∑
x̄∈φ−1(s)

P (x̄|x, a) =
∑

x̄∈φ−1(s)

P (x̄|x′, a), (3)

where s is the abstract state that φ maps to. With this note, the proof for the latter statement follows
directly from Theorem 1 in Zhang et al. [57].

On the absence of irrelevant state variables: The condition φ(x1) = φ(x2) is quite strict if we
assume the absence of irrelevant state variables (if no such variables are present, then x1 has to be
equal to x2 for this condition to be met, which is not meaningful).

Extending to model-invariance grounded in reward: Notice that Definition 1 is reward free, and
is grounded in the next state x̄. We could instead extend this to a definition which is grounded in the
reward. Particularly,

Definition 2. (Reward Grounded Model Invariant Abstraction) φi is reward grounded model-
invariant if for any x, x′, x̄ ∈ X , a ∈ A, φi(x) = φi(x

′) if and only if

Ri(x, a) = Ri(x
′, a)∑

x̄∈φ−1
i (si)

P (x̄|x, a) =
∑

x̄∈φ−1
i (si)

P (x̄|x′, a),

We can show that the causal representation of φ is a reward free version of the above defined
model-invariance abstraction (Definition 2).

Proposition 3. For the abstraction φi(x) = [x]Si , where Si = PA(xit+1), φi is a reward free version
of Definition 2.

Proof. Now, when φi(x) = φi(x
′) for a specific state variable indexed by i, we have:
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∑
x̄∈φ−1

i (s)

P (x̄|x, a) =
∑

x̄∈φ−1
i (s)

d∏
k=1

P (x̄k|x, a)

=
∑

x̄∈φ−1
i (s)

P (x̄i|[x]Si , a)

d∏
k=1

P (x̄k 6=i, i,k∈[d]|x, a)

= f(s, φi(x), a)
∑

x̄∈φ−1
i (s)

P ({x̄}k 6=i, i,k∈[d]|x, a)

= f(s, φi(x), a)

= f(s, φi(x
′), a).

, where we use [d] to denote the set {1, · · · , d} and f is some function that depends only on the
abstraction φi, action a, and the abstract state s. Following the same steps backwards concludes the
proof.

Lemma 1. (Model Error Bound) Let φ be an εi,P -approximate model-invariant abstraction on MDP
M . Given any distributions psi : si ∈ φi(X ) where psi is supported on φ−1(si) and ps =

∏d
i=1 psi ,

we define Mφ = (φ(X ),A, Pφ, Rφ, γ) where Pφ(s, a) = Ex∼ps [P (·|x, a)]. Then for any x ∈ X ,
a ∈ A,

‖Pφ(s, a)− ΦP (x, a)‖ ≤
d∑
i=1

εi,P .

Proof. Consider any x, a and let qxi := ΦiP (x, a), where we have ‖qxi − qx̄i‖ ≤ εi,P if φi(x) =
φi(x̄).

‖Pφ(s, a)− ΦP (x, a)‖ =

∥∥∥∥∥∥
∑

x̄∈φ−1(s)

ps(x̄)P (·|x̄, a)− ΦP (x, a)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

x̄∈φ−1(s)

ps(x̄)P (·|x̄, a)−
d∏
i=1

ΦiP (x, a)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

x̄∈φ−1(s)

ps(x̄)

d∏
i=1

qx̄i −
d∏
i=1

qxi

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

x̄∈φ−1(s)

ps(x̄)
( d∏
i=1

qx̄i −
d∏
i=1

qxi
)∥∥∥∥∥∥

≤
∑

x̄∈φ−1(s)

ps(x̄)

∥∥∥∥∥
d∏
i=1

qx̄i −
d∏
i=1

qxi

∥∥∥∥∥ .
We now use the following inequality:

‖AB − CD‖ = ‖AB −AD +AD − CD‖
= ‖A(B −D) + (A− C)D‖
≤ ‖A(B −D) + ‖(A− C)D‖‖ (Triangle inequality)
≤ ‖A‖∞ ‖B −D‖1 + ‖A− C‖1 ‖D‖∞ (Holder’s inequality).
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The∞−norm of a probability distribution is 1. Apply this result to the above expression d times,

‖Pφ(x, a)− ΦP (x, a)‖ ≤
∑

x̄∈φ−1(s)

ps(x̄)

∥∥∥∥∥
d∏
i=1

qx̄i −
d∏
i=1

qxi

∥∥∥∥∥
≤

∑
x̄∈φ−1(s)

ps(x̄)

(∥∥∥∥∥
d−1∏
i=1

qx̄i

∥∥∥∥∥
∞

‖qx̄d − qxd‖1 +

∥∥∥∥∥
d−1∏
i=1

qx̄i −
d−1∏
i=1

qxi

∥∥∥∥∥
1

‖qxd‖∞

)
...

≤
∑

x̄∈φ−1(s)

ps(x̄)

d∑
i=1

εi,P

=

d∑
i=1

εi,P .

Theorem 1. (Value bound) If φ is an εR, εi,P approximate model-invariant abstraction on MDP M ,
and Mφ is the abstract MDP formed using φ, then we can bound the loss in the optimal state action
value function in both the MDPs as:

∥∥∥[Q∗Mφ
]M −Q∗M

∥∥∥
2,ν
≤
√
C

1− γ

∥∥∥[Q∗Mφ
]M − T [Q∗Mφ

]M

∥∥∥
2,µ∥∥∥[Q∗Mφ

]M − T [Q∗Mφ
]M

∥∥∥
2,µ
≤ εR + γ

( d∑
i=1

εi,P

)
Rmax/(2(1− γ))

Note that this theorem deals with the batch setting, where we are given a batch of data and are tasked
at learning only using this data, without allowing any direct interaction with the MDP. We use the
concentratability coefficient as defined in Assumption ??, i.e., there exists a C such that for any
admissible distribution ν:

∀(x, a) ∈ X ×A, ν(x, a)

µ(x, a)
< C .

Here, we abuse µ to represent the distribution the data comes from instead of standard notation
representing the starting state distribution. Now,

∥∥∥[Q∗Mφ
]M −Q∗M

∥∥∥
2,ν

=
∥∥∥[Q∗Mφ

]M − T [Q∗Mφ
]M + T [Q∗Mφ

]M −Q∗M
∥∥∥

2,ν

≤
∥∥∥[Q∗Mφ

]M − T [Q∗Mφ
]M

∥∥∥
2,ν

+
∥∥∥T [Q∗Mφ

]M − T Q∗M
∥∥∥

2,ν

≤
√
C
∥∥∥[Q∗Mφ

]M − T [Q∗Mφ
]M

∥∥∥
2,µ

+
∥∥∥T [Q∗Mφ

]M − T Q∗M
∥∥∥

2,ν
(3)
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Let us consider the second term:∥∥∥T [Q∗Mφ
]M − T Q∗M

∥∥∥2

2,ν
= E(x,a)∼ν

[(
T [Q∗Mφ

]M (x, a)− T Q∗M (s, a)
)2
]

= E(x,a)∼ν

[(
γEx′∼P (x,a)[max

a
[Q∗Mφ

]M (x′, a)−max
a

Q∗M (x′, a)]
)2
]

≤ E(x,a)∼ν

[
γ2Ex′∼P (x,a)

(
max
a

[Q∗Mφ
]M (x′, a)−max

a
Q∗M (x′, a)

)2
]

≤ γ2E(x,a)∼ν Ex′∼P (x,a)

[
max
a

(
[Q∗Mφ

]M (x′, a)−Q∗M (x′, a)
)2]

≤ max
ν

[
γ2E(x,a)∼ν Ex′∼P (x,a)

[
max
a

(
[Q∗Mφ

]M (x′, a)−Q∗M (x′, a)
)2]]

≤ max
ν

[
γ2E(x,a)∼ν

[(
[Q∗Mφ

]M (x′, a)−Q∗M (x′, a)
)2]]

= max
ν

γ2
∥∥∥[Q∗Mφ

]M −Q∗M
∥∥∥2

2,ν

where the last inequality follows because the two terms inside the expectation only depend on the next
state x′ and the next action a which can only be less than the value for x, a ∼ ν since we maximize
over it.

Plugging this back in (3):∥∥∥[Q∗Mφ
]M −Q∗M

∥∥∥
2,ν
≤
√
C
∥∥∥[Q∗Mφ

]M − T [Q∗Mφ
]M

∥∥∥
2,µ

+ max
ν

γ
∥∥∥[Q∗Mφ

]M −Q∗M
∥∥∥

2,ν

max
ν

∥∥∥[Q∗Mφ
]M −Q∗M

∥∥∥
2,ν
≤
√
C
∥∥∥[Q∗Mφ

]M − T [Q∗Mφ
]M

∥∥∥
2,µ

+ max
ν

γ
∥∥∥[Q∗Mφ

]M −Q∗M
∥∥∥

2,ν

max
ν

∥∥∥[Q∗Mφ
]M −Q∗M

∥∥∥
2,ν
≤
√
C

1− γ

∥∥∥[Q∗Mφ
]M − T [Q∗Mφ

]M

∥∥∥
2,µ

Since
∥∥∥[Q∗Mφ

]M −Q∗M
∥∥∥

2,ν
≤ maxν

∥∥∥[Q∗Mφ
]M −Q∗M

∥∥∥
2,ν

, we have:

∥∥∥[Q∗Mφ
]M −Q∗M

∥∥∥
2,ν
≤
√
C

1− γ

∥∥∥[Q∗Mφ
]M − T [Q∗Mφ

]M

∥∥∥
2,µ

Now, we prove the second statement:∥∥∥[Q∗Mφ
]M − T [Q∗Mφ

]M

∥∥∥
2,µ
≤
∥∥∥[Q∗Mφ

]M − T [Q∗Mφ
]M

∥∥∥
∞

=
∥∥∥[TMφ

Q∗Mφ
]M − T [Q∗Mφ

]M

∥∥∥
∞

= sup
x,a
|Rφ(φ(x), a) + γ〈Pφ(φ(x), a), V ∗Mφ

〉 −R(x, a)− γ〈P (x, a), [V ∗Mφ
]M 〉|

≤ εR + γ sup
x,a
|〈Pφ(φ(x), a), V ∗Mφ

〉 − 〈P (x, a), [V ∗Mφ
]M 〉|

= εR + γ sup
x,a
|〈Pφ(φ(x), a), V ∗Mφ

〉 − 〈ΦP (x, a), V ∗Mφ
〉|

≤ εR + γεP

∥∥∥∥V ∗Mφ
− Rmax

2(1− γ)
1

∥∥∥∥
∞

≤ εR + γεPRmax/(2(1− γ))

= εR + γ
( d∑
i=1

εi,P

)
Rmax/(2(1− γ))
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3 IMPLEMENTATION DETAILS

3.1 LINEAR MDP

We consider a discrete MDP with three state variables x1, x2, x3, all taking values in [−10, 10] and a
single action a. The transition probabilities of each xit depend only on xit−1 and the action a. We
define the three policies/environments as ones that lead to soft interventions (interventions on the
noise variables) on the three state variables individually. Each episode ends after 10 time steps so as
to have data from multiple trajectories, as is the case for more complex MDPs. We note that around
1000 samples of data from each environment is enough for ICP to extract the correct parent sets for
each state variable. Next, we estimate the transition probabilities for a particular transition using the
invariant as well as the MLE based estimators and plot them against the number of samples used.

3.2 PYTORCH-LIKE PSEUDOCODE FOR LEARNING MODEL-INVARIANT REPRESENTATIONS

for x in loader: # load a minibatch x with n samples
# independent predictions from two randomly initiated models
z1, z2 = f(x), h(x) # f: model_1, h: model_2
# pick random dimension
dim = rand(z1.shape)

pred_1 = g(cat(z1[dim], one_hot(dim))) # g: critic
pred_2 = g(cat(z2[dim], one_hot(dim)))
p1, p2 = InvLoss(pred_1, pred_2)

L = KL(p1, p2)

L.backward()
update(f, h, g)

def InvLoss(pred_1, pred_2):
phi_1 = pred_1 * pred_2.T.detach()
phi_2 = pred_2 * pred_1.T.detach()

# matrix of inner product of 2-norm of pred_1 rows with pred_2 columns
norm_12 = normalize(pred_1, pred_2)
phi_1 = phi_1 / norm_12
phi_2 = phi_2 / norm_12.T

p1 = F.softmax(phi_1, dim=-1)
p2 = F.softmax(phi_2, dim=-1)
return p1, p2

def KL(p1, p2):
p2 = p2.detach()
return (p1 * (p1 / p2).log()).sum(dim=-1).mean()

3.3 SAC-SVG ALGORITHM

The SAC-SVG algorithm is presented in Amos et al. [2] and is based on the idea of model-based
value expansion (MVE) [21]. MVE uses the model to expand the value function to compute a
multi-step estimate which a model-free base algorithm uses for policy optimization. In SAC-SVG,
the model-free base learner is a SAC agent and the multi-step estimates correspond to that of the Q
value used by the SAC actor.

LSAC-SVG
α,π = Ex∼D, a∼π −Qα,π0:H(x, a),

where α is the entropy temperature parameter of SAC. Note that for H = 0, SAC-SVG is equivalent
to SAC, since the model is no longer used for updating the actor. Thus the impact of the model on
the final algorithm performance is through the horizon parameter H . Regarding the model learner,
SAC-SVG uses a recurrent deterministic model which takes as input the current state and a hidden
state to output the next state for a given horizon step H . The other popular alternative is to use an
ensemble of probabilistic model learners, as done in Chua et al. [11].
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Hyperparameter Value
Replay buffer size 1000000
Initial temperature (α) 0.1
Learning rate 1e− 4 SAC actor and critic; 1e− 3 Model learner
SAC Critic τ 0.005
Discount γ 0.99
SAC batch size 1024
Model batch size 512
Optimizer Adam
Model updates per env step 4
Initial steps 1000
Number of encoder hidden layers (Model) 2
Number of decoder hidden layers (Model) 2
Encoder hidden layer size (Model) 512
Decoder hidden layer size (Model) 512
Model critic (g) Single layer MLP (512)

Table 4: Hyper-parameters used for the Invariant-SAC-SVG algorithm.

3.4 MBPO VS POPLIN ENVIRONMENTS

For our MBRL experiments, we used two sets of MuJoCo-based environments, each used before in
individual papers. Specifically, the POPLIN based environments were originally used in the paper by
[55]. These refer to the ‘-v0’ versions from OpenAI Gym [8] and also includes a separately tweaked
Cheetah (called PETS-Cheetah) and Swimmer environments. On the other hand, the MBPO based
environments refer to the ones used by the paper [28] and largely correspond to the ‘-v2’ versions
from OpenAI Gym. These include an additional reward for staying alive throughout an episode.

3.5 SPURIOUS CORRELATION

For the experiment in Section ??, we used three different input strategies to test for the presence of
spurious correlations in model learning. Here, we define the exact masking schemes used. We are
interested in only predicting a single dimension here— the left knee joint position. Below are the
masking detailed descriptions:

• No Mask: None of the observation dimensions are masked.
• Mask: Dimensions that are seemingly uncorrelated to the left knee joint are masked.

Specifically, {left_shoulder_1, left_shoulder_2, left_elbow} (qpos and qvel)
• Mask_2: Dimensions that are seemingly correlated to the left knee joint are masked.

Specifically, {left_hip_x, left_hip_y, left_hip_z, left_knee} (qpos and qvel)

3.6 INVARIANT MODEL LEARNING

For our invariant model learner, we test on offline data collected in a replay buffer during the first 1M
training steps of a model-free SAC agent. We start model training with the initial samples from the
replay buffer and continue to add more as the training progresses. Such a scheme ensures that we
have access to changing state distributions as the policy changes while remaining isolated from direct
policy optimization on the MDP.

4 EXTENDED RELATED WORK

Our emphasis here is always on sparsity and not on factorization. Factorization is what the factored
MDPs literature is largely concerned with. Guestrin et al. [25], Osband & Van Roy [42], Tian et al.
[52], Xu & Tewari [56] assume known graph structure and do not segregate between the assumptions
of factorization and sparsity, often highlighting factorization more. We use factorization in the
initial part of the paper to show the benefits of sparsity in a concise manner (both for theorem 1 and
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MBPO Cheetah Walker Hopper Ant
SAC-SVG H-3 0.0015 0.0025 4.38e-05 0.0026

OURS H-3 0.0026 0.0031 4.76e-05 0.0036
SAC-SVG H-4 0.0027 0.0020 5.75e-05 0.0051

OURS H-4 0.0041 0.0033 8.23e-05 0.0078
SAC-SVG H-5 0.0048 0.0026 7.34e-05 0.0091

OURS H-5 0.0094 0.0048 1.64e-04 0.0163

Table 5: Training model error at 200k steps for the Invariant and Standard learners on five MuJoCo based
domains from MBPO [28] with 10 seeds. In all cases, we see that the invariant learner has a higher loss than the
standard learner, potentially indicating at the over-fitting happening in the standard learner.

section 5). However, it is important to note that it is sparsity that allows us to make connections
to representations computed in neural networks. Factorization merely facilitates better/concise
theory. Indeed, if we assume nothing about factorization (no factor MDP setting) and only assume
sparsity, we can still come up with different interesting cases where sparsity alone would guarantee
factorization at some level of groupings of state components. One simple example is deterministic
MDPs where factorization is trivially satisfied already. Doing so would complicate the analysis
because we must consider different cases now, but would lead to a similar conclusion as is presented
in the paper. On the other hand, if we do not consider sparsity and only factorization, any of these
connections to abstractions and neural network generalizations cannot be made. Indeed Guestrin et al.
[25], Osband & Van Roy [42], Tian et al. [52], Xu & Tewari [56] do not provide any empirical results
and require knowing the parents, i.e., graph structure a priori, making extensions to neural networks
impractical. Again, if the graph is fully connected, predicting any of the state components would
require inputting the entire state and thus this specific kind of spurious correlations would not arise.

Perhaps a different view helps communicate this better. The abstraction viewpoint is precisely what
allows us to scale our formalism to practical methods. It allows us to connect the initial formalism to
the concrete problem of neural network generalization (without an abstraction-based formalism, it
does not make sense to use neural networks). It allows us to identify a specific form of overfitting,
why it occurs and when it occurs (when system is sparse, which is true for realistic settings and
data is non-iid) and in turn what regularization technique would make sense in practice. Papers that
deal with learning the graph structure and then doing RL [50, 16, 26], do it by constructing close to
optimal transition functions, and then planning. In our practical method, we focus on only avoiding
spurious correlations, which is computationally more practical since by the time an exact model of
the MDP can be learnt, most model-free methods can learn the reward function and perform much
better. Guestrin et al. [25] state a similar idea but simply assume that one is given basis functions that
have limited scope (model-invariant abstractions).

On the theory side, most prior works on factored MDPs also do not learn and leverage state abstrac-
tions [31, 50]. Jonsson & Barto [30] draw connections to causal inference, but do so explicitly with
dynamic Bayesian networks (DBN)— as opposed to learning approximate abstractions— and assume
knowledge of the model. Most recently, Misra et al. [39] tackle the rich observation factored MDP
setting, but consider each pixel an atom that belongs to a single factor.
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