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A ALGORITHM DETAILS

Algorithm 1 Detailed algorithm of PLRL

Input: the partial label training set D, F(0) = P as given in Eq.(3), parameters α, T , µ, λ, η, β.
Output: predictor g.

1: for epoch = 1,2,. . . do
2: Get the weight matrix W by Eq.(1) from pretrained neural network
3: for t = 1 to T do
4: Set F̃(t) by Eq.(4).
5: Normalize F̃(t) by row into F(t) as given in Eq.(5).
6: end for
7: Return F = M ◦ F̃(T ) as given in Eq.(6).
8: Update prediction model g(x) by Eq.(9).
9: Calculate the negative reward by Eq.(2).

10: Update parameters θ as given in Eq.(10).
11: end for
12: Predict y∗ for unseen instance x∗ by (11).

B COMPARING METHODS

Graph-based methods:

• AGGD (Wang et al., 2019): the disambiguation is done by alternative optimization, and
the prediction is based on kernel regression. [Configuration: k = 10, T = 10, λ = 1, µ =
1, γ = 0.05];

• IPAL(Zhang & Yu, 2015): the similarity graph W is built with k-NN, and the unseen
instances are predicted based on the minimum error reconstructed by its nearest neighbors.
[Configuration: α = 0.95, k = 10, T = 100];

• PL-KNN (Hüllermeier & Beringer, 2006): predict by averaging the labels of neighbors
obtained using k-NN. [configuration: k = 10].

• PLRL: Our proposed algorithm. [Configuration: α = 0.95, T = 100, λ = 0.05, µ = 1, η =
0.5, β = 0.05].

Other methods:

• SURE (Feng & An, 2019a): the self-guided retraining method to balance the minimum
approximation loss and the maximum infinity norm of the outputs. [Configuration: λ =
0.5, β = 0.05];

• LSB-CMM (Liu & Dietterich, 2012): the maximum likelihood approach to conduct
identification-based disambiguation. [Configuration: σ2 = 1,K = 80, α = 0.05];

• CLPL (Cour et al., 2011): use SVM with the squared hinge loss to transfer the PLL problems
to binary learning problems by feature mapping.

• PL-SVM (Nguyen & Caruana, 2008): optimize the margin-based objective function. [Con-
figuration: λ = 0.01];

C DATASETS DESCRIPTION

C.1 SIMULATION PARAMETER

The simulation data features are generated from several distributions: Gaussian, uniform, and
binomial. The detailed generation rules are shown in Table 7.
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Table 7: Simulation data feature generation rules

feature
dimension 1 2 3 4 5 6 sample

size

class i N(ai, 5) N(bi, 7) U [ci, di] U [ei, fi] B(25, pi) B(35, pi) ni

ai ∼ U [0, 10], bi ∼ U [10, 30], ci, ei ∼ U [10, 20], di, fi ∼ U [20, 40],
pi ∼ U(0, 1),

∑
i ni = n, i = 1, ..., q.

C.2 UCI AND REAL-WORLD DATASETS

Characteristics of the controlled UCI datasets and real-world datasets are summerized in Table 8 and
Table 9 respectively.

Table 8: Characteristics of the controlled UCI datasets

Data set #Examples #Features #Class Labels
vehicle 846 18 4
sensor 5456 24 4

dermatology 366 33 6
steel 1941 27 7

segment 2310 18 7
Satimage 6435 36 7

wine 1599 11 10
abalone 4177 7 29

Table 9: Characteristics of the real-world data sets

Data set #Examples #Features #Class Labels Avg. #CLs
Lost 1122 108 16 2.23

MSRCv2 1758 48 23 3.16
BirdSong 4998 38 13 2.18

Soccer Player 17,472 279 171 2.09
Yahoo! News 22,991 163 219 1.91

D CONTROLLED EXPERIMENTS

In Figure 3, those considered algorithms are compared with respect to their classification accuracy as ϵ
ranges from 0.2 to 0.8 (from 0.4 to 0.8 for the first two datasets) when p = 1 and r = 1 (Configuration
(I)). In this setting, a specific label is selected as the coupled label that co-occurs with the ground-truth
label with probability ϵ, and any other label would be randomly chosen to co-occur with y with equal
probabilities. The prediction accuracy is summarized in Figure 4 for each algorithm as r varies with
its range increasing with the total number of categories (Configuration (II)). As shown in Figures 3
and 4, PLRL performs consistently well in most scenarios, especially when r and ϵ are large, that is,
when the degree of confusion is high.

E FURTHER ANALYSIS

E.1 PARAMETER SENSITIVITY

We conduct a sensitivity analysis for PLRL by changing three important regularization coefficients,
µ, η and β in the reward function. We fix the other hyperparameters as α = 0.95, T = 100, λ = 0.05
following the same settings in Zhang & Yu (2015); Feng & An (2019a). Figure 5 visualizes the
performance of PLRL under different parameter configurations on two selected datasets, Lost and
BirdSong. According to the experimental results, we suggest that the practical choices of three
regularization coefficients are µ = 1, η = 0.5, β = 0.05.
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(a) vehicle (b) sensor (c) dermatology (d) steel

(e) segment (f) Satimage (g) wine (h) abalone

Figure 3: Classification performance on controlled UCI datasets with ϵ (co-occurring probability of
the coupling label) and one false positive candidate label (r = 1)

(a) vehicle (b) sensor (c) dermatology (d) steel

(e) segment (f) Satimage (g) wine (h) abalone

Figure 4: Classification performance on controlled UCI datasets with r (the number of false positive
candidate label).

(a) Varying µ and η on Lost (b) Varying µ and η on BirdSong (c) Varying β

Figure 5: Parameter sensitivity analysis for PLRL in terms of classification accuracy on Lost and
BirdSong by varying µ, η and β.

E.2 ALGORITHM CONVERGENCE

Figures 6(a) and 6(b) give the training curves of the prediction accuracy and the reward score by
PLRL on MSRCv2, respectively. We can see that the reward converges as the number of training
epochs increases, and eventually falls into a small range after 1000 epochs. On the other hand, the
accuracy curves for both the training and test sets have the same trends as the reward curve and jointly
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reach a high level in the end. The convergence analysis shows that the RL agent gradually learns to
model the instance similarities and improves its prediction power.

(a) Classification accuracy on
MSRCv2

(b) Reward on MSRCv2

Figure 6: Convergence analysis for PLRL. (a) Convergence curves of transductive and inductive
classification accuracy on MSRCv2. (b) Convergence curves of reward on MSRCv2.

F RELATED WORK

In PLL, the true labels of most training instances are unobserved while a small set of candidate labels
are provided instead. One fundamental problem PLL tries to solve is how to utilize the limited number
of ground-truth labels to disambiguate the partially labelled instances, i.e. selecting the most possible
one from a set of candidates. Extensive efforts have been made to develop label disambiguation
strategies, which can be divided into three main categories. The most naive way is to fairly treat
all candidate labels and obtain the final prediction by simply taking the average of the predicted
probabilities over the candidate classes.

Candidate labels are disambiguated by averaging the output probabilities using k-NN method in Gong
et al. (2017). Boosting learning adopted by Tang & Zhang (2017) improves the classifier by adapting
the weights of training instances and the ground-truth confidence of candidate labels. The averaged
modeling output of the candidate labels is distinguished from that of the non-candidates by Cour et al.
(2011). Some non-parametric methods, such as Zhang & Yu (2015), make predictions for the testing
examples by voting among all candidate labels of its neighboring instances. The main disadvantage
of these voting methods is that the ground truth can be overwhelmed by other confounded incorrect
labels, which leads to negative impact on the disambiguation performance.

The second category of disambiguation methods is identification-based. Traditional machine learning
models are directly trained to build the classifiers (Jin & Ghahramani, 2002; Nguyen & Caruana, 2008;
Liu & Dietterich, 2012; Zhou et al., 2016). Latent semantic differences are maximized by Feng & An
(2019b) between any two instances whose unknown true labels are ensured to be different. SURE
(Feng & An, 2019a) uses a self-guided retraining method to balance the minimum approximation
loss and the maximum infinity norm of the outputs. The main drawback of the identification-based
methods is that the identified label might turn out to be false-positive due to the model limits.

Different from the first two categories of methods that focus on the label disambiguation, the third
category of methods is graph-based. Some recent studies try to utilize the instance similarities
by discovering some underlying connective graph using some unsupervised approaches, such as
PL-KNN (Hüllermeier & Beringer, 2006) and IPAL (Zhang & Yu, 2015). Other methods like LALO
(Feng & An, 2018) adopts a feature-aware approach which facilitates the mutual adaption of the
model training and the constrained label propagation by simultaneously estimating the latent label
distributions at the training stage. PL-LEAF (Zhang et al., 2016) makes use of the local manifold
structure in feature space to help disambiguate the candidate label set. AGGD (Wang et al., 2019)
considers using an adaptive graph, but the complex optimization proposed by them is difficult to solve
in practice. The key problem of the graph-based methods is that the learned instance similarity is
weakly related to the classification task since the graph structure is independently estimated without
well using the instance features and the label information. Moreover, the voting strategy they use is
usually empirically non-robust. Our PLRL algorithm addresses these issues by using an end-to-end
model, which makes the learned underlying connective graph more related to the classification task
and its empirical performance is significantly better than all the existing two-stage and alternative
graph-based methods.
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