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A Introduction

In our supplementary material, we present more experiment results to validate the effectiveness our
designs. The content is organized as follows:

* In Section[B.T] we combine our hierarchical normalization strategy with another state-of-the-
art monocular depth estimation method, Leres [6], which also relies on the instance-level
normalization.

* In Section we conduct cross-domain experiments on synthesized and object-centric
datasets.

* In Section[B.3] we provide more visualization examples to qualitatively evaluate our model.

B Experiments and Results

B.1 Combination with Leres

In the main body of our paper, the proposed HDN is developed based on the scale-and-shift invariant
(SSD) loss in Midas [3]]. Here we combine our HDN with another loss proposed in Leres [6], where
the main difference is the normalization strategy. We reuse the notations in Section 3.2 of our paper.
The normalization operations Ny, (d;) and N,,, (d}) in Leres[l6] are defined as follows:
d; — median,,, (d) d; — median,, (d*)
= Ny, (df) == : A

sid, (d) d7) std,, (d") (A)
, where mean,,; and std,,, operators compute the mean and the standard deviation of trimmed depth
representations in wu;, with the neatest and farthest 10% pixels removed. The other difference is that
they adopt tanh normalization for computing the loss:

Lheres — N, (d;) — N, (dF)] + |tanh(N,, (d;)/100) — tanh(N,, (d})/100)]. (B)

Similar to HDN with SSI, we only change the contexts for normalization while keeping the rest the
same. We follow the experiment set-ups in our ablation study and the result is shown in Table [A]
As wen can see, our proposed HDNs still outperform the instance-level normalization baseline
remarkably, which validates the effectiveness and flexibility of our proposed designs.

B.2 Cross Domain Experiments

We next evaluate different methods with cross-domain experiments, where models are tested on
datasets with large domain gaps. We first evaluate models on the object-centric Replica-GSO dataset
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DIODE ETH3D KITTI NYU ScanNet Mean
Norm. Method
AbsRel| Improv.
Instance-level [6] | 47.3 24.7 14.9 10.2 11.6 -
HDN-S 38.6 (—18%) 16.1 (—35%) 12.2(—18%) 8.9 (—12%) 9.6 (—17%) | (—20%)
HDN-DR 30.5 (=35%) 16.1 (—35%) 13.8(—7%) 9.1 (—11%) 10.7 (=7%) | (—19%)
HDN-DP 31.8 (—33%) 14.8(—40%) 14.1(=5%) 10.1(=0%) 11.9(=3%) | (—16%)

Table A: The combination of our HDNs with the instance-level normalization in Leres [6]. Our
normalization strategies significantly outperform the instance-level baseline.

Replica+GSO |Blended-MVS

Norm.Method |\ pe1l 5,4 | AbsRel) 6,1
Instance 24.0 64.8 |16.6 82.1
HDN-S 2.9  67.0(150 835

HDN-DR 23.6 65.415.4 84.4
HDN-DP 234 65.8 |14.3 84.7

Table B: Cross-domain experiments. The proposed methods outperform the baseline on synthesized
and object-centric datasets.

processed from Omnidata [2]], which contains synthesized indoor scenes [4] with scanned objects [[1]]
scattered in the scene . The challenges in this dataset are the close distance between cameras and
objects and the large domain gaps between real-world training images and synthesized testing images.
We also evaluate the models on Blended-MVS [5]] processed from Omnidata [2], which contains
rendered images of 3D models, including, cities, architectures, sculptures, and small objects. We
sample 500 images from each dataset for evaluation. The comparison of different normalization
methods is shown in Table[B| Our proposed models outperform the baseline on both two cross-domain
datasets, which shows better generalization capability of our models.

B.3 Visualization

We provide more visualization examples in this part. Fig. [B] provides more comparisons of the
predicted depth maps, which is an extension of Fig. 4. We also visualize the predicted depth maps
of web images and reconstructed point clouds based on them in Fig.[A] As we can see, our learned
depth estimator generalizes well to images of dynamic scenes, even including animation and art
photos. Due to its powerful generalization capability, we can deploy our depth estimator to estimate
unrealistic images.
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Figure A: Predictions of web images. Please zoom in to see details of depth maps and point clouds.
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Figure B: More examples for qualitative comparisons between our method and the baseline relying
on instance-level normalization (SSI [3])).
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