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Abstract In this paper, we investigate the fundamental question: To what extent are gradient-based
neural architecture search (NAS) techniques applicable to RL? Using the original DARTS as

a convenient baseline, we discover that the discrete architectures found can achieve up to

250% performance compared to manual architecture designs on both discrete and continuous

action space environments across o�-policy and on-policy RL algorithms, at only 3x more

computation time. Furthermore, through numerous ablation studies, we systematically

verify that not only does DARTS correctly upweight operations during its supernet phrase,

but also gradually improves resulting discrete cells up to 30x more e�ciently than random

search, suggesting DARTS is surprisingly an e�ective tool for improving architectures in RL.

1 Introduction and Motivation
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Figure 1: DARTS is potentially a natural �t for RL, as

a DARTS supernet can simply be inserted

into the network components of a standard

RL training pipeline, which may potentially

be highly distributed.

Over the past few years, Di�erentiable Archi-

tecture Search (DARTS) (Liu et al., 2019) has

dramatically risen in popularity as a method for

neural architecture search (NAS), with multi-

ple modi�cations and improvements (Chu et al.,

2020c; Li et al., 2021; Chu et al., 2020a; Liang

et al., 2019; Wang et al., 2021a; Chu et al., 2020b;

Hundt et al., 2019; Wang et al., 2021b; Chen

and Hsieh, 2020; Zela et al., 2020) constantly

proposed at a rapid speed. From a broader per-

spective, one may wonder how far we may push

the limits of di�erentiable search, as di�eren-

tiability is the cornerstone of all deep learning

research. One such very large application space is in reinforcement learning (RL), with DARTS

being a natural �t due to its simplicitly and modularity in integrating with large distributed RL

training pipelines. Shockingly however, among the vast amounts of literature on DARTS, there are

virtually no works addressing its viability in RL.

This can be attributed to the fact that RL fundamentally does not follow the same optimization

paradigm as supervised learning (SL). The end goal of RL is not to simply minimize the loss or

accuracy over a �xed dataset, but rather to improve a policy’s reward over an entire environment

whose training data is generated by the policy itself. This scenario raises the possibility of a negative

feedback loop in which a poorly trained policy may achieve trivial reward even if it successfully

optimizes its loss to zero, and thus the loss is not an indicator of a policy’s true performance. As

DARTS is purely reliant on optimizing the architecture topology by using only the loss as the

search signal, therein lies the simple question: Would DARTS even work in RL?
∗
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It is highly valuable to answer this question, as recently, works in larger-scale RL suggest that

policy architecture designs greatly a�ect various metrics such as generalization, transferrability,

and e�ciency. One surprising phenomenon found on Procgen (Cobbe et al., 2020), a procedural

generation benchmark for RL, was that "IMPALA-CNN", a residual convolutional architecture

from (Espeholt et al., 2018), could substantially outperform "NatureCNN", the standard 3-layer

architecture used for Atari (Mnih et al., 2013), in both generalization and sample complexity under

limited and in�nite data regimes respectively (Cobbe et al., 2019). Furthermore, in robotics sub�elds

such as grasping (Kalashnikov et al., 2018; Rao et al., 2020), cameras collect very detailed real-world

images (ex: 472 x 472, 4x larger than ImageNet (Russakovsky et al., 2015)) for observations which

require deep image encoders consisting of more than 15 convolutions, raising concerns on e�ciency

and speed in policy training and inference. As such RL policy networks gradually become larger

and more sophisticated, so does the need for understanding and automating such designs.

In this paper, we show that DARTS can in fact �nd better architectures e�ciently in RL, one

of the �rst instances in which the loss does not directly a�ect the �nal objective. This work may

be of interest to both the gradient-based NAS community as means to expand to the RL domain,

and the AutoRL community as a practical toolset and method for co-training policies and neural

architectures for better performing agents. Our contributions are:

• We conceptually identify the key di�erences between SL and RL in terms of their usage of the

loss function, which raise important hypothetical questions and issues about whether DARTS is

applicable to RL. In particular, these deal with the quality of the training signal to the architecture

variables during supernet training, and downstream e�ects on discrete cells during evaluation.

• Empirically, we �nd that DARTS is in fact compatible with several on-policy and o�-policy

algorithms including PPO (Schulman et al., 2017), Rainbow-DQN (Hessel et al., 2018), and SAC

(Haarnoja et al., 2018). The discrete architectures found can reach up to 250% performance

compared to manual architecture designs on discrete action (e.g. Procgen) and continuous control

(e.g. DM-Control) environments, at only 3x more computation time.

• Through comprehensive ablation studies, we show the supernet successfully trains, and reason-

ably upweights optimal operations. We further verify both qualitatively and quantitatively that

discretized cells gradually evolve to better architectures. However, we also demonstrate how this

can fail, especially if the corresponding supernet fails to train, with further extensive ablations in

the Appendix.

Related Works. Recently, there have been a �urry of works modifying many components in the

RL pipeline, both manually and automatically, as part of the broader Automated Reinforcement

Learning (AutoRL) (Parker-Holder et al., 2022) �eld. Speci�cally for architecture components,

manual modi�cations include (Raileanu and Fergus, 2021; Na� et al., 2021; Tang and Ha, 2021)

which have shown great success in improving metrics such as sample complexity and generalization,

especially on the Procgen benchmark. However, very few works have considered the possibility of

actually automating the search for new architectures, i.e. "NAS for RL", speci�cally for large-scale

modern convolutional networks.

Most previous NAS for RL works only involve small policies trained via blackbox/evolutionary

optimization methods, which include (Song et al., 2021; Gaier and Ha, 2019; Stanley and Miikku-

lainen, 2002; Stanley et al., 2009), utilizing CPU workers for forward pass evaluations rather than

exact gradient computation on GPUs. Such methods are usually unable to train policies involv-

ing more than 10K+ parameters due to the sample complexity of zeroth order methods in high

dimensional parameter space (Agarwal et al., 2010). The only previous known application of

gradient-based routing is (Akinola et al., 2021), which searches for the optimal way of combining

observation and action tensors together in o�-policy QT-OPT (Kalashnikov et al., 2018), but does
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Algorithm 1: RL-DARTS Procedure.

1. Supernet training: Compute U∗ from argmax\,U � (c\,U ) via argmin\,U L'! (\, U).
2. Discretization: Discretize U∗ to construct evaluation policy cq,X (U∗) .
3. Evaluation: Report maxq � (cq,X (U∗) ) via argminq LX (U∗) (q) .

not search for image encoders nor uses the supernet for inference, as it trains using o�-policy

robotic data collected independently. This leaves the applicability of DARTS to inference-dependent

RL as an open question addressed in our work.

2 Problem Overview and Method

DARTS Preliminaries. Since we only use the original DARTS (Liu et al., 2019) to reduce confounding

factors, we thus give a very brief overview of DARTS to save space. More comprehensive details

can be found in Appendix G.5 and the original paper. DARTS optimizes substructures called cells,

where each cell contains � intermediate nodes organized in a directed acyclic graph, where each

node G (8) , represents a feature map, and each edge (8, 9) consists of an operation (op) > (8, 9) , with

later nodes G ( 9) merged (e.g. summation) from some previous > (8, 9) (G (8) ). A DARTS supernet is

constructed by continuously relaxing selection of ops in O, via softmax weighting, i.e. > (8, 9) (G (8) ) =∑
>∈O ?

(8, 9)
> · > (G (8) ), where ?

(8, 9)
> =

exp(U (8,9 )> )∑
>′∈O exp(U (8,9 )

>′ )
. The cell’s output is by default the result of

a Conv1x1 op on the depthwise concatenation of all intermediate node features, although this

may be changed (e.g. by simply outputting the last intermediate node’s features). We denote the

collection of all architecture variables 0
(8, 9)
> as U . Denote the total set of possible operations in our

searchable network as O = O10B4 ∪{Zero, Skip} which must contain Zero and Skip Connection ops,

while O10B4 is user-de�ned. Denote U to be the pre-softmax trainable architecture variables in the

supernet. A prede�ned loss function L(\ ) over neural network weights \ will thus be rede�ned as

L(\, U) when under DARTS’s search mode, where the original model 5\ will be replaced with a dense

supernet 5\,U . During evaluation time, a trained U∗ is then discretized into a sparser �nal cell X (U∗)
by representing each edge (8, 9) with the highest softmax weighted op, i.e. argmax>∈O,>≠I4A> ?

(8, 9)
> ,

and then retaining only the top  incoming edges for each intermediate node. We thus retrain over

the new loss LX (U∗) (q), now dependent on only fresh sparse weights q to obtain the �nal reported

metric.

RL Preliminaries. For RL notation, given an MDP M, denote BC , 0C , AC as state, action, reward

respectively at time C . c is the policy and D is the replay bu�er containing collected trajectories

g = (B0, 00, A0, B1, . . .). The goal is to maximize � (c) = Eg∼c
[∑

C ≥0 AC
]
, the expected cumulative

reward using policy c . In most RL algorithms, there is the notion of a neural network torso or

encoder 5\ mapping the state B to a �nal feature vector when forming c . In the DARTS case, we

use a supernet encoder 5\,U leading to a supernet policy denoted as c\,U and also a corresponding

discretized-cell policy cq,X (U∗) for evaluation.

2.1 Methodology

SL features the notion of training and validation sets, with corresponding losses L(!CA08=,L(!E0; ,
where the learning procedure consists of a bilevel optimization problem and the goal is to �nd

U∗ = argminU L(!E0; (\
∗, U) where \ ∗ = argmin\ L(!CA08= (\, U). In this paper, we do not need to use the

original bilevel optimization framework, as we are optimizing sample complexity and raw training

performance, which are standard metrics in RL. Furthermore, bilevel optimization is notoriously

di�cult and unstable, sometimes requiring special techniques (Liu et al., 2018; Dong and Yang,

2019; Hundt et al., 2019; Li et al., 2020; Chu et al., 2020b,a,c; Liang et al., 2019; Wang et al., 2021b)

speci�c to SL optimization, which can confound the results and message of our paper.
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We thus joint optimize both\ andU , and the full procedure is concisely summarized in Algorithm

1 as "RL-DARTS". However, this is easier said than done, as we explain the core issues of applying

DARTS to RL below.

SL vs RL DARTS. Fundamentally, SL relies on a �xed dataset D(! = {(G8 , ~8) | 8 ≥ 1}, in which

the loss is de�ned as L(! (\ ) = E(G,~)∼D [ℓ (5\ (G), ~)] where ℓ (·) is de�ned as mean squared error,

cross-entropy loss, or negative log-likelihood depending on application. These losses are strongly

correlated or even equivalent to the �nal objective (e.g. accuracy or density estimation), and

this reason can be considered a signi�cantly contributing factor to the success of DARTS in SL.

Unfortunately in RL, there are no such guarantees that minimizing the loss L'! (·) necessarily

improves the true objective � (·), for two primary reasons:

1. The RL agent’s dataset (a.k.a. replay bu�er) D'! = {g8 | 8 ≥ 1} is signi�cantly non-stationary

and self-dependent, as it constantly changes based on the current performance of data collection

actors, which themselves are functions of \ . Thus, a negative feedback loop may arise, where \

produces an actor which collects poor training data, leading to convergence towards an even

poorer \ ′. While the loss L'! (·) converges to 0 over low quality data, the reward � (·) still does

not increase. This issue is commonplace in RL, such as in any environments which require

exploration. Hypothetically in the DARTS case, U can potentially produce the same negative

feedback loop by converging to subpar operations and impairing supernet training, also leading

to a poor discrete cell X (U).

2. The losses are considerably more complex and utilize multiple auxiliary losses which assist

training but are never used during evaluation. For PPO, the loss is de�ned as L'!
%%$
(\ ) =

Eg∼D'! [!�!�% (\ ) − !+� (\ ) +H(\ )]. However, the value function (i.e. !+� ) nor the policy

entropy (i.e. H) are ever used to evaluate �nal reward. This is similarly the case for o�-policy

algorithms such as SAC which strongly emphasizes maximizing the entropy H, and Rainbow-

DQN which also uses value functions to assist training. The question is thus raised in the DARTS

case as to whether such auxiliary losses are actually useful signals, or instead inhibit proper

training of U , whose main goal is to only maximize � (·) using discrete cell X (U).

The core theme of our experiments will be understanding whether these are obstacles to

DARTS’s application to RL.

3 Experiments

Experiment Setup: To verify that every component of RL-DARTS works as intended, we seek to

answer all questions below, by �rst presenting end-to-end results, and then further key ablation

studies:

1. End-to-End Performance: Overall, how do the �nal discrete cells perform at evaluation, and

what gains can we obtain from architecture search? Furthermore, how does RL-DARTS compare

against random search?

2. Supernet Training: During supernet training, how does the U change? Does U converge towards

a sparse solution and select good operations over supernet training?

3. Discrete Cells: Even if the supernet trains, do the corresponding discrete cells also improve in

evaluation performance throughout U ’s training? What kinds of failure modes occur?

Following common NAS practices (Zoph et al., 2018; Pham et al., 2018; Zoph and Le, 2016), we

construct our supernet (with � intermediate cells) by stacking both normal (# times) and reduction

cells (' times) together into blocks, which are themselves also stacked together � times (see Figure

2). Reduction cells apply a stride of 2 on the input. Each block possesses its own convolutional
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channel depth, used throughout all cells in the block. During search, we train a smaller supernet

(i.e. depth 16) to reduce computation time, but evaluate �nal discretized cells on larger models

(i.e. depth 64), with � = 3 layers for cheap large-scale runs and � = 5 layers for �ne-grained A/B

testing.

Reduction Cell 
(xR)

Normal Cell 
(xN)

Feature Vector

Input

xD

Op 1

Op 2

Op 3

RL-DARTS Cell

Node 2

Node 1

Output

Figure 2: Illustration of our network via stacking nor-

mal and reduction cells. Solid lines corre-

spond to selected ops after discretization

from all possible ops weighted using U . If

' > 0, we add an initial Conv3x3 for prepro-

cessing.

For the operation search space, we consider

the following base opsO10B4 and corresponding

algorithms:

• Classic on PPO: O10B4,# = {Conv3x3+ReLU,

Conv5x5+ReLU, Dilated3x3+ReLU, Di-

lated5x5+ReLU} for normal ops and O10B4,'

= {Conv3x3, MaxPool3x3, AveragePool3x3}

for reduction ops, which is standard in

supervised learning (Liu et al., 2019; Zoph

et al., 2018; Pham et al., 2018).

• Micro on Rainbow and SAC: We also pro-

pose O10B4,# = {Conv3x3, ReLU, Tanh}, a

more �ne-grained and novel search space

which has not been used previously in SL.

The inclusion of Tanh is motivated by its use

previously for continuous control architec-

tures (Salimans et al., 2017; Song et al., 2020).

For benchmarks, we primarily use Procgen (Cobbe et al., 2019, 2020) for discrete action spaces,

with PPO (Schulman et al., 2017) and Rainbow DQN (Hessel et al., 2018) as training algorithms, with

Procgen’s di�culty set to "easy" similar to other works (Raileanu et al., 2020; Raileanu and Fergus,

2021; Parker-Holder et al., 2021a). Procgen comprehensively evaluates all aspects of RL-DARTS,

as it possesses a diverse selection of 16 games, each with in�nite levels to simulate large data

regimes where episodes may drastically change, relevant for generalization. It further uses the

IMPALA-CNN architecture (Espeholt et al., 2018) as a strong hand-designed baseline, and can be

seen as a speci�c instance of the stacked cell design in Figure 2, where its "Reduction Cell" consists

of a Conv3x3 and MaxPool3x3 (Stride 2) with ' = 1 and its "Normal Cell" consists of a residual

layer with Conv3x3’s and ReLU’s, with # = 2. For fair comparisons to IMPALA-CNN, we use

(#, ', � ) = (1, 1, 4) on the classic search space, while (#, ', � ) = (2, 0, 4) on the Micro search space,

where reduction ops default to IMPALA-CNN’s in order to avoid hidden confounding e�ects when

visualizing Micro cells.

In addition, we also assess DARTS’s viability in continuous control which is common in robotics

tasks. We use the common DM-Control benchmark (Tassa et al., 2018) along with the popular

SAC algorithm. We use # = 3, � = 4,  = 1 with "Micro" search space to remain fair to the 4-layer

convolutional encoder baseline observing images of size 64 × 64 (full details in Appendix G).

Unless speci�ed, we by default use consistent hyperparameters (found in Appendix G) for all

comparisons found inside a �gure, although learning rate and minibatch size may be altered when

training models of di�erent sizes due to GPU memory limits. Thus, even though RL is commonly

sensitive to hyperparameters (Zhang et al., 2021), we surprisingly �nd that once a pre-existing
RL baseline has already been setup, incorporating DARTS requires no extra cost in tuning, as
evidence of its ease-of-use.

3.1 End-to-End Results on Multi-task, Discrete and Continuous Control Tasks

Multi-game Search. We �rst begin with the most surprising and largest end-to-end result in

terms of scale of data and compute shown in Figure 3: By training a supernet across in�nite levels
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across all 16 Procgen games to �nd a single transferrable cell, we are able to achieve up to 250%
evaluation performance compared to the IMPALA-CNN baseline over select environments. This

is achieved using Rainbow with our proposed "Micro" search space, where a learner performs

gradient updates over actor replay data (with normalized rewards) from all games.

Figure 3: Evaluation of the discrete cell joint-trained over 8 environments using depths 64 × 5 to

emphasize comparison di�erences.

We further display the discovered discrete cell and the supernet joint-training procedure in

Figure 4. Interestingly, the discrete cell uses nonlinearities over all intermediate connections, with

convolutions only used via the merge operation for the output.

Figure 4: Left: Discrete cell found. Right: Average normalized rewards over all 16 games during

supernet + baseline training.

Single-game Search. We further compare DARTS’s end-to-end performance against random search,

but more appropriately applied to single game scenarios. On the PPO side, we use the "Classic"

search space (total size 4×1011, see Appendix H.1). For a fair comparison, we ensure total wall-clock

time (with same hardware) stays equal, as common in (Liu et al., 2019). Since in Appendix A, Table

4, a PPO supernet takes 2.5x longer to reach 25M steps, this is rounded to a random search budget

of 3 cells to be trained with depths 16 × 3 for 25M steps. The best of the 3 cells is used for full

evaluation. In Table 1, on average, random search underperforms signi�cantly.

IMPALA-CNN RL-DARTS (Discrete Cell) Random Search

Avg. Normalized Reward 0.708 0.709 0.489

Table 1: Average normalized rewards across all 16 environments w/ PPO, using the normalization

method from (Cobbe et al., 2020). Full details and results (including Rainbow) are presented

in Appendix E.
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In Figure 5 we further �nd that RL-DARTS is capable of �nding game-speci�c architectures

from scratch which outperform IMPALA-CNN on select environments such as Plunder and Heist,

while maintaining competitive performance on others.

Figure 5: Left 2x2 Plot: Examples of discrete cell evaluations using the "Classic" search space with

PPO, with depths 64 × 3. Right: Normal (Top) and Reduction (Bottom) cells found for

"Plunder" which achieves faster training than IMPALA-CNN. Note the interesting use of 5x5

convolutional kernel sizes later in the cell.

100 Random Cell Comparison. To further present a more comprehensive comparison against

random search, and understand how strong IMPALA-CNN is as a baseline, we compare against

100 unique random cells. To manage the computational load, we performed the study over two

selected environments, as shown in Figure 6 and �nd that all of the random cells underperform
against both IMPALA-CNN and DARTS. This demonstrates that DARTS possesses a strong search

capability, achieving 100/3 ≈ 30G e�ciency over random search and can discover architectures

that match in complexity and performance of highly-tuned, expert designed architectures such as

IMPALA-CNN.

Figure 6: Histogram of 100 random cells’ rewards over environments Dodgeball and Maze using the

Rainbow + "Micro" search space (depths 64 × 3), with a signi�cant number of random cells

(e.g. 95% for Dodgeball) performing substantially worse than DARTS or IMPALA-CNN.

DM-Control with Soft Actor-Critic. DARTS also consistently �nds better and stable architectures

over multiple lightweight environments involving continuous control (see Figure 7) trained up to

1M steps. Even though the 4-layer encoder network used (details in Appendix G) is signi�cantly

smaller than IMPALA-CNN, we �nd that there is still room for architectural improvement.
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Figure 7: RL-DARTS on DM-Control with SAC also �nds better architectures over the corresponding

baseline.

3.2 Role of Supernet Training

In Figure 8, we verify that training the supernet end-to-endworks e�ectively, evenwithminimal
hyperparameter tuning. Furthermore, the training only requires at 3x more compute time, with

extensive e�ciency metrics calculated in Appendix A. However, as mentioned in Subsec. 2.1, it is

unclear whether the right signals are provided to operation routing variables U via the RL training

loss, and whether U produces the correct behavior, which we investigate.

Figure 8: Left: Softmax op weights over all edges in the cell when training the supernet with PPO +

"Classic" search space on Dodgeball. Zero op weight is not shown to improve clarity. Right:
Sanity check to verify that the supernet eventually achieves a regular training curve, using

vanilla IMPALA-CNN as a rough gauge. Both use depths 16× 3. Note that while we show the

curve up to 50M steps, we by default discretize U at 25M steps, as op choices have already

converged towards a sparser solution. Analogous �gure for Rainbow in Appendix B.

Conveniently in Figure 8, we �nd that U strongly downweights all base ops (in particular,

5x5 ops) except for the standard Conv3x3+ReLU. This provides an opportunity to understand

whether U downweights suboptimal ops throughout training. We con�rm this result in Table 2

by evaluating standard IMPALA-CNN cells using either purely 3x3 or 5x5 convolutions for the

whole network, and demonstrating that the 3x3 setting outperforms the 5x5 setting (especially in

limited data, e.g. 200-level training/test regime), suggesting the signaling ability of U on op choice.

Scenario Conv 3x3 Conv 5x5

Train (Inf. levels) 15.1 ± 2.5 13.2 ± 2.3

Train (200 levels) 12.1 ± 1.7 9.8 ± 2.1

Test (from Train) 10.2 ± 2.3 5.9 ± 1.7

Table 2: PPO IMPALA-CNN evaluations (mean return

at 50M steps) on Dodgeball. Learning curves

can be found in Appendix D.1, Figure 15.

Answering the converse question is just as

important: Can any supernet train? The super-

net possesses an incredibly dense set of weights,

and thus one might wonder whether trainability

occurs with any search space or settings. We an-

swer in the negative, where a poorly designed
supernet can fail. To show this clearly, we re-

move all ReLU nonlinearities from the "Classic"

search space ops used for PPO, as well as simply freeze U to be uniform for Rainbow, and �nd
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both cases produce poor training in Table 3. Thus, the supernet in RL provides important search
signals in terms of reward and α during training, especially on the quality of a search space.

Rainbow (25M Steps) PPO (50M Steps)

Scenario Trainable U Uniform U With ReLU No ReLU

Training (Inf. levels) Reward 3.1 ± 0.5 0.9 ± 0.2 7 ± 0.9 1.9 ± 0.3

Table 3: Supernet training rewards on Dodgeball. Learning curves can be found in Appendix C.

3.3 Discrete Cell Improvement

We further must analyze whether discrete cells also improve, as they are used for �nal evaluation

and deployment. Strong supernet performance (via continuous relaxation) does not necessarily

imply strong evaluation cell performance (via discretization), due to the existence of integrality gaps
(Wang et al., 2021b,a). Nevertheless, we demonstrate that even using the default X discretization

from (Liu et al., 2019) leads to both quantitative and qualitative improvements.

Figure 9: Evaluation of 9 distinct

discrete cells in order

from the trajectory of

U on the Starpilot en-

vironment when using

Rainbow.

Quantitative improvement. As U changes during supernet train-

ing, so do the outputs of the discretization procedure on U . We

collect all distinct discrete cells {X (U1), X (U2), . . .} into a sequence,

and evaluate each cell’s performance maxq � (cq,X (08 ) ) ∀8 via train-

ing from scratch for 25M steps (Figure 9). The performance gen-

erally improves over time, indicating that supernet optimization

selects better cells. However, we �nd that such behavior can be

environment-dependent, as some environments possess less mono-

tonic evaluation curves (see Fig. 18 in Appendix D).

Qualitative improvement. We visualize discrete cells

X (UBC0AC ), X (U4=3 ) from the start and end of supernet train-

ing with Rainbow on the Starpilot environment in Fig. 10. The

earlier cell consists of only linear operators is clearly a poor design

in comparison to the later cell. We �nd similar cell evolution results for PPO in Figures 16, 17 in

Appendix D.2, displaying more sophisticated yet still interpretable changes in cell topology.

Figure 10: Evolution of discovered cells over a DARTS optimization process. Left: X (UBC0AC ) discovered

in the early stage which is dominated by skip connections and only linear ops. Right:
X (U4=3 ) discovered in the end which possesses several reasonable local structures similar

to Conv + ReLU residual connections.

We further answer one of the most common questions in DARTS research: What is the direct
relationship between a supernet and its discrete cell? In Figure 11, we provide two supernet runs

along with their corresponding discrete cells, side by side in order to answer this question. While

"Supernet 1" is a standard successful training run, "Supernet 2" is a failed run which can commonly

occur due to the inherent sensitivity and variance in RL training. As it turns out, this directly

leads to di�erences between their corresponding discrete cells both quantitatively and qualitatively

as well, in which "Discretized Cell 1"’s design appears to make sense and train properly, while

"Discretized Cell 2" is clearly a suboptimal design, and fails to train at all. Thus, a major reason for

why a discretized cell may underperform is if its corresponding supernet fails to learn.
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(a) Di�erent supernet runs, with corresponding dis-

cretized cell (depths 64 × 5) training curves.

(b) Discretized Cell 1

(c) Discretized Cell 2

Figure 11: (a) Two di�erent supernets trained on the Dodgeball environment using Rainbow, with

corresponding discretized cells evaluated using 3 random seeds. (b) Discretized cell from

Supernet 1. Note the similarity to regular Conv3x3 + ReLU designs. (c) Discretized cell

from Supernet 2, which uses too many Tanh nonlinearities, known to cause vanishing

gradient e�ects.

We investigate further in Appendix D.3, Figure 19, and �nd that supernet and discrete cell

rewards are indeed correlated, after adjusting for environment-dependent factors, suggesting that

search quality can be improved via both better supernet training (Raileanu et al., 2020; Zhang et al.,

2021), as well as better discretization procedures (Liang et al., 2019; Wang et al., 2021b).

4 Conclusions, Limitations, and Broader Impact Statement
Conclusion. Even though RL uses complex loss functions de�ned over nonstationary data, we

empirically showed that nonetheless, DARTS is capable of improving policy architectures in a

minimally invasive and e�cient way (only 3x more compute time) across several di�erent algorithms

(PPO, Rainbow, SAC) and environments (Procgen, DM-Control). Our paper is the �rst to have

comprehensively provided evidence for the applicability of softmax/gradient-based architecture

search outside of standard classi�cation and SL.

Limitations. To avoid confounding factors and for simplicity, our paper uses the default DARTS

method. However, we outline multiple possible improvements in Appendix F, as RL is a completely

new frontier for which to understand softmax routing and continuous relaxation techniques.

Future Work and Broader Impact. In this paper, we have provided concrete evidence that archi-

tecture search can be conducted practically and e�ciently in RL, via DARTS. We believe that this

could start important initiatives into �nding better and more e�cient (Cai et al., 2019) architectures

for large-scale robotics (James et al., 2019; Akinola et al., 2021), transferable architectures in o�ine

RL (Levine et al., 2020), as well as RNNs for memory (Pritzel et al., 2017; Fortunato et al., 2019;

Kapturowski et al., 2019) and adaptation (Duan et al., 2016; Wang et al., 2017). Other NAS methods’

applicability in RL may also be investigated, especially ones which utilize blackbox optimization

controllers, such as multi-trial evolution (Real et al., 2019) or ENAS (Pham et al., 2018).

Furthermore, we believe our work’s potential negative impacts are generally equivalent to ones

found in general NAS methods, such as sacri�cing model interpretability in order to achieve higher

objectives. For the �eld of RL speci�cally, this may warrant more attention in AI safety when

used for real world robotic pipelines. Furthermore, as with any NAS research, the initial phase

of discovery and experimentation may contribute to carbon emissions due to the computational

costs of extensive tuning. However, this is usually a means to an end, such as an e�cient search

algorithm, which this paper proposes with no extra hardware costs.
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5 Reproducibility Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s contributions

and scope? [Yes] We have comprehensively demonstrated the behavior of all components in DARTS

when applied inside an RL pipeline.

(b) Did you describe the limitations of your work? [Yes] Yes, see Section 4.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Yes, see Section 4.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

Yes, see Section 4.

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical results

provided.

(b) Did you include complete proofs of all theoretical results? [N/A] No proofs provided.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental results,

including all requirements (e.g., requirements.txt with explicit version), an instructive README with

installation, and execution commands (either in the supplemental material or as a url)? [Yes] We

have included the core code for creating a DARTS supernet and discrete cell, as well as training

code for Procgen on both PPO and Rainbow, and addition added the modi�ed �les from an open-

source variant of SAC on DM-Control. We have also added the README on guidance for code

organization and running experiments, as well as a requirements.txt. The code can be found at

https://github.com/google/brain_autorl/tree/main/rl_darts.

(b) Did you include the raw results of running the given instructions on the given code and data? [Yes]

We have provided the data related to the core results of this paper.

(c) Did you include scripts and commands that can be used to generate the �gures and tables in your

paper based on the raw results of the code, data, and instructions given? [Yes] We have provided

relevant �gure-plotting utilities in the code submission.

(d) Did you ensure su�cient code quality such that your code can be safely executed and the code is

properly documented? [Yes] The code was formatted by a strict automatic Python lint-checker, as

well as reviewed by other individuals. The code also provides tests for modules, which can be used

to understand the intended use.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, �xed hyper-

parameter settings, and how they were chosen)? [Yes] We discuss the explicit hyperparameters in

Appendix G, as well as search space details in Section 3.

(f) Did you ensure that you compared di�erent methods (including your own) exactly on the same

benchmarks, including the same datasets, search space, code for training and hyperparameters for

that code? [Yes] We ensured the same evaluation protocol via making sure all depths remain the

same (16 for supernets, 64 for discrete cells, and � = 3 layers for cheaper large-scale runs or � = 5

for �ne-grained A/B testing). We also used the exact same hyperparameters for all discrete/baseline

runs, while only needing to change minibatch size + learning rate in accomodate networks with

larger GPU memory sizes.

(g) Did you run ablation studies to assess the impact of di�erent components of your approach? [Yes]

For ablation studies, we provided a large set of studies as seen throughout Subsections 3.2 and 3.3 as

well as in the Appendix.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] In terms of

comparing NAS methods, we indeed controlled for confounding factors by using the same hardware,
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as shown in Table 4 in Appendix A. We further performed side-by-side comparisons for RL training

curves using environment steps, which is standard.

(i) Did you compare performance over time? [Yes] Table 4 in Appendix A contains wall-clock time

comparisons. In terms of performance comparisons over time, we showed the performance of

RL-DARTS’s discrete cells over the search procedure / supernet training in Figure 9.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] For seeded runs,

as standard in RL, we performed 3-seeded runs for all experiments.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments multiple

times)? [Yes] For seeded runs, as standard in RL, we performed 3-seeded runs for all experiments

and reported error bars.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We extensively covered

the comparisons against random search in Subsection 3.1, over all 16 games as well as a large scale

100 random cell comparison in Figure 6.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of gpus,

internal cluster, or cloud provider)? [Yes] See Table 4 in Appendix A for GPU and compute time used

for all evaluations. We applied this to all 16 games on Procgen.

(n) Did you report how you tuned hyperparameters, and what time and resources this required (if

they were not automatically tuned by your AutoML method, e.g. in a nas approach; and also

hyperparameters of your own method)? [Yes] This is written in detail in Appendix G as well as

Section 3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] We have cited Procgen and

DM-Control.

(b) Did you mention the license of the assets? [N/A] Both are publicly licensed and freely available.

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] We included

the relevant publicly available code for environments and algorithms in Section G.

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A] Benchmarks are publicly available, consent not needed.

(e) Did you discuss whether the data you are using/curating contains personally identi�able information

or o�ensive content? [N/A] No personally identi�able information or o�ensive content.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?

[N/A] No research was conducted on human subjects or crowdsourcing.

(b) Did you describe any potential participant risks, with links to Institutional Review Board (irb)

approvals, if applicable? [N/A] No research was conducted on human subjects or crowdsourcing.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on

participant compensation? [N/A] No research was conducted on human subjects or crowdsourcing.
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Appendix

A E�ciency Metrics

We provide computational e�ciency metrics in Table 4, where we �nd that the practical wall-clock

time required for training the supernet (i.e. the search cost) is very comparable with DARTS in

SL (Liu et al., 2019), requiring only a few GPU days. We do note that unlike SL where the vast

majority of the cost is due to the network, RL time cost is partially based on non-network factors

such as environment simulation, and thus wall-clock times may change depending on speci�c

implementation.

Network Training Cost in GPU Days (w/ speci�c algorithm)

IMPALA-CNN 1 (PPO), 0.5 (Rainbow)

"Classic" Supernet 2.5 (PPO)

"Micro" Supernet 1.5 (Rainbow)

CIFAR-10 Supernet (Liu et al., 2019) 4 (SL/Original DARTS)

Table 4: Computational e�ciency in terms of wall-clock time, achieved on a V100 GPU. For the RL

cases (PPO + Rainbow), all networks use depths of 16 × 3. Training cost in RL is de�ned as

the wallclock time taken to reach 25M steps, rounded to the nearest 0.5 GPU day. We have

also included reported time for DARTS in SL (Liu et al., 2019) as comparison.

B Extended Supernet Training Results

Following Subsection 3.2, we also present a similar �gure for Rainbow below, for completeness.

Figure 12: Analogous settings with Figure 8 using Rainbow + "Micro" search space. Left: Softmax

weights when training Rainbow with in�nite levels on Big�sh, also converging towards a

sparser solution. Right: Sanity check for supernet when using Rainbow.

C What A�ects Supernet Training?

Given the positive training results we demonstrated in the main body of the paper, one may wonder,

can any supernet, no matter how poorly designed or setup, still train well in the RL setting? If so,

this would imply that the search method would not be producing meaningful, but instead, random

signals.

We refute this hypothesis by performing ablations over our supernet training in order to have

a better understanding of what components a�ect its performance. We ultimately show that

the search space and architecture variables play a very signi�cant role in its optimization, thus

validating our method.

C.1 Role of Search Space

We remove the ReLU nonlinearities from the "Classic" search space, so that O10B4 = {Conv3x3,

Conv5x5, Dilated3x3, Dilated5x5} and thus the DARTS cell consists of only linear operations. As
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shown in Fig. 13, this leads to a dramatic decrease in supernet performance, providing evidence

that the search space matters greatly.

Figure 13: Supernet training using PPO on Dodgeball with in�nite levels, when using the "Classic"

search space with/without ReLU nonlinearities, under the same hyperparameters.

C.2 Uniform Architecture Variables

We further demonstrate the importance of the architecture variables U on training. We see that in

Fig. 14, freezing U to be uniform throughout training makes the Rainbow agent unable to train at

all. This suggests that it is crucial for U to properly route useful operations throughout the network.

Figure 14: Supernet training using Rainbow on Dodgeball with in�nite levels, when using the "Micro"

search space with/without trainable architecture variables U , under the same hyperparame-

ters.
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D What A�ects Discrete Cell Performance?

D.1 Softmax Weights vs Discretization

As seen from Figure 8 in the main body of the paper, the DARTS supernet strongly downweights

Conv5x5+ReLU operations when using the "Classic" search space with PPO. In order to verify the

predictive power of the softmax weights, as a proxy, we thus also performed evaluations when

using purely 3x3 or 5x5 convolutions on a large IMPALA-CNN with 64 × 5 depths. We see that the

Conv3x3 setting indeed outperforms Conv5x5, corroborating the results in which during training,

U strongly upweights the Conv3x3+ReLU operation and downweights Conv5x5+ReLU.

Figure 15: Large IMPALA-CNNs evaluated on Dodgeball using either In�nite or 200 levels with PPO.

For the 200 level setting, lighter colors correspond to test performance.

D.2 Discrete Cell Evolutions

Along with Figure 10 in the main body of the paper, we also compare extra examples of discretiza-

tions before and after supernet training, to display reasonable behaviors induced by the trajectory

of U .

Figure 16: Comparison of discretized cells before and after supernet training, on Starpilot using PPO

with � = 6 nodes.

Figure 17: Comparison of discretized cells before and after supernet training, on Plunder using PPO

with � = 6 nodes.

In Figure 16, we use PPO with the "Classic" search space, but instead use (#, ', � ) = (1, 0, 6)
along with outputting the last node (instead of concatenation with a Conv1x1 for the output) to
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allow a larger normal cell search space and graph topology. In Figure 17, the discretized cell initially

uses a large number of skip connections as well as dead-end nodes. However, at convergence, it

eventually utilizes all nodes to compute the �nal output. Curiously, we �nd that the skip connection

between the input and output appears commonly throughout many searches.

For the Rainbow setting, in Figure 9 in the main body of the paper, we saw that when the search

process is successful, the supernet’s training trajectory induces discretized cells which improve

evaluation performance as well. The cells discovered later generally perform better than cells

discovered earlier in the supernet training process. In Figure 18, we show more examples of such

evaluation curves.

Figure 18: Evaluated discretized cells discovered throughout training the supernet with Rainbow. To

save computation, we evaluate every 2nd cell that was discovered.

D.3 Correlation Between Supernet and Discretized Cells

Figure 19: Supernet and their corresponding discrete cell rewards across all environments in Procgen

using Rainbow, after normalizing using IMPALA-CNN’s performances. Thus, the black

dashed line at 1.0 corresponds to IMPALA-CNN.

Given that the discretized cell only explicitly depends on architecture variables U and not

necessarily model weights \ , one may wonder: Is there a relationship between the rewards of the
supernet and of its corresponding discretized cell? For instance, the degenerate/underperformance

setting mentioned in Section 3.3 and Appendix D can be thought of as an extreme scenario. At the

same time, there could be an integrality gap, where there the discretization process X (U) produces

cells which give di�erent rewards than the supernet.
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In order to make such an analysis comparing rewards, we �rst must prevent confounding

factors arising from Rainbow’s natural performance on an environment regardless of architecture.

We thus �rst divide the supernet and discrete cell scores by the score obtained by the IMPALA-CNN

baseline, where the baseline and discrete cells all used depths of 64 × 3.

In Figure 19, when using Rainbow and observing across environments, we �nd both high

correlation and also integrality gaps: for some environments such as Ninja and Coinrun, there is a

signi�cant correlation between supernet and discrete cell rewards, while for other environments

such as Dodgeball, there is a signi�cant gap. This suggests that search quality can be improved via

both better supernet training such as using hyperparameter tuning or data augmentation (Raileanu

et al., 2020), as well as better discretization procedures such as early stopping and stronger pruning

(Chu et al., 2020a; Liang et al., 2019; Wang et al., 2021b).

E Numerical Scores

In Tables 5 and 5b, we display the average normalized reward after 25M steps, as standard in Procgen

(Cobbe et al., 2020), for a subset of environments in which RL-DARTS performs competitively.

The normalized reward for each environment is computed as '=>A< = (' − '<8=)/('<0G − '<8=)
where '<0G and '<8= are calculated using a combination of theoretical maximums and PPO-trained

agents, and can be found in (Cobbe et al., 2020).
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Env IMPALA-CNN Baseline RL-DARTS (Discrete) Random Search

Big�sh 0.60 0.60 0.42

Boss�ght 0.75 0.73 0.81
Cave�yer 0.75 0.47 0.85
Chaser 0.71 0.55 0.15

Climber 0.69 0.90 0.61

Coinrun 0.91 0.53 0.8

Dodgeball 0.53 0.59 0.29

Fruitbot 0.92 0.93 0.83

Heist 0.72 0.89 0.38

Jumper 0.62 0.76 1.0
Leaper 0.2 0.28 -0.28

Maze 1.0 1.0 0.0

Miner 0.74 0.85 0.70

Ninja 0.87 0.69 0.38

Plunder 0.57 0.76 0.43

Starpilot 0.71 0.73 0.40

(a) PPO + Classic

Env IMPALA-CNN Baseline RL-DARTS (Discrete) Random Search

Big�sh 0.71 0.65 0.60

Boss�ght 0.54 0.48 0.45

Cave�yer -0.05 -0.03 -0.01
Chaser 0.30 0.26 0.22

Climber -0.04 -0.02 -0.05
Coinrun 0.06 0.21 0.15

Dodgeball 0.57 0.59 -0.05

Fruitbot 0.68 0.68 0.70
Heist -0.48 -0.49 -0.47
Jumper 0.21 0.18 0.17

Leaper -0.07 -0.07 -0.03
Maze 0.76 0.74 0.51

Miner 0.35 -0.03 0.11

Ninja 0.03 0.13 0.28
Plunder 0.14 0.02 0.03

Starpilot 0.91 0.80 0.76

(b) Rainbow + Micro

Table 5: Normalized Rewards in ProcGen across di�erent search methods, evaluated at 25M steps with

depths 64 × 3. Largest scores on the speci�c environment (as well as values within 0.03 of the

largest) are bolded.
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F Possible Improvements for Future Work

These include:

1. Discretization Changes: One may consider discretization based on the total reward � (c\,U ),
which may provide a better signal for the correct discrete architecture. This is due to the fact that

the relative strengths of operation weights from U may not correspond to the best choices during

discretization. (Wang et al., 2021b) considers iteratively pruning edges from the supernet based

on maximizing validation accuracy changes. For RL, this would imply a variant of discretization

dependent on multiple calculations of � (c\ ∗,X1 (U∗) ) − � (c\ ∗,X2 (U∗) ) where \ ∗ consists the weights

obtained during supernet training, as well as �ne-tuning � (c\ ∗,X1 (U∗) ) at every pruning step.

These changes, in addition to the inherently noisy evaluations of � (·), greatly increase the

complexity of the discretization procedure, but are worth exploring in future work.

2. Changing the Loss / Regularization: Throughout this paper, we have found that vanilla DARTS

is able to train by simply optimizing U with respect to the loss, even though in principle, the loss

is not strongly correlated to the actual reward in RL. Thus, it is curious to understand whether

loss-based metrics or modi�cations may help improve RL-DARTS. One such modi�cation is

based on the observation that certain RL losses may not be required for training U . In PPO, the

entropy loss of c\ may not be necessary or useful for improving the search quality of U , and thus

it may be better to perform a two step update by providing a di�erent loss for U . One may also

consider searching for two separate encoders via two supernets, since both PPO and Rainbow

feature separate networks, e.g. the policy c\1,U1 and value function+\2,U2 for PPO and advantage

function �\1,U1 and value function +\2,U2 for Rainbow.

3. Signaling Metrics and Early Stopping: Observing metrics throughout training allows for early

stopping, which can reduce search cost and provide better discrete cells. This includes metrics

such as the strength of certain operation weights (Liang et al., 2019) as well as the Hessian with re-

spect to U throughout training, i.e. ∇2UL(\, U) as found in (Zela et al., 2020). Furthermore, inspired

by performance prediction methods (Mellor et al., 2020; Luo et al., 2018), one may analyze metrics

such as the Jacobian Covariance, via the score de�ned to be the −∑�
8=1

[
log(f8 + Y) + (f8 + Y)−1

]
where Y = 10

−5
is a stability constant and f1 ≤ . . . ≤ f� are the eigenvalues of the correlation

matrix corresponding to the Jacobian � =

[
m5

mB1
, . . . ,

m5

mB�

])
with � input images {B1, . . . , B�}.

This metric/predictor has been found to be a strong signal for accuracy in SL NAS among many

previous predictors (White et al., 2021). However, for the RL case, just like the loss, the mentioned

metrics must be de�ned with respect to the current replay bu�er D, and thus raises the question

of what type of data is to be used for calculating these metrics. When using a reasonable variant

where the data is collected from a pretrained policy, we found that methods such as Jacobian

Covariance did not provide meaningful feedback.

4. Supernet Training: As seen from the results in Figure 11 (main body) and Appendix D.3, there is

a correlation between supernet and discrete cell performances. However, this is a�ected by the

environment used as well as integrality gaps between the continuous relaxation and discrete

counterparts, and thus further exploration is needed before concluding that improving the

supernet training leads to better discrete cell performances. In any case, reasonable methods of

improving the supernet can involve DARTS-agnostic modi�cations to the RL pipeline, including

data augmentation (Kostrikov et al., 2020; Raileanu et al., 2020) as well as online hyperparameter

tuning (Parker-Holder et al., 2020, 2021b). Simple hyperparameter tuning (e.g. on the softmax

temperature for calculating ?
(8, 9)
> ’s) also can be e�ective.
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G Hyperparameters

In our code, we entirely use Tensor�ow 2 for auto-di�erentation, as well as the April 2020 version

of Procgen. For compute, we either used P100 or V100 GPUs based on convenience and availability.

Below are the hyperparameter settings for speci�c methods. For all training curves, we use the

common standard for reporting in RL (i.e. plotting mean and standard deviation across 3 seeds).

G.1 DARTS

Initially, we sweeped the softmax temperature in order to �nd a stable default value that could be

used for all environments. For PPO, the sweep was across the set {5.0, 10.0, 15.0}. For Rainbow, the

sweep was across {10.0, 20.0, 50.0}.
For tabular reported scores in Figures 5 and 5b, we used a consistent softmax temperature of

5.0 for PPO, and 10.0 for Rainbow.

G.2 Rainbow-DQN

We use Acme (Ho�man et al., 2020) for our code infrastructure. We use a learning rate 5 × 10−5,
batch size 256, n-step size 7, discount factor 0.99. For the priority replay bu�er (Schaul et al., 2016),

we use priority exponent 0.8, importance sampling exponent 0.2, replay bu�er capacity 500K. For

particular environments (Big�sh, Boss�ght, Chaser, Dodgeball, Miner, Plunder, Starpilot), we use

n-step size 2 and replay bu�er capacity 10K. For C51 (Bellemare et al., 2017), we use 51 atoms, with

E<8= = 0, E<0G = 1.0. As a preprocessing step, we normalize the environment rewards by dividing

the raw rewards by the max possible rewards reported in (Cobbe et al., 2020).

G.3 PPO

We use TF-Agents (Guadarrama et al., 2018) for our code infrastructure, along with equivalent PPO

hyperparameters found from (Cobbe et al., 2020). Due to necessary changes in minibatch size when

applying DARTS modules or networks with higher GPU memory usage, we thus swept learning

rate across {1 × 10−4, 2.5 × 10−4, 5 × 10−4} and number of epochs across {1, 2, 3}.
For all models, we use a maximum power of 2 minibatch size before encountering GPU out-

of-memory issues on a standard 16 GB GPU. Thus, for a 16 × 3 = [16, 16, 16] DARTS supernet,

we set the minibatch size to be 256, which is also used for evaluation with a 64 × 3 = [64, 64, 64]
discretized CNN. Our hyperparameter gridsearch for the evaluation led to an optimal setting of

learning rate = 1 × 10−4 and number of epochs = 1.

G.4 SAC

We use open-source code found in https://github.com/google-research/pisac, although we

disabled the predictive information loss to use only regular SAC. The baseline architecture is a

4-layer convolutional architecture found in https://github.com/google-research/pisac/blob/
master/pisac/encoders.py. Image-based observations are resized to 64×64 with a frame-stacking

of 3. Both our DARTS supernet and discrete cells use # = 3, � = 4,  = 1 using the "Micro" search

space, with convolutional depths of 32 to remain fair to the baseline.
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G.5 Training Procedure

Below are PPO (Schulman et al., 2017) and Rainbow-DQN (Hessel et al., 2018) RL-DARTS variants,

which provide an example of the speci�c training procedure we use. Exact loss de�nitions and data

collection procedures can be found in their respective papers.

Algorithm 2: RL-DARTS with PPO

Supernet training:

Setup supernet encoder 5\4 ,U with weights \4 .

Initialize policy and value head projection weights,c ∈ R3, |A |,,E ∈ R3,1.
Collect all trainable weights \ = {\4 ,,c ,,E}.
Setup policy c\,U (B) ∼ softmax(,c · 5\4 ,U (B)).
Setup value function +\,U (B) =,E · 5\4 ,U (B).
De�ne standard PPO loss L(\, U) using c\,U and +\,U .

Perform PPO training via collecting data from c\,U and SGD with ∇\,UL(\, U).
Collect U∗ from previous training procedure.

Discretization:

Let X (U∗) be the discrete cell constructed via Algorithm 4.

Evaluation:

Setup discretized cell encoder 5q4 ,X (U∗) .

Initialize policy and value head projection weights, ′c ∈ R3, |A |,, ′E ∈ R3,1.
Collect all trainable weights q = {q4 ,, ′c ,, ′E }.
Setup policy cq,X (U∗) (B) ∼ softmax(, ′c · 5q4 ,X (U∗) (B)).
Setup value function +q,X (U∗) (B) =, ′E · 5q4 ,X (U∗) (B).
De�ne standard PPO loss LX (U∗) (q) using cq,X (U∗) and +q,X (U∗) .
Perform PPO training via collecting data from cq,X (U∗) and SGD with ∇qLX (U∗) (q).
Report �nal policy reward.

Algorithm 3: RL-DARTS with Rainbow. Note that we do not use noisy nets in this

implementation.

Supernet training:

Setup supernet encoder 5\4 ,U with weights \4 .

Initialize dueling network projections,E ∈ R3,1,,0 ∈ R3, |A | .
Collect all trainable weights \ = {\4 ,,E,,0}.
Setup value network +\,U (B) =,E · 5\4 ,U (B).
Setup advantage network �\,U (B, 0) =,0 · 5\4 ,U (B).
Setup Q-network &\,U (B, 0) = +\,U (B) +�\,U (B, 0) − 1

|A |
∑
0′∈A�\,U (B, 0′).

De�ne standard Rainbow loss L(\, U) using &\,U .

Perform Rainbow training via collecting data from &\,U and SGD with ∇\,UL(\, U).
Collect U∗ from previous training procedure.

Discretization

Let X (U∗) be the discrete cell constructed via Algorithm 4.

Evaluation

Setup discretized cell encoder 5q4 ,X (U∗) with weights q4 .

Initialize dueling network projections, ′E ∈ R3,1,, ′0 ∈ R3, |A |
Collect all trainable weights q = {q4 ,, ′E ,, ′0 }
Setup value network +q,X (U∗) (B) =, ′E · 5q4 ,X (U∗) (B)
Setup advantage network �q,X (U∗) (B, 0) =, ′0 · 5q4 ,X (U∗) (B)
Setup Q-network &q,X (U∗) (B, 0) = +q,X (U∗) (B) +�q,X (U∗) (B, 0) − 1

|A |
∑
0′∈A�q,X (U∗) (B, 0′)

De�ne standard Rainbow loss LX (U∗) (q) using &q,X (U∗) .
Perform Rainbow training via collecting data from &q,X (U∗) and SGD with ∇qLX (U∗) (q).
Report �nal policy reward.
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Algorithm 4: Discretization Procedure.

Argmax:

For (8, 9) across all edges:

De�ne edge strengthF8, 9 = max>∈O,>≠I4A> ?
(8, 9)
> .

De�ne edge op > (8, 9) = argmax>∈O,>≠I4A> ?
(8, 9)
> .

Prune:

For node 9 in all intermediate nodes:

Sort input edge weightsF81, 9 ≥ F82, 9 ≥ . . .
Retain only top  edges (81, 9), . . . , (8 , 9) and corresponding ops > (81, 9) , . . . , > (8 , 9)
in �nal cell.

Note that both RL-DARTS procedures can also be summarized in terms of raw code as simple

one-line edits to the image encoder used (compressing the rest of the regular RL training pipeline

code):

def train(feature_encoder):
"""Initial RL algorithm setup"""
...
extra_variables = Wrap(feature_encoder)
all_trainable_variables =

[feature_encoder.trainable_variables(), extra_variables]
"""Rest of RL algorithm setup"""
...
apply_gradients(loss, all_trainable_variables)

Thus, the 3-step RL-DARTS procedure from Section 2 can be seen as:

DARTSSuperNet = MakeSuperNet(ops, num_nodes) # Setup
train(DARTSSuperNet) # Supernet training
DiscretizedNet = DARTSSuperNet.discretize() # Discretization
train(DiscretizedNet) # Evaluation
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H Miscellaneous

H.1 Search Space Size

Let $=I = |O | − 1, the number of non-zero ops in O. For a cell (normal or reduction), the �rst

intermediate node can only be connected to the input via a single op, and thus the choice is only

$=I . However, later intermediate nodes use  = 2 inputs which leads to a choice size of $ =I ×
(
8
 

)
where 8 is the index of the intermediate node. Thus the total number of possible discrete cells is

$=I ·
∏�
8=2

(
$ =I ×

(
8
 

) )
.

For the "Classic" search space, there are both normal and reduction cells to be optimized, with

number of non-zero normal ops $=I,# = 5 and number of non-zero reduction ops $=I,' = 4, with

� = 4,  = 2 for both. This leads to a total con�guration size of

[
$=I,# ·

∏
4

8=2

(
$2

=I,#
×

(
8
2

) )]
×[

$=I,' ·
∏

4

8=2

(
$2

=I,'
×

(
8
2

) )]
≈ 4 × 1011.

For the "Micro" search space, since we do not use reduction cells in order to simplify visual-

izations and ablation studies, $=I,# = 4 with � = 4,  = 2. This gives

[
$=I,# ·

∏
4

8=2

(
$2

=I ×
(
8
2

) )]
≈

3 × 105, which is comparable to the search space of size 5
6 ≈ 1.5 × 104 in NASBENCH-201 (Dong

and Yang, 2020).

28


	Introduction and Motivation
	Problem Overview and Method
	Methodology

	Experiments
	End-to-End Results on Multi-task, Discrete and Continuous Control Tasks
	Role of Supernet Training
	Discrete Cell Improvement

	Conclusions, Limitations, and Broader Impact Statement
	Reproducibility Checklist
	Efficiency Metrics
	Extended Supernet Training Results
	What Affects Supernet Training?
	Role of Search Space
	Uniform Architecture Variables

	What Affects Discrete Cell Performance?
	Softmax Weights vs Discretization
	Discrete Cell Evolutions
	Correlation Between Supernet and Discretized Cells

	Numerical Scores
	Possible Improvements for Future Work
	Hyperparameters
	DARTS
	Rainbow-DQN
	PPO
	SAC
	Training Procedure

	Miscellaneous
	Search Space Size


