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Figure 6: Visualizing actions and states in Wordcraft: we present the first 3 time steps of an episode
corresponding to playing the example in Figure 1. This task contains 7 elements, so the action space
is a integer with maximum value 7. In the components current c and inventory i, each digit in the
vector corresponds to the element with the corresponding index. The initial set includes Water and
Earth (their indexes at τ = 0 in the inventory are non-zero). The agent first picks Earth (second
index in the action vector). At t = 1, Earth becomes active in the Current vector of the state, the
the agent selects Water and receives a positive reward. At t = 2, Mud is created and inserted in the
inventory and c is cleared.

This supplementary material provides additional methods, results and discussion, as well as imple-
mentation details.

• Section A describes in detail the MDP formulation of Wordcraft;

• Section C contains the pseudocde of SAPIENS;

• Section D explains how we model dynamic social network structures and how their perfor-
mance varies with their hyper-paramaters;

• Section E provides more information about our experimental setup and results (effect of
group size, intra-group and inter-group alignment, robustness to learning hyper-parameters
and effect of prioritized experience sharing). We also provide tables and figures for all
metrics presented in Section 2.4 and reward plots.

• Section E.7 contains simulations with another testbed, the Deceptive Coins game.

A DETAILS OF WORDCRAFT AS A MARKOV DECISION PROCESS

We consider the episodic setting, where the environment resets at the end of each episode and an
agent is trained for Etrain episodes. At each time step t, the agent observes the state st and selects
an action at from a set of possible actions A according to its policy πθ, where πθ is a mapping from
states to actions, parameterized by a neural network with weights θ. In return, the agent receives
the next state st+1 and a scalar reward rt. Each DQN agent collects experience tuples of the form
[st, at, st+1, rt] in its replay buffer.

Figure 6 offers a visualization of the states and actions encountered during an episode in Wordcraft,
where the chosen actions and elements are chosen so as to reproduce the example of Figure 1. In
order to solve the innovation task described in Section 2.1 we compute the maximum number of
elements a player can craft within horizon T for recipe book Xvalid and initial set X0, which we
denote as |X|. We, then, encode each element as an integer in [0, |X|). Thus, the action space is
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Work Field Agent Model Information type Task Dynamic structure? Main conclusion
(Garnelo et al., 2021) MARL DRL interaction 3 strategic micro-

management (Star-
Craft(Vinyals et al.,
2017))

Yes Topologies with
cycles encourage
strategic diversity
and dynamic ones
perform robustly
across tasks

(Adjodah et al.,
2019)

Dec-RL DRL rewards, NN weights continuous control
(Mujoco (Todorov
et al., 2012))

No Random topologies
outperforms fully-
connected ones

(Du et al., 2021) MARL DRL observations cooperative naviga-
tion (Particle World
(Lowe et al., 2017))

Yes Agents choose to
communicate when
they need to coordi-
nate.

(Dubova et al., 2020) MARLC 4 DRL interaction 1 coordination game No Global connectivity
leads to shared and
symmetric protocols,
while partially-
connected groups
learn local dialects.

(Fang et al., 2010) computational cogni-
tive science

belief-majority rule 5 belief, reward NK problem 6 No Partial connectivity
maximizes perfor-
mance

(Lazer & Friedman,
2007)

computational cogni-
tive science

belief-majority rule 3 belief, reward NK type 74 No Partial connectivity
maximizes perfor-
mance

(Cantor et al., 2021) computational cogni-
tive science

belief-majority rule 3 belief, reward innovation No Performance de-
pends on both task
and group structure,
no topology is ro-
bustly optimal across
tasks.

(Mason & Watts,
2012)

cognitive science human action,reward NK problem 3 No Full connectivity
maximizes diversity
and works best even
in complex tasks.

(Mason et al., 2008) cognitive science human action, reward line search No Partial connectivity
works best in com-
plex problems

(Derex & Boyd,
2016)

cognitive science action,reward innovation Yes partial connectivity
works best

(this work) distributed RL and
computational cogni-
tive science

DRL transition tuples innovation yes Partially-connected
structures, especially
dynamics ones,
perform robustly in
different types of
innovation tasks

Table 1: A non-comprehensive summary of the literature on the topic of the effect of social network
topology on collective search

A = [0, |X|), with action at indicating the index of the currently chosen element. The state st
contains two sets of information: a binary vector of length |X| with non-zero entries for elements
already crafted by the agent within the current episode (we refer to this as inventory i) and another
binary vector of length |X| where an index is non-zero if it is currently selected by the agent (we
refer to this as current c). An agent begins with an inventory having non-zero element only for the
initial set X0 and an all-zero selection. With the first action a0, the selected item becomes non-zero
in the selection. With the second action, a1, we check if the combination (a1, c0) is valid under the
recipe book and, if so, return the newly crafted element (corresponding entry in i becomes non-zero)
and the reward. This two-step procedure continues until the end of the episode.

B SUMMARY OF RELATED WORKS

In this appendix we provide a non-comprehensive summary of the literature on the topic of the
effect of social network topology on collective search in Table 1, where our objective is to highlight
similarities and differences within and across the fields of cognitive science and DRL.

C PSEUDOCODE OF SAPIENS

We present the pseudocode of our proposed algorithm SAPIENS in Algorithm 1. SAPIENS works sim-
ilarly to an off-policy reinforcement learning algorithm, with the difference that, after each episode,
an experience sharing phase takes place between agents that belong in the same group.
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Algorithm 1 SAPIENS (Structuring multi-Agent toPology for Innovation through ExperieNce Shar-
ing)

1: Input: G, connectivity,R, ps, LS
2: G.initializeGraph(connecticity)
3: I.initializeAgent() ▷ Initialize agents
4: for i ∈ I do
5: I.neighbors= I.formNeighborhood(G) ▷ Inform agent about its neighbors
6: I.env = initEnv(R) ▷ Create agent’s own copy of the environment based on the recipe book
7: end for
8: while training not done do
9: for i ∈ I do ▷ Loop through each agent

10: while episode not done do
11: a = i.policy() ▷ Choose action
12: r, snew = env.step(a)
13: i.B.insert([s, r, a, snew])
14: end while
15: ϵ =random()
16: if ϵ < ps then ▷ Share with probability ps
17: for j ∈ i.neighbors do
18: j.B.add(i.B.sample(L)) ▷ Sample random set of experiences of length L
19: end for
20: end if

i.train() ▷ Train agent
21: end for
22: end while

D ANALYSIS OF DYNAMIC NETWORK TOPOLOGIES

In the main paper we presented results for a single type of dynamic topolgoy. Here we present
another type and analyze how they both behave for different values of their hyper-parameters. The
two dynamic topologies are:

• Inspired by graphs employed in human laboratory studies (Derex & Boyd, 2016), we de-
signed graphs where the macro structure of the graph is constant but agents can randomly
change their position. In particular, we divide a group of agents into sub-groups of two
agents and, at the end of each episode, move an agent to another group with a probability
pv for a duration of Tv episodes (for a visualization see Figure 3). To reduce the complex-
ity of the implementation, we assume that only one visit can take place at a time. In the
main paper we employ pv = 0.01 and Tv = 10 across conditions and present results with
different values in Appendix D, where we refer to this topology as dynamic-Boyd.

• Human behavioral ecology emphasize the importance of periodic variation in human so-
cial networks encountered throughout our evolutionary trajectory Wiessner (2014); Dunbar
(2014). Due to ecological constraints human groups oscillate between phases of high and
low connectivity: low-connectivity phases arise when individuals need to individually col-
lected resources (e.g. day-time hunting) while high-connectivity phases arise when humans
are idle and “forced” to be in proximity with others (e.g. fireside chats). Although these
high-connectivity phases do not bare a direct evolutionary advantage, they may have played
an important role by creating the conditions for the evolution of human language and cul-
ture. Inspired by this hypothesis, we have designed dynamic graphs that oscillate between
a fully-connected topology that lasts for Th episodes and a topology without sharing that
lasts for Tl episodes. We present results for various values of Th and Td of this topology in
Appendix D, where we refer to this topology as dynamic-periodic.

In Figure 8, we observe the % of group success (SG) with the dynamic-Boyd topology for different
probabilities of visit (pv) and visit duration Tv (the sub-group size is 2 in all cases). We note that,
due to our implementation choice that a visit can take place only if no other agent is currently on a
visit, the visit duration also affects the mixing of the group: longer visits mean that fewer visits will
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Figure 7: Two types of dynamic topologies: (Left) in the dynamic-Boyd topology the group is
divided into sub-groups of two agents and a visit takes place with probability pv and lasts Tv

episodes (Right) In the dynamic-periodic topology the graph oscillates between a phase with a fully-
connected topology that lasts for Th episodes to a phase without sharing that lasts for Tl episodes.
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Figure 8: Examining the sensitivity of the dynamic-Boyd topology to its hyper-parameters: % of
group success (SG) for the merging-paths task (left) and the best-of-ten paths task (right).

take place in total. In the merging paths task (left), two hyper-parameter settings have a clear
effect: (i) short visits with of high probability lead to bad performance. As such settings lead to
a quick mixing of the population, they lead to convergence to the local optimum (ii) long visits
with high probability work well. Due to the high visit probability, this setting effectively leads
to topology where exactly one agent is always on a long visit. Thus, it ensures that sub-groups
stay isolated for at least 1000 episodes, after which inter sub-group sharing needs to takes
place to ensure that the sub-groups can progress quickly. In the best-of-ten paths task (right),
this structure has a clear optimal hyper-parameterization: short visits with high probability
are preferred, which maximizes the mixing of the group and makes early exploration more
effective.

In Figure 9, we observe the % of group success (SG) of the dynamic-periodic topology for various
values of Th and Tl. In the merging paths task (left of Figure 9) medium values for the period
of both phases works best, while there is some success when the low connectivity phase lasts
long (Tl = 1000). In the best-of-ten paths task (rightof Figure 9), we observe the same medium
values for the period of both phases work best: thus both the absolute value and their ratio
is important to ensure that exploration is efficient. The optimal configuration is the same
between the two tasks (Tl = 100, Th = 10), which is a good indication of the robustness of this
structure.

E EMPIRICAL RESULTS

To ensure that all methods have the same number of samples, we assume that, for trials where a
method did not find the optimal solution, and, hence, T+ is undefined, T+ is equal to the total
number of timesteps the method was trained for, Ttrain. For each task, all methods have been trained
for an equal duration of time: Ttrain = 1e6 for the single path , Ttrain = 7e6 for the merging paths
task and Ttrain = 2e7 for the best-of-ten paths task.
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Figure 9: Examining the sensitivity of the dynamic-periodic topology to its hyper-parameters: % of
group success (SG) for the merging-paths task (left) and the best-of-ten paths task (right).

We perform 20 independent trials for each task and method and visualize our proposed metrics with
barplots and line plots of averages across trials with error bars indicating 95% confidence intervals.
We test for statistical significance of our evaluation metrics separately for each task by applying
ANOVA tests 8 to detect whether at least one method differs from the rest and, subsequently, em-
ploying the Tukey’s range test 9 to detect which pairs of methods that differ significantly. We report
the exact p values of theses tests in the text and, when applicable, illustrate them in figures using
a set of asterisks whose number indicates the significance level (p <= 0.05: *, p <= 0.01: **,
p <= 0.001: ***, p <= 0.0001: **** ) 10.

We presented the major results of our evaluation of SAPIENS in Section 3. We now present additional
information regarding the implementation of the different components (Appendix E.1), the values
of all performance metrics and additional plots for experiments discussed in 3 (Appendix E.2),
results on intra-group and inter-group alignment (AppendixE.3), results for groups of varying sizes
(Appendix E.5) and results on various dynamic topologies (Appendix D)

E.1 IMPLEMENTATION DETAILS

Implementation of DQN We employ the same hyper-parameter for each DQN across all studied
tasks and topologies: discount factor γ = 0.9, the Adam optimizer with learning rate α = 0.001
(Kingma & Ba, 2014; Dunbar, 2014), ϵ-greedy exploration with ϵ = 0.01. We employ a feedforward
network with two layers with 64 neurons each. We implemented SAPIENS by extending the DQN
implementation in the stable-baselines3 framework.

Implementation of A2C We used the stable-baselines3 implementation of A2C 11 and tuned the
hyper-parameters: learning rate, number of steps, discount factor, the entropy coefficient and the
value function coefficient. This gave us the best-performing values 0.001, 5, 0.99, 0.1 and 0.25,
respectively, that we also employed in the other tasks.

Implementation of Ape-X We used the ray implementation of Ape-X DQN 12 and tuned the
hyper-parameters: learning rate, discount factor, replay buffer capacity and ϵ-greedy exploration.
This gave us the best-performing values in the single path task 0.001, 0.9, 5000 and 0.02, respec-
tively.

8https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f oneway.html
9https://pypi.org/project/bioinfokit/0.3/

10https://www.graphpad.com/support/faq/what-is-the-meaning-of–or–or–in-reports-of-statistical-
significance-from-prism-or-instat/

11https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html
12https://docs.ray.io/en/latest/rllib/rllib-algorithms.html
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Topology R+
∞ R∗

∞ T+ T ∗ T> S V̄avg Cavg

no-sharing (0.92, 0.0.036) (1,0) (236250, 33441) (830000,0) (600000, 0) (1,0) (0.038,0.002) (0.697, 0.0354)
dynamic (1,0) (1,0) (237222, 53885) (346666,122041) (109444, 98067) (1,0) (0.027,0.01) (0.885, 0.026)

fully-connected (1,0) (1,0) (310666, 89240) (362000, 98503) (51333, 20655) (1,0) (0.052, 0.027) (0.891,0.034)
ring (1,0) (1,0) (235333, 70190) (305333, 78818) (70000, 22038) (1,0) (0.038,0.0026 (0.697, 0.0354)

small-world (1,0) (1,0) (253333, 63320) (302666, 74110) (49333, 31274) (1,0) (0.029, 0.013) (0.912, 0.0267)
single (0.92, 0.163) (0.927, 0.163) (64750, 266145) (64750, 266145) (0,0) (0.2, 0.41) (0.015, 0.013) a non-co (1,0)
A2C (1,0) (1,0) (36200, 16450) (36200, 16450) (0,0) (1,0) (0,0) (1,0)

Ape-X (0.93, 0.18) (0.93, 0.18) (270941, 102445) (270941, 102445) (0,0) (0.15, 0.366) (0.015, 0.022) (1,0)

Table 2: Evaluation metrics for the single-path task in the form (mean of metrics, standard deviation
of metric)

Topology R+
∞ R∗

∞ T+ T ∗ T> S Cavg V̄avg

no-sharing (0.657, 0.037) (0.838,0).14 (5334000, 2311945) (7000000,2311945 (7000000, 0) (0.4,0.51) (0.597, 0.06) (0.0089,0.0021)
dynamic (0.7,0.04) (0.9,0.13) (4716500,222965) (7000000, 0) (7000000, 0) (0.75,0.48) (0.597, 0.0059) (0.005, 0.0016)

fully-connected (0.5349,0.085) (0.58, 0.04) (7000000,0) (7000000, 0) (7000000, 0) (0,0) (0.597,0.0051) (0.0764, 0.0044)
ring (0.661,0.135) (0.72, 0.15) (5892000, 2288393) (7000000, 0) (7000000, 0) (0.2,0.41) (0.595, 0.0051) (0.0149,0.021)

small-world (0.639,0.091) (0.774, 0.173) (5998000, 1699076) (7000000, 0) (7000000,0) (0.3, 0.483) (0.596,0.0065) (0.06775,0.0328)
single (0.758, 0.187) (0.758, 0.187) (5235000, 2385948) (5235000, 2385948) (0,0) (0.3, 0.47) (1,0) (0.0063, 0.0063)
A2C (0.269,0).2 (0.269, 0.2) (7000000, 0) (7000000, 0) (0,0) (0,0) (1,0) (0.013, 0.038)

Ape-X (0.573, 0.31) (0.573, 0.31) (6656900, 1534389 ) (26656900, 1534389 ) (0,0) (0.05, 0.223) (1,0) (0.054,0.157)

Table 3: Evaluation metrics for the merging-paths task in the form (mean of metrics, standard devi-
ation of metric)

Implementation of graphs used as social network structures We construct small-worlds using
the Watts–Strogatz model (watts strogatz graph method of the networkx package 13). This
model first builds a ring lattice where each node has n neighbors and then rewires an edge with
probability β. Compared to other techniques used in previous works studying the effect of topology
Mason et al. (2008), this way of constructing small-worlds ensures that the average path lengths is
short and clustering is high. These two properties are what differentiates small-worlds from random
(short average path length and small clustering) and regular (long average path length and high
clustering) graphs. We employ n = 4 and β = 0.2 in our experiments, which we empirically found
to lead to good values of average path length and clustering.

We have described the generation process of dynamic topologies in Appendix D. In the main pa-
per we employ the dynamic-Boyd topology with Tv = 10 and pv = 0.001 across tasks. These
parameters have been tuned for the merging-paths task.

E.2 OVERALL COMPARISON

Tables 2, 3 and 4 contain the values of all metrics discussed in Section 2.4 for the single path,
merging paths and best-of-ten paths, respectively. We denote values computed after convergence of
the group with underscore ∞ and values averaged over all training steps with underscore avg (note
that we use¯over variables to denote averaging over agents in a single training step). Cells with a
dash (-) indicate that we could not compute the corresponding metrics because a group failed to find
a solution in all trials. We also provide the plots of volatility and average diversity for the merging
paths and best-of-10 paths task (that were not included in Figure 5) due to page limit constraints).

Figure 10 presents the reward curves for all methods in the single path, merging paths and best-of-
ten paths tasks respectively. Specifically, we plot the maximum reward of the group at training step
t (R+

t ).

13https://networkx.org/

Topology R+
∞ R∗

∞ T+ T ∗ T> S Cavg V̄avg

no-sharing (0.2124,0.036) (0.446, 0.131) (20000000, 0) (20000000,0) (20000000, 0) (0,0) (0.239, 0.005) (0.007, 0.0021)
dynamic (0.5141,0.323) (0775, 0.32) (13616000, 5441395) (20000000,0) (20000000, 0) (0.6,0.51) (0.242,0.0078) (0.04,0.0223)

fully-connected (0.1615,0.09) (0.1819, 0.1013) (20000000, 0) (20000000, 0) (20000000,0) (0,0) (0.238,0.0053) (0.007,0.003)
ring (0.2319,0.3045) (0.275,0.332) (18781000, 3854816) (18826000, 3712513) (18045000, 6182252) (0.1,0.31) (0.237,0.004) (0.047,0.019)

small-world (0.198,0.281) (0.216,0.275) (18706000, 4091987) (18746000, 3965496) (18040000, 6198064) (0.1,0.316) (0.234,0.007) (0.018,0.0049)
single (0.178, 0.067) (0.1785,0.0676) (20000000, 0) (20000000,0) (0,0) (0, 01) (1,0) (0.006,0.0031)
A2C (0.1285,0.19) (0.1285,0.19) (20000000, 0) (20000000,0) (0,0) (1,0) (1,0) (0.3244,0.35)

Ape-X (0.481, 0.213) (0.482, 0.213) (20000000, 0) (20000000,0) (0,0) (0.9, 0.316) (1,0) (0.018,0.009)

Table 4: Evaluation metrics for the best-of-ten paths task in the form (mean of metrics, standard
deviation of metric)
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Figure 10: Maximum reward of the group at training step t (R+
t ) in the (left) single path task

(middle) merging paths task (right) best-of-ten paths task

E.3 MEASURING INTER-GROUP AND INTRA-GROUP ALIGNMENT

We have so far captures the agreement between agents in a group through the behavioral metric of
conformity. Here, we present a mnemonic metric for agreement, which we term alignment. Align-
ment is a complementary metric to the diversity (Dk

t ) and group diversity (DG
t ) metrics, that aims at

capturing the effect of experience sharing on the replay buffers in a group. We propose a definition
of alignment within a single group (intra-group alignmentAG

t ) and a definition of alignment between
two different groups (AGj ,Gj

t ). Such metrics of mnemonic convergence have been linked to social
network topology (Coman et al., 2016) and, as we show here, they can prove useful in analyzing
groups of reinforcement learning agents.

Specifically: (i) AG
t is the intra-group alignment. This metric captures the similarity in terms of

content between the replay buffers of agents belonging to the same group. To compute this we
compute the size of the common subset of experiences for each pair of agents and, then, average
over all these pairs, normalizing in [0,1]. (ii) inter-group alignment AGj ,Gj

t is a similar notion of
alignment but employed between different groups (e.g. how different is a group of fully-connected
and a dynamic group of agents in terms of the content of their group replay buffers). To compute
it we concatenate all replay buffers of a group into a single one and then compute the size of the
common subset of the two replay buffers.

Figure 12 presents intra-group alignment in the three tasks. We observe that, in all tasks, intra-
group alignment increases with connectivity and that it reduces when the agents enter the
exploitation phase. Thus, intra-group alignment can prove useful in characterizing the explo-
ration behavior of a group. In Figure 13, we present the inter-group alignment in the single path,
merging paths and best-of-ten paths tasks. We observe that the topologies do not differ significantly
in the single path task. In the merging task, we observe that inter-group alignment is lower
during the exploration phase, compared to other tasks, and that the small-world is the slowest
to align with all other structures. Perhaps this explains why this topology finds the optimal
solution with the least probability: by propagating information quickly, the group early on
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Figure 11: Analyzing group behavior in the merging paths task (top row) and best-of-10 paths task
(bottom row). (left) Conformity Ct is a behavioral metric that denotes the percentage of agents in
a group that followed the same trajectory in a given evaluation trial (right) Average Diversity D̄t is
a mnemonic metric that denotes the number of unique experiences in the replay buffer of an agent,
averaged over all agents.
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Figure 12: Intra-group alignment AG
t in the single path task (left), merging paths task (middle) and

best-of-ten paths task (right)

converges to the local optimum in this task. In the best-of-ten task, the no-sharing setting has
the smallest alignment with all other structures. This reinforces our main conclusion in this
work: experience sharing affects individuals and different topologies do so in different ways.

E.4 ROBUSTNESS TO LEARNING HYPER-PARAMETERS

In Figure 14 we present how the performance of SAPIENS varies for different values of the learning
hyperparameters learning rate and disocunt factor in the single path task under a fully-connected and
a dynamic topolgoy, as well as the no-sharing condition. We observe that, although convergence
to the optimal solution is not always achieved, the dynamic topology is at least as effective as the
others either in terms of convergence rate and/or final performance in all conditions.

E.5 EFFECT OF GROUP SIZE

We here examine the effect of the group size for all social network structures in the merging-paths
and best-of-ten paths task. To visualize the progression of a group on the paths of the different
tasks, we focus on specific elements in the tasks: (i) ([A8, B8, C2] in the merging-paths task. The
first two correspond to reaching the end of the paths corresponding to the two local optima. To
reduce the computational complexity of experiments, we do not study the last element of the optimal
path (C4), but focus on C2 instead. This is sufficient to detect whether a group has discovered the
optimum path. Here, we observe that the fully-connected topology fails to find the optimal path
regardless of its size (with a small success probability for N = 10). We observe that the ability of
the ring , small-world and dynamict topologies to avoid the local optima improves with the group
size (ii) [B4, A2, E2] in the best-of-ten tasks. B4 is the fourth element on the optimal path (again we
do not study the last element to reduce complexity). To avoid cluttering the visualization we only
present two of the nine sub-optimal paths. In this task, we again observe that the fully-connected
network fails to discover the optimal task. Among all structures and group sizes, the large dynamic
network performs best, while the performance of ring and small-world is also best for N = 50. We
observe that small networks sizes (N = 2, N = 6) are slower at exploring (we can see that as they
rarely find the second element of the sub-optimal paths, which is required to conclude that path B is
the optimal choice).

Overall, this scaling analysis indicates that increasing the group size in a fully-connected topol-
ogy will not improve performance, while benefits are expected for low-connectivity structures,
particularly for the dynamic topology. We believe that this observation is crucial. In studies of
groups of both human and artificial agents, we often encounter the conviction that, larger groups
perform better and that size is a more important determinant than connectivity, the latter justifying
why connectivity is often ignored Kline & Boyd (2010); Horgan et al. (2018); Mnih et al. (2016);
Schmitt et al. (2019); Nair et al. (2015). Our results here point to the contrary.

E.6 PRIORITIZED EXPERIENCE SHARING

We now examine how sharing prioritized experiences instead of randomly sampled ones affects the
performance of SAPIENS. In Figure 16 we repeat the same experiment with Figure 4, with the dif-
ference that all methods compute priorities, which they employ both for implementing a prioritized
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and best-of-ten paths task (right). In each row we compare one topology with all the rest.
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Figure 16: Examining the effect of prioritization in experience sharing. For more details about the
setup, we refer the reader to Figure 4

replay buffer and sharing experiences by sampling them in proportion to their priorities. As we see,
using priorities negatively impacts experience sharing, while it helps speed up the performance of
the single agent in the single path task. This behavior has been observed in previous works Souza
et al. (2019) and can be attributed to the fact that the priorities of the sender do not necessarily agree
with the priorities of the receiver and, therefore, destabilize learning.

E.7 ADDITIONAL TEST-BED: THE DECEPTIVE COINS GAME

Deceptive games are grid-world tasks introduced to test the ability of deep RL agents to avoid local
optima. (Bontrager et al., 2019). Here, we perform preliminary experiments with our own JAX-
based implementation of one of the games: the first difficulty level of the deceptive coins game
(see Figure 17 for an illustration). Here, the agent can navigate in the grid-world during an episode
and collect diamonds, which give a unit of reward. The game finishes once the agent reaches the
fire, which offers an additional reward, or when a timeout of 14 time steps is reached. There are two
possible paths the agent can follow: moving left and reaching the fire will give a reward of two while
moving right and reaching the fire will give a reward of five. The second path is more rewarding
but is harder to complete because, once an agent discovers the easier-to-find diamond on the left, it
is deceived into following the left path. Once an agent commits on a path (reaches the edge of the
grid-world) a barrier is raised so that the agent cannot go back within that episode.

We now examine the performance of SAPIENS under different social network structures (fully-
connected, small-world, ring, dynamic), as well as the no-sharing, A2C and Ape-X baselines for
three group sizes: 6 , 10 and 20 agents. We present the reward plots for the 3 sizes in Figures 18, 19
and 20, respectively, and present an overall comparison in Figure 21 (equivalent to Figure 4 for the
Wordcraft tasks).

We observe that all conditions found either the local or the global optimum and that : a) A2C fails
for all network sizes. This behavior has been observed in previous works (Bontrager et al., 2019)
and can be attributed to the fact that policy-gradient methods are more susceptible to local minima
b) no-sharing gets stuck in the local optimum in half of the trials when the group size is small.
Increasing the group size increases the probability that at least one agent in the group will escape the
local minima by ϵ-greedy exploration c) partially connected structures find the global minima across
network sizes d) fully-connected converges to the local optimum for the large group size, although
the global optimum was discovered at the early exploration phase (see Figure 20). Thus, too much
experience sharing is harmful e) Ape-X fails with high probability for all network sizes.
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Figure 17: A screenshot of our implementa-
tion of the Deceptive Coins task. Collecting
diamonds gives a positive reward and touch-
ing the fire terminates the game.
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agents
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agents
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Figure 21: Overall performance comparison for a group with: 6 agents (first column), 10 agents
(second column) and 20 agents (third column) task. We present two metrics: group success (S)
denotes whether at least one agent in the group found the optimal solution (top row) and T+, Time
to first success, is the number of training time steps required for this event (bottom row). Note that
T+ can be computed only for S > 0 its error bars and significance tests can only be computer for
S > 1. We denote statistical significance levels with asterisks.)

In general, our conclusions in this task are consistent with what we observe in Wordcraft, in partic-
ular the merging paths task that has a similar deceptive nature.

E.8 ROBUSTNESS TO AMOUNT OF SHARING (ps AND Ls)

In Section 2.3 we formulated SAPIENS and described two hyper-parameters: ps is the probability of
sharing a batch of experience tuples at the end of an episode and Ls is the length of this batch. Here,
we test the robustness of SAPIENS to these two hyper-parameters, which both control the amount
of shared information and, therefore, interact with hyper-parameters of the DQNs (in particular the
learning rate) to control the rate at which information is shared to the rate of individual learning.
Specifically, we evaluate the dynamic topology (with the same hyper-parameters employed in the
main paper, i.e., visit duration Tv = 10 and probability of visit pv = 0.05) and the fully-connected
topology in the deceptive coins game (described in Appendix E.7) with 20 DQN agents.

In Figure 22 we present group success (S) averaged across trials for a parametric analysis over Ls ∈
(1, 6, 36) and ps ∈ (0.35, 0.7, 1). We observe that the dynamic topology finds the optimal solution
across conditions except for a small probability of failure for (Ls = 1, ps = 0.35) and (Ls = 1, ps =
0.7). These values correspond to low amounts of information sharing. In this case, the dynamic
structure becomes more similar to a no-sharing structure: the amount of shared information is not
enough to help the agents avoid local optima they fall into due to individual exploration. For the
fully-connected topology we observe that performance degrades for high amounts of information
((L = 36,ps = 0.35), (L = 36,ps = 0.7), (L = 36,ps = 1)). This is in accordance with our
expectation that fully-connected topologies lead to convergence to local optima. Interestingly, this
structure performs well when ps = 1 and Ls ≤ 6. Thus, sharing more frequently is better than
sharing longer batches: we hypothesize that this is because longer batches have more correlated
data, making convergence to local optima more probable.
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and fully-connected (right)
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