Published as a conference paper at ICLR 2025

GROUNDING BY TRYING: LLMS WITH REINFORCE-
MENT LEARNING-ENHANCED RETRIEVAL

Sheryl Hsu'!, Omar Khattab?, Chelsea Finn'** & Archit Sharma'*
IStanford University,”Databricks,’Physical Intelligence,*Google DeepMind
{sherylh,architsh}@stanford.edu

ABSTRACT

The hallucinations of large language models (LLMs) are increasingly mitigated
by allowing LLMs to search for information and to ground their answers in real
sources. Unfortunately, LLMs often struggle with posing the right search queries,
especially when dealing with complex or otherwise indirect topics. Observing that
LLMs can learn to search for relevant facts by #rying different queries and learn-
ing to up-weight queries that successfully produce relevant results, we introduce
Learning to Retrieve by Trying (LeReT), a reinforcement learning framework that
explores search queries and uses preference-based optimization to improve their
quality. LeReT can improve the absolute retrieval accuracy by up to 29% and
the downstream generator evaluations by 17%. The simplicity and flexibility of
LeReT allows it to be applied to arbitrary off-the-shelf retrievers and makes it
a promising technique for improving general LLM pipelines. Project website:
http://sherylhsu.com/LeReT/l

1 INTRODUCTION

Despite tremendous progress, large language models (LLMs) still often hallucinate, motivating sig-
nificant interest in grounding LLM answers in verified sources (Guu et al., [2020; Komeili et al.,
2022} [PerplexityAlL [2024; |Google, 20245 |OpenAll 2024). Unfortunately, simply retrieving seman-
tically similar documents to the user question, as is prevalent in retrieval-augmented generation
(RAG; [Lewis et al.||2020) pipelines, tends to fail for complex information needs not answered di-
rectly by any individual document. To tackle this, multi-hop retrieval pipelines gather information
incrementally over multiple steps of search. For example, if a user asks What is a good dinner place
driving from the Bay Area to Lake Tahoe on Friday night to avoid traffic?, a grounded system might
need to learn about towns en route Lake Tahoe from the Bay Area, followed by
traffic forecast on I-80 and finally, restaurants in Auburn (and other towns).

However, doing this successfully is hard as off-the-shelf LLM performance is often unsatisfactory,
and producing supervision for the best search queries to generate in a sequence of “hops” is non-
trivial and expensive. Recent work tackles this via prompt optimization and rejection fine-tuning
given a downstream signal. For example, Khattab et al.| (2023) “bootstrap” trajectories of reasoning
and search queries and collect trajectories that lead to a high downstream answer accuracy, using
them either to search for effective few-shot prompting examples or to finetune the LLM responsible
for query generation. We observe that the problem of teaching a LLM to generate effective search
queries is inherently a reinforcement learning (RL) problem and ask can RL improve the grounding
of answers generated by LLMs when wielding open-ended tools like search engines?

If we can observe the retrieved documents for different search queries and compute rewards for find-
ing relevant documents, we can train the LLM to produce queries that lead to better outcomes. Such
learning from trial-and-error naturally lends itself to RL formalism, going beyond imitation-based
methods in prior works. Indeed, we find that naive sampling from LLMs with high temperature
and using the observed data for RL is not effective. Instead, our proposed framework, Learning to
Retrieve by Trying, or LeReT, induces diverse search queries for each question by diversifying the
few-shot examples in the prompts of the system. After this diversified sampling of search queries
and the resulting retrieval, LeReT applies context distillation (Snell et al., 2022) followed by opti-

http://sherylhsu.com/LeReT/

Published as a conference paper at ICLR 2025

Performance of Different Algorithms for Grounding LLMs

Retrieval Grounded Generator

80 A
s Gemma 9B

B Gemma 9B + Few-Shot
704 LeReT-CD (Ours)
s LeReT (Ours)

704

65
60 -

o
o
!

50 A

40

Recall (%)
Accuracy (%)
w

30 A

u
o
!

20 A

451
10

40 -

Figure 1: LeReT significantly improves retrieval and generation. LeReT provides a reinforce-
ment learning based framework for improving grounding and performance of LLM generated an-
swers by improving the retrieval of relevant factual data.

mizing the query-generating LLM using preference-based RL. We use identity policy optimization
(IPO;|Azar et al. 2023} |Rafailov et al.[2024b), though other RL algorithms can be substituted.

Our main contribution is LeReT, a framework for improving grounding of LLM answers by lever-
aging retrieval annotations to improve multi-hop retrieval accuracy. On two question-answering
datasets, LeReT considerably outperforms prior methods like few-shot prompting and supervised
fine-tuning in both retrieval quality and downstream generation quality, with stronger generators
like GPT-4 benefiting more from the improvements in retrieval. We experiment with an iterative
version of LeReT and find that its performance improves over iterations. Our analysis reveals that
prompt-driven diverse sampling is critical for LeReT to be effective, and we also analyze different
ways to generate rewards for retrievals. Finally, our experiments find that LeReT can be used across
retrievers, and thus, provides a simple and general framework for improving retrieval. While we
focus on retrieval for grounding LLM answers in this work, the core method behind LeReT can be
straightforwardly extended to other agentic pipelines in which LLMs control a blackbox tool, so
long as a reward can be formulated on its outputs.

2 RELATED WORK

Retrieval-Augmented Generation (RAG). Over the past few years, interest has been growing in
conditioning LLM outputs on retrieved information (Chen et all, 2017} [Lee et all} 2019} [Guu et all}
2020; [Lewis et al} 2020; [Lazaridou et al., 2022; |Asai et al.,[2024). This strategy seeks to make LLM
systems more efficient, updatable, and transparent by decoupling the system’s knowledge from the
model parameters. This makes it easy to update the knowledge corpus and also makes it possible to
inspect the sources relied upon when LL.Ms produce factual statements.

Previously, [Nogueira & Cho| (2017) trained a query reformulator for retrieval queries using rein-
forcement learning. While this is the closest analogue to our work, this paper does not use a genera-
tive language model but instead presents a very specific query selection architecture (understandably,
since it is 2017) and corresponding training recipe. A straightforward application of RL similar to
this applied to modern LLMs would result in performance similar to few-shot prompting.

Multi-Hop Retrieval. The standard RAG formulation is best suited for “simple” questions, where
a direct search can find all the information required for producing responses. Beyond these, bench-
marks such as HotPotQA (Yang et al 2018), MuSiQue (Trivedi et all, 2022), and HoVer (Jiang
assess systems on gathering and synthesizing information from several independent
documents within a massive corpus like Wikipedia. To tackle retrieval in this setting, early systems

like MDR (Xiong et al)) and Baleen (Khattab et al) 2021) introduced bespoke strategies for fine-

Published as a conference paper at ICLR 2025

Multi-Hop Retrieval

/ Coniext Grounded Answer Generation

LLM (Generator)

A
Ny ~
]

Retrieved Retrieved
documents documents

Retrieved
documents

Figure 2: An overview of the standard multi-hop retrieval pipeline we study in this work. A user
asks a question to the system. In each hop, the LLM generates search queries for the retriever and
receives a collection of documents. The overall set of retrieved documents and the user question are
then given to a downstream LLM for grounded answer generation.

tuning the retrieval models that produce representations of queries and documents, adapting them
directly for compositional search queries. Unfortunately, fine-tuning the retriever representations is a
data hungry approach that is also challenging to scale to massive corpora like the Web, as re-training
the retriever often requires re-indexing the corpus. Increasingly, research in this space (Trivedi et al.,

[2023};[Yao et al, 2023} [Khattab et al.,[2022} [Press et al.| [2023)) relies on off-the-shelf retrievers such

as the Wikipedia API and focuses on improving LLMs’ ability to to generate effective queries.

Optimizing LLM Programs & Agents. Recent work tackles this by employing prompt optimiza-
tion and rejection fine-tuning using a downstream signal. For example, in Khattab et al.| (2023), the
authors “bootstrap” trajectories of reasoning and search queries and use the trajectories that lead to
a high downstream answer accuracy as candidate examples. The trajectories are then used either to
search for effective few-shot prompting examples or to finetune the LLM responsible for query gen-
eration. This approach was extended in |Opsahl-Ong et al.|(2024) and [Soylu et al.| (2024)) in which
the authors also explore using these trajectories to search for free-form instructions for prompting or
to nest forms of rejection fine-tuning and prompt optimization, respectively.

Additionally, prompt-based techniques have been developed to further improve retrieval and down-
stream generations. For example, Query2doc 2023) prompts the LLM for hypothetical
documents to concatenate with the query. Rethinking with Retrieval uses de-
composed reasoning steps as queries. On the downstream generation side, there have been new
methods (Yu et all, 2024} [Lan et all, 2023}, [Kim et al.| [2023)) that enable the generator to better ref-
erence the retrieved information and produce better answers. As a general RL framework, our work
is complementary to these prior works.

Beyond retrieval or LLM programs, similar techniques can be used for optimizing agent behavior.
For example, in Song et al.| (2024), the authors train agents to navigate the web, simulate science
experiments, or perform household tasks by collecting failure and success trajectories and training
the LLM using preference optimization. Our work finds that the quality of exploration data sampled
from LLMs is critical to the success of RL in agentic pipelines, and introduces a prompt-based diver-
sification strategy that samples diverse and high-quality exploration data (discussed in Section 4.1]
analysis in Section[5.4).

3 PRELIMINARIES

Multi-Hop Retrieval Setup. An overview of retrieval is shown in Figure[2] We assume access to
a retriever that maps a search query ¢ to a set of N most similar documents D = {d;}},, where
d; denotes an individual document. A user asks a question u, a LLM m,. generates a query g; for
the retriever, which results in an ordered set of document D;. In the next hop, the LLM 7, takes u
and D; as input and outputs query g2. This repeats for H hops. The final ordered set of retrieved
documents Dr = Dy U Dy U ... Dy is given as input to the LLM generator 7, along with the

Published as a conference paper at ICLR 2025

question u, which generates the final answer for the user query. In this work, we restrict ourselves
to fine-tuning the LLM 7, and treat the retriever and LLM generator 7, as blackbox models.

Language Models and Reinforcement Learning. Reinforcement learning has become the de facto
tool for aligning large language models and has inspired considerable work at the intersection of
language models and RL (Stiennon et al., |2020; Ouyang et al., |2022; Zhao et al.| [2023}; Rafailov
et al.| 2024b). We briefly review direct alignment methods (Rafailov et al.}[2024b). Given a dataset
of preferences D, = {z',y’ ,yi}, where z* denotes the dialogue history, v/, denotes the preferred
response, and yll denotes the dispreferred response. Bradley-Terry (Bradley & Terryl |1952) offers a
model that connects choice to an implicit goodness score, useful for learning a reward model r:

EBT = _]E(wayw#ll)"/pp [1ogp¢(yw - yl)] = _E(xvywayl)NDP [IOgO' (T¢($7yw) o T¢(I7yl))] ’ (1)

where o denotes the sigmoid function and py(y., > ¥:) denotes the probability of y,, being preferred
over y;. Typically a LLM 7 is trained to maximize this learned reward model using RL as described
by max; Eyr(.|2) ¢ (2,y) — BKL(7 || mer)], Wwhere mer denotes a fixed reference policy. How-
ever, Rafailov et al.[{(2024b) shows that parameterizing r4(z, y) = Blog (74(y |)/ mwet(y | x)) and
optimizing Eq [T] implicity optimizes the RLHF objective exactly, removing the need for a sepa-
rately parameterized reward model or an explicit RL training loop. However, |Azar et al.|(2023) and
Rafailov et al.|(2024a) have found that optimizing a DPO parameterized reward uing Eq|l|can lead
to overoptimization, and suggest optimizing the following objective:

L1r0 = E(ey)p, | (Fol) = Folw,y) = 0577 @)

where 7 is a hyperparameter controlling the target margin between the implicit rewards for y,, and
yi, and 7g(z,y) = log (my(y | «)/met(y | 2)). Minimizing the objective in Eq [2] leads to identity
policy optimization (IPO;|Azar et al.|2023).

4 LERET: LEARNING TO RETRIEVE BY TRYING

We introduce Learning to Retrieve by Trying, or LeReT, a novel framework for improving the
grounding of LLM generations by training the search query LLM 7, using preference optimization.
In hop i, we sample a query ¢; from the LLM based on the user question and documents seen in
hops < i, and observe a reward signal for the retrieval quality. Both sampling from the LLM and
retrieval make it hard to backpropagate directly from the reward signal, making RL a more suitable
optimization framework for this setting. We first discuss how to generate a dataset of queries and
retrieved documents that is suitable for RL optimization in Section We then discuss how to
convert the reward-annotated dataset into a dataset of preferred and dispreferred queries and use that
dataset to optimize 7, with IPO in Section[d.2] We also briefly discuss an iterative version of LeReT
that alternates between sampling and optimization. Finally, we combine the elements and give a
practical overview in Section[4.3]

4.1 PROMPT DRIVEN DIVERSE QUERY GENERATION

Given a dataset of questions, we want to “try” a set of search queries and observe the retrieved
documents. What queries would be good to observe the retrieved documents for? This roughly cor-
responds to the exploration problem in RL. As our experiments later in Section also indicate, a
good distribution of queries would result in diverse outcomes (for better exploration), but it is impor-
tant that some queries produce high quality retrievals. To sample such diverse and effective queries,
LeReT moves beyond high-temperature sampling and uses a diverse set of examples to few-shot
prompt the LLM 7,.. We use DSPy (Khattab et al., 2022; [2023))’s prompt optimizers, specifically
a simple BootstrapFewShotWithRandomSearch (BFRS), to self-generate a number of in-
dependently optimized few-shot, chain-of-thought prompts P = {p1,...,pp} for LLM m,.. The
independently optimized prompts would naturally lead to diverse samples from 7,, and DSPy’s op-
timization ensures that the prompts are still resulting in relevant retrievals. Note that we can reuse
the same set of prompts across all questions throughout the dataset.

For a hop h, LeReT does the following: For every question v € U, LeReT samples search
queries conditioned on each of the prompts p & P, resulting in a set of search queries
Qn = {m(- | pi,u,Ch-1)) | pi € P}, where Cj,_1 denotes the context from previous hops. For

Published as a conference paper at ICLR 2025

Prompt Driven Diverse Sampling

—» | Queryo |—> —»| Context0 —» | Reward 0 For given question +
context:

Base prompt

. Rewardi > Rewardj
Queshon?

Context %

Few-shot 1—> N —>| Context1 — | Reward 1

—>

Few-shot P

—> QueryP —> —> | ContextP —>| Reward P

| Sample next hop context Queryi > Queryj
| proportionally to reward

Figure 3: Overview of prompt driven diverse sampling and data generation. LeReT induces
diverse but effective search queries by bootstrapping several few-shot prompts for query generation
and uses the retrieval reward to collect preferred and dispreferred queries for each question’s hop.

every query ¢; € Qpn, we retrieve a set of documents denoted Cj; and compute the reward
corresponding to each query by evaluating the retrieved documents, that is 7 (u, Ch—1,q;) =
R(Cp;) (more on retrieval reward R in Section . The final dataset for this hop consists of
Dy ={(u,Cr_1,q;,7(u,Crh_1,4)) | ©v €U, q; € Qn}, Where every entry consists of the user ques-
tion, the context from the previous hop, the sampled query, and the reward computed by running the
retriever. Though the prompts we generate are used to sample diverse high quality search queries
at training time, we leverage context distillation to remove the need for optimized prompting at
test-time.

When training in a multi-hop setting like this, we must select which contexts to use for the next hop.
Naively generating queries for every possible context leads to an exponentially growing dataset with
respect to the number of hops, which becomes computationally infeasible quickly. At the end of
hop h, we have P different contexts C; for a given question. LeReT randomly selects one of the
P contexts to use for the next hop, creating C},. To do this, we first filter out contexts that have
achieved the optimal reward (assumed to be 1), as no more relevant documents can be retrieved. For
the remaining contexts, we weigh each context by the reward and sample one of them. This biases
the data towards trajectories that achieve higher reward, while still containing trajectories where the
model can recover from poor retrieval in earlier hops. The final training dataset is simply the union
of the dataset from each hop, that is Dy = Dy U ... Dg. The pseudocode for dataset sampling is
given in Algorithm I}

4.2 MODEL OPTIMIZATION

Given the training dataset Dy, we want to update the LLM 7,.. First, we make a simplification
by optimizing every hop greedily, that is, based on the reward obtained in that hop alone. Ideally,
updating 7, on data in hop h accounts for rewards obtained in all future hops. Retrieving relevant
documents in earlier hops is likely always better, and intuitively, retrieving irrelevant documents in
earlier hops will rarely lead to better overall retrieval. We verify this assumption empirically: For
two sets of retrieved documents, a low reward and high reward set, a low reward retrieval leads
to a higher total reward in only 0.026% of the cases (Appendix [B.I). Thus, the greedy approach
considerably simplifies the optimization, without any evident theoretical or empirical sacrifice.

Given the dataset Dy, we can optimize 7, using any RL algorithm. In this work, we consider
preference-based RL approaches, specifically IPO described in Section [3] because of its simplicity
and effectiveness. To optimize 7, using [PO, we need to transform D, into a preference dataset.
This can be done straightforwardly by comparing two search queries g; and g; for the same user
question and context and choosing the query with higher reward as the preferred response and the
other query as the dispreferred response. However, before we can optimize 7, using IPO, we must
account for the fact that the search queries were sampled using few-shot prompting, and at test-time
we will not be using the prompt. To do so, we leverage context distillation (Snell et al., [2022)
by fine-tuning on the search queries without the context. We observe in our experiments that this
roughly matches the performance of few-shot prompting. After context distillation and converting
the training dataset into a preference dataset, we optimize 7, using IPO.

Published as a conference paper at ICLR 2025

Iterative-LeReT. Thus far, we have assumed that sampling search queries and model training are
done as two separate steps. However, we can alternate between the two steps, leveraging the im-
provements in previous iterations to sample better data for the next iterations. Iterative-LeReT
closely follows iterative-DPO (Xu et al.l 2024). We partition the dataset of user questions &/ and
run LeReT on each partition, sampling from the model fine-tuned on the previous partitions. Specif-
ically, we have I data partitions Uy, . ..,U;. We start with the LLM 7y and apply LeReT on U/; to
obtain the fine-tuned LLM 71, so we have LeReT (7, 1) — 7. We use LeReT on Us, using 7 to
sample the training data and continue fine-tuning from, that is, LeReT (71, Us) — m2. We can repeat
this for all [partitions until we get the final model 7;. We find that iterative sampling and training
can be effective as models may not achieve accurate and relevant retrievals in the initial iterations,
and later models may be able to generate better exploration data.

4.3 REWARD LABELING FOR RETRIEVED DOCUMENTS

In order to construct the required preference datasets, we need a reward signal R to score the doc-
uments retrieved by a search query. How do we compute this reward signal? There are broadly
two ways to get such supervision: direct supervision, where a human provides oracle documents to
ground the answers in the training dataset or explicitly reviews the relevance of documents retrieved
by the search query and indirect supervision, where the supervision comes from evaluations of the
downstream generator such as preference feedback on the final answers or some answer verification.
The latter is indirect because we do not obtain any explicit supervision for retrieval, but only receive
information about how the generator performed after being conditioned on the retrieved documents.
We run a short study in Section comparing the two forms of supervision, and find that direct
supervision results in better performing models. However, a full study comparing direct and indirect
forms of supervision and their trade-offs is beyond the scope of this paper, and potentially requires
novel algorithmic considerations. For the majority of the paper, we assume some form of direct
supervision, as allowed by commonly used datasets and benchmarks.

Algorithm 1 Prompt Driven Diverse Sampling + Training
1: Input: Number of hops H, Number of few-shot prompts P, LLM 7., Retriever I, Dataset U

2: Initialize: C1 = &; [p1, . .., pp] as few-shot prompts; Dyrer = &
3: for h in range(1, H) do
4 for v in U/ do
5 for i in range(0, P) do
6 Sample ¢; ~ 7 (- | u, pi, Ch—1)
7 Retrieve Ch; + Crh_1 U K(q:)
8 Compute reward r; = R(Ch;)
9 end for
10: for ¢ in range(0, P) do
11 for j in range(i + 1, P) do
12 If r; # r;: Add (u, Ch—1, qi, q;) to preference dataset Dpre
13 end for
14 end for
15 Sample context for next hop Cj, ~ Sample(Chi, P(Ch;) x 74)
16: end for

17: end for
18: TLereT-cD = SFT(Tl'm Dpref)
19: TiereTr = IPO(TrLeReT—CD, Dpref)

5 EXPERIMENTAL EVALUATION

We now evaluate how LeReT impacts the quality of retrieval and of downstream generation. We
first test LeReT on two multi-hop question answering datasets, finding that LeReT significantly
outperforms baselines such as few-shot prompting and supervised fine-tuning. We also find that
applying LeReT iteratively leads to further improvement over iterations. We analyze prompt driven
diverse sampling in contrast with sampling using high temperature and also discuss different reward
functions for the retrieval step. Finally, we evaluate LeReT’s adaptability for various pipelines by
testing it against retrievers.

Published as a conference paper at ICLR 2025

Model Method 1 Hop 2 Hops 3 Hops 4 Hops Generator
Dataset RE AP | RE AP | RE AP | RE AP EM
Base 423 388 | 547 419 — 41.0
Few-shot 499 456 | 648 539 — 47.1
Llama 8b Few-shotall | 50.2 464 | 63.5 50.5 — 452
HotpotQA | Query2Doc | 47.7 4377 | 614 51.1 — 44.8
LeReT-CD | 514 473 | 69.8 58.0 — 49.3
LeReT 56.7 525 | 771 66.3 — 52.5
Base 522 484 | 709 577 — 51.0
Few-shot 544 504 | 66.7 57.8 — 48.5
Gemma 9b | Few-shotall | 54.6 50.5 | 69.6 58.8 — 50.0
HotpotQA | Query2Doc | 43.5 40.0 | 51.2 439 — 359
LeReT-CD | 535 49.6 | 71.9 59.2 — 514
LeReT 56.1 522|799 67.0 — 54.3
Base 379 348 | 456 379 | 485 383 | 500 393 61.5
Few-shot 45.6 422 | 53.4 459 | 56.0 46.0 | 573 46.1 64.6
Llama 8b Few-shotall | 38.8 35.8 | 51.9 444 | 575 463 | 59.7 459 64.7
HoVer Query2Doc | 39.7 36.4 | 489 421 | 539 443 | 57.1 457 64.0
LeReT-CD | 429 39.8 | 56.6 484 | 632 522 | 669 543 67.5
LeReT 458 425 | 654 56.1 | 728 614 | 76.9 643 69.8
Base 40.8 37.7 | 455 38.1 | 488 39.6 | 50.1 404 61.7
Few-shot 46.3 429 | 554 46.8 | 579 484 | 593 485 64.3
Gemma 9b | Few-shotall | 463 428 | 558 487 | 64.1 526 | 68.2 54.1 67.5
HoVer Query2Doc | 40.5 37.6 | 43.3 39.1 | 455 402 | 46.7 40.7 60.3
LeReT-CD | 452 41.7 | 59.5 50.7 | 653 54.1 | 69.0 562 67.2
LeReT 470 43.7 | 675 57.6 | 752 63.1 | 79.4 66.1 71.5

Table 1: LeReT improves the performance of Llama 3 8b and Gemma 9b on HotpotQA and
HoVer. We compare models trained with LeReT versus the base model, the base model with few-
shot prompting, and the base model with Query2Doc. We measure the recall (RE) and average
precision (AP) of the retrieved documents (higher is better) along with the exact match of generations
produced using the retrieved documents.

Datasets. We test LeReT on HotpotQA (Yang et al.l 2018) and HoVer (Jiang et al., [2020). Both
datasets are based on a Wikipedia knowledge base and are multi-hop, meaning that models must
reason across multiple articles to arrive at the correct answer. The datasets provide both the correct
answer and supporting articles. HotpotQA is a question-answering dataset that requires up to 2 hops,
while HoVer is a fact verification dataset that requires up to 4 hops. Both datasets are relatively large,
allowing us to train on over 10,000 questions.

Evaluation metrics. We measure retrieval performance using recall and average precision. Recall
is the number of correctly retrieved documents over the total number of correct documents. Average
precision (Eq. [3]in the appendix) takes into account the ordering of the documents, i.e. if the correct
3 documents are ranked as the last 3 out of 6 the score will be lower. For generation, we measure
both exact match on the entire answer and F1 at the word level.

Baselines. For our baselines, we compare against using the base (general-purpose, instruction-
tuned) model to generate queries and also prompting the base model using bootstrapped few shot
prompts optimized by DSPy. For the main few shot prompting baseline, we use the few shot prompts
used during prompt driven diverse sampling. These prompts are created by optimizing the first hop
with DSPy and then using that prompt for all hops. To demonstrate that the gains of LeReT are
additive on top of these, we report the maximum achieved few-shot prompt performance achieved
by any bootstrapped fewshot prompt p1, . .., pp. For some experiments, we also report few-shot all,
which is where we use DSPy to optimize over the entire pipeline and bootstrap different examples
for each hop. We also run Query2Doc (Wang et al., [2023), a prompting technique that asks the
LLM to generate a hypothetical document in addition to the query, as a baseline. We also report
LeReT-CD as a baseline for some experiments. This is the performance of the model after the SFT
step (but before IPO) and as explained in Section#.2]is the same as context distillation.

Experiment setup. Unless otherwise specified, we use Llama 3 8b Instruct or Gemma 2 9b it as the
base model for query generation. We use ColBERTV2 (Santhanam et al.,2022) as the retriever. For
the reward function, we use the average precision of the retrievals, so R = AP(Ch;).

Published as a conference paper at ICLR 2025

1 Hop 2 Hops 3 Hops 4 Hops

Dataset Model Method RE AP | RE AP ' RE AP I RE AP
Standard | 56.1 522 | 79.9 67.0 —
HotpotQA | Gemma 9b | Iteration1 | 55.7 51.7 | 78.2 65.6 —
Iteration2 | 57.6 53.5 | 823 70.5 —
Standard | 45.8 425 | 654 56.1 | 728 614 | 769 643
HoVer Llama 8b | Iteration1 | 45.1 41.7 | 62.7 54.1 | 69.6 59.1 | 73.5 62.1
Iteration2 | 449 41.6 | 653 555 | 734 612 | 782 644

Table 2: Iteratively applying LeReT leads to performance gains compared to standard LeReT.
Gemma 9b and Llama 8b are tested with two iterations and recall and average precision are measured
(higher is better).

5.1 RESULTS ON HOTPOTQA & HOVER

In terms of retrieval recall, LeReT improves recall by 9-22% on HotPotQA and 27-29% on HoVer
relative to the Llama and Gemma unadapted instruct models (“base’). This substantially exceeds the
gains achieved via few-shot prompting alone, showing that sampling from multiple few shot prompt
ensembles and training the model with RL is crucial. The gains also compounds over hops, possibly
because lower quality search queries at a given hop distract future steps. We feed the improved
retrievals into Llama 3.1 70b, asking it to generate a response to the question using the provided
context. We find that improving retrieval produces a corresponding improvement in generations,
with the generator exact match increasing at approximately half the rate of recall.

5.2 ITERATIVE-LERET

We evaluate the performance of applying LeReT for two iterations. Training with only half the data
(iteration 1) results in slightly worse performance compared to standard non-iterative LeReT, but
after the second iteration the model performs better than the LeReT model. That is, sampling data
that is both more on-policy and higher scoring in the second iteration leads to improvement.

5.3 FACTUALITY WITH DIFFERENT GENERATORS

Base (RE 54.15) | Few-shot (RE 63.60) LeReT (RE 80.40)
Generator Model EM F1 EM FT EM Fi
Gemma 2b 13.8 21.6 16.6 24.5 18.9 (+5.1) 28.5
Llama 3 8b 35.1 44.6 40.4 50.2 469 (+11.8) | 58.6
Llama 3.1 70b 38.1 47.7 45.6 56.3 53,5 (+154) | 64.9
GPT4 33.4 43.3 41.6 52.7 50.7 (+17.3) | 62.9

Table 3: The stronger the generator model, the more it benefits from improved retrieval. We
test 4 different generator models using retrievals sampled from HotpotQA on the base model, few-
shot prompted model, and LeReT-trained model. We report the recall of the retrievals (RE). We
measure the exact match and F1 scores of the generated answers (higher is better).

Improving retrieval seeks to improve LLM grounding. Intuitively, stronger models with better rea-
soning capabilities should benefit more from having the correct documents to reason with than
weaker models that may not be able to generate the correct answer even with the right documents.
To assess this, we take the retrieval output by various Llama 3 8b models for HotpotQA and con-
dition various generator models with them. As seen in Table[3] stronger generators deliver higher
quality and larger gains when supplied with LeReT-trained retrieval contexts. We note that although
GPT4 has the largest improvement, it does not have the highest score. Examining the generations,
we see that GPT4 very closely followed the instructions to “base your answers only on the provided
context” and would output statements such as “answer cannot be found in the context” instead of
trying to answer it anyway the way weaker models did.

Published as a conference paper at ICLR 2025

Model Data size Gold (%) Unique AP AP Std Dev
Hotpot HoVer | Hotpot HoVer | Hotpot HoVer | Hotpot HoVer
@ temp 0.3 44705 28,575 | 375 12.1 1.66 1.25 0.09 0.029
@ temp 0.5 55,564 32,091 | 394 12.6 2.10 1.27 0.10 0.033
@ temp 0.7 69,361 37,354 | 439 12.6 2.10 1.28 0.14 0.033
@ temp 1.35 92,264 48,516 | 46.3 12.0 2.35 1.32 0.16 0.039
@ temp 2.0 81,017 58,281 | 41.0 10.3 2.36 1.34 0.16 0.045
Fixed few-shot @ temp 2.0 93,613 92,542 | 47.7 13.5 2.41 1.32 0.16 0.038
Diverse few-shot @ temp 2.0 | 95,373 71,433 | 47.5 123 247 1.34 0.17 0.044
Diverse few-shot @ temp 0.7 | 105,506 49,304 | 54.2 13.8 2.35 1.28 0.15 0.031

Table 4: Sampling with higher temperature results in greater diversity of responses (higher
unique ap, ap std dev) while few shot prompting results in better data (higher gold rate).
Specifically, gold rate is defined as the percentage of questions for which we have a gold star re-
sponse (a query that results in the maximal score). Unique AP is the number of unique average
precision scores there are for a question, and AP std dev is the standard deviation of the average
precision scores for a question. Data size is measured in terms of the number of preference pairs.

5.4 DIVERSE FEW-SHOT PROMPTING VERSUS HIGH-TEMPERATURE SAMPLING

While prior work typically uses high temperature sampling to generate diversity, LeReT leverages
few-shot prompting to generate diverse exploration data. To evaluate the effectiveness of few-shot
prompt diversification, we consider alternate sampling strategies, particularly sampling from 7, at
different temperatures with no few-shot prompting, a fixed few-shot prompt (fixed), or multiple few
shot prompts (diverse).

First, we compute some statistics about the rewards generated by the sampled search queries: we
compute the average number of unique rewards per question and the standard deviation of the re-
wards as a proxy for diversity, and we measure the percentage of questions where at least one query
(gold star answer) achieves maximal reward as a proxy for quality of sampled data. We find in
Table [] that while sampling with higher temperature improves diversity in search queries, few-shot
prompting leads to significantly higher quality data and using multiple few-shot prompts provides
comparable diversity.

We train on four of the sampled datasets: (1) queries sampled with diverse few-shot prompting at
standard temperature (0.7), (2) queries sampled at a high temperature (2.0), (3) queries sampled with
diverse few-shot prompting at high temperature (2.0), and (4) queries sampled with a single fixed
few-shot prompt at high temperature (2.0). We find that training a model using data sampled with
few-shot prompting at temperature 0.7 results in the best performance, which is also the sampling
strategy that results in the largest percentage of questions with at least one gold star answer. This
suggests that exploration is critical to the success of RL training and justifies the extra effort of
bootstrapping few shot prompts.

1 Hop 2 Hops

Model RE | AP | RE | AP

Base model 423 | 38.8 | 547 | 419
Few-shot 49.87 | 45.58 | 64.77 | 53.86
LeReT diverse few-shot @ temp 0.7 | 55.74 | 51.76 | 78.14 | 67.67
LeReT @ temp 2.0 49.12 | 44.81 | 69.86 | 58.56
LeReT fixed few-shot @ temp 2.0 50.89 | 46.69 | 70.79 | 59.93
LeReT diverse few-shot @ temp 2.0 | 51.73 | 47.79 | 73.67 | 62.60

Table 5: Diversifying few-shot prompts when sampling search queries result in more effective
training datasets for RL. The standard LeReT with few-shot prompting at temperature 0.7 results in
better performance than training on a dataset sampled at temperature 2.0 without few-shot prompting
or a dataset sampled at at temperature of 2.0 with fixed few-shot prompting or a dataset sampled at
at temperature of 2.0 with diverse few-shot prompting.

Published as a conference paper at ICLR 2025

1 Hop 2 Hops 3 Hops 4 Hops
Dataset | Method —pp—3pRE AP [RE AP | RE AP
Llama 8b | 10.6 9.1 | 18.5 15.0 —
Hotpot | Few-shot | 39.6 34.7 | 50.7 40.8 —

LeReT | 43.8 38.9 | 60.0 438.6 —
Llama 8b | 15.6 14.0 | 22.8 19.2 | 27.8 22.0 | 31.2 23.5
HoVer Few-shot | 37.1 33.2 | 459 383|498 40.1 | 52.1 39.6
LeReT | 39.1 352|519 445 | 58.6 488 | 62.6 513

Table 6: LeReT greatly improves the performance of Llama 8b on Hotpot and HoVer with
Azure Al Search used as the retriever. We perform the same sampling and training pipeline as all
other experiments but use Azure Al Search instead of ColBERT.

5.5 DIFFERENT RETRIEVERS

Finally, we test whether LeReT is applicable to general RAG systems by swapping our retriever
from ColBERT over Wikipedia to Azure Al Search, applied with the default configuration for full
text search. We observe that the base Llama model performs very poorly compared to its retrievals
with ColBERT. This is likely because Azure is not specialized to the Wikipedia index which is
helpful for our multi-hop tasks. However, the query generating LLM can adapt to compensate for
this weaker retriever, as we see significant improvement with few-shot prompting and LeReT. This
demonstrates the power of LeReT to adapt to general blackbox tools in the pipeline. Given the poor
performance of the base model, few-shot prompting based exploration (Section is found to be
necessary, versus simply sampling with high temperature.

6 DISCUSSION

In this work, we introduced LeReT, a framework for improving the quality of multi-hop retrieval
via reinforcement learning and thus enabling better grounding for LLM systems. Beyond retrieval
specifically, this can be extended to learning for agentic systems or LLM programs that use other
tools. LeReT conducts diversified exploration of search queries in each hop by sampling using
varied optimized few-shot prompts. It then uses this to construct a preference dataset for every hop
consisting of queries that lead to a diverse set of retrieved outcomes. To train the model, it first
conducts context distillation followed by an iterative application of the IPO objective. Experimental
evaluation on the HotpotQA and HoVer benchmarks with two different retrieval models reveals that
LeReT can improve the quality of Llama 8b- and Gemma 9b-based systems by up to 29% in recall.

Limitations & Future Work. While in this work we have used direct supervision for retrieval, a
fruitful effort would be to enable learning from indirect supervision such as the correctness of the
final generative response. Another promising direction is learning by updating the tools themselves
like training the retriever model used to encode the search queries and documents. Doing this would
require changes to the sampling algorithm and addressing the signal-to-noise ratio but would likely
lead to significant gains.

10

Published as a conference paper at ICLR 2025

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
to retrieve, generate, and critique through self-reflection. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
hSyW5go0v8.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences, 2023. URL https://arxiv.org/abs/2310.12036.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 1870-1879, 2017.

Google. Generative ai is coming to google search. https://blog.google/products/
search/generative—ai-google—search-may—-2024/, 2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929-3938.
PMLR, 2020.

Hangfeng He, Hongming Zhang, and Dan Roth. Rethinking with retrieval: Faithful large language
model inference, 2022. URL https://arxiv.org/abs/2301.00303.

Yichen Jiang, Shikha Bordia, Zheng Zhong, Charles Dognin, Maneesh Singh, and Mohit Bansal.
HoVer: A dataset for many-hop fact extraction and claim verification. In Trevor Cohn, Yulan
He, and Yang Liu (eds.), Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 3441-3460, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.findings-emnlp.309. URL https://aclanthology.org/2020.
findings—-emnlp.309.

Omar Khattab, Christopher Potts, and Matei Zaharia. Baleen: Robust multi-hop reasoning at scale
via condensed retrieval. Advances in Neural Information Processing Systems, 34:27670-27682,
2021.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive NLP. arXiv preprint arXiv:2212.14024, 2022.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into self-
improving pipelines. arXiv preprint arXiv:2310.03714, 2023.

Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joonsuk Park, and Jaewoo Kang. Tree of clarifi-
cations: Answering ambiguous questions with retrieval-augmented large language models, 2023.
URLhttps://arxiv.org/abs/2310.14696.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. Internet-augmented dialogue generation. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
8460-8478, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.
18653/v1/2022.acl-long.579. URL https://aclanthology.org/2022.acl-long.
579l

Tian Lan, Deng Cai, Yan Wang, Heyan Huang, and Xian-Ling Mao. Copy is all you need, 2023.
URL https://arxiv.org/abs/2307.06962.

11

https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://arxiv.org/abs/2310.12036
https://blog.google/products/search/generative-ai-google-search-may-2024/
https://blog.google/products/search/generative-ai-google-search-may-2024/
https://arxiv.org/abs/2301.00303
https://aclanthology.org/2020.findings-emnlp.309
https://aclanthology.org/2020.findings-emnlp.309
https://arxiv.org/abs/2310.14696
https://aclanthology.org/2022.acl-long.579
https://aclanthology.org/2022.acl-long.579
https://arxiv.org/abs/2307.06962

Published as a conference paper at ICLR 2025

Angeliki Lazaridou, Elena Gribovskaya, Wojciech Stokowiec, and Nikolai Grigorev. Internet-
augmented language models through few-shot prompting for open-domain question answering.
arXiv preprint arXiv:2203.05115, 2022.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 6086—-6096, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Rodrigo Nogueira and Kyunghyun Cho. Task-oriented query reformulation with reinforcement
learning. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.), Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, pp. 574-583, Copen-
hagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/
D17-1061. URL |https://aclanthology.org/D17-1061.

OpenAl. Searchgpt is a prototype of new ai search features. https://openai.com/index/
searchgpt-prototype/, 2024.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model
programs, 2024. URL https://arxiv.org/abs/2406.11695,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

PerplexityAl. Perplexity mai. https://www.perplexity.ai/| 2024.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models, 2023. URL https://arxiv.
org/abs/2210.03350.

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, Bradley Knox, Chelsea
Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct alignment
algorithms. arXiv preprint arXiv:2406.02900, 2024a.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024b.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Col-
bertv2: Effective and efficient retrieval via lightweight late interaction, 2022. URL https:
//arxiv.org/abs/2112.01488.

Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context, 2022. URL https:
//arxiv.org/abs/2209.151809.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for 1lm agents, 2024. URL https://arxiv.org/
abs/2403.02502.

Dilara Soylu, Christopher Potts, and Omar Khattab. Fine-tuning and prompt optimization: Two great
steps that work better together, 2024. URL https://arxiv.org/abs/2407.10930.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,

Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008-3021, 2020.

12

https://aclanthology.org/D17-1061
https://openai.com/index/searchgpt-prototype/
https://openai.com/index/searchgpt-prototype/
https://arxiv.org/abs/2406.11695
https://www.perplexity.ai/
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2112.01488
https://arxiv.org/abs/2112.01488
https://arxiv.org/abs/2209.15189
https://arxiv.org/abs/2209.15189
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2407.10930

Published as a conference paper at ICLR 2025

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multi-
hop questions via single-hop question composition, 2022. URL https://arxiv.org/abs/
2108.00573.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions, 2023. URL
https://arxiv.org/abs/2212.105009.

Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language mod-
els. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 9414-9423, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.585. URL
https://aclanthology.org/2023.emnlp—main.585.

Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick Lewis, William Yang Wang, Yashar
Mehdad, Scott Yih, Sebastian Riedel, Douwe Kiela, et al. Answering complex open-domain
questions with multi-hop dense retrieval. In International Conference on Learning Representa-
tions.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe
than others: Iterative preference optimization with the pairwise cringe loss, 2024. URL https:
//arxiv.org/abs/2312.16682.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369—
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-12509.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.036209.

Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin Ma, Hongwei Wang, and Dong Yu. Chain-
of-note: Enhancing robustness in retrieval-augmented language models, 2024. URL https:
//arxiv.orqg/abs/2311.09210.

Yao Zhao, Rishabh Joshi, Tianqgi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

13

https://arxiv.org/abs/2108.00573
https://arxiv.org/abs/2108.00573
https://arxiv.org/abs/2212.10509
https://aclanthology.org/2023.emnlp-main.585
https://arxiv.org/abs/2312.16682
https://arxiv.org/abs/2312.16682
https://aclanthology.org/D18-1259
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2311.09210
https://arxiv.org/abs/2311.09210

Published as a conference paper at ICLR 2025

A SAMPLING AND TRAINING DETAILS

We sample with P = 4 for HotpotQA and P = 3 for HoVer. We implement our sampling pipeline
on top of DSPy (Khattab et al.| [2023), specifically defining a single hop as a program and sampling
data using the evaluate functions. We also use chain-of-thought prompting when generating queries.

We use a learning rate of 1e—7 for SFT/context distillation in all our experiments, and use a 7 =
0.05 and learning rate of 1e—7. We train SFT for 1 epoch, and we only distill the best performing
prompt. We train IPO for 2 epochs.

A.1 DATA SCALING ANALYSIS

We conduct data scaling experiments for LeReT. We evaluated a training run of Llama 3 8b on
the full HotpotQA training set (90,447 questions), which resulted in 494,208 preference pairs after
prompt driven diverse sampling. We find that the majority of the improvement occurs relatively
quickly. Based on this, we only use a quarter of the HotpotQA training set for subsequent experi-
ments. However, data scaling likely depends on a host of factors, including the task complexity and
the base model, and we conducted the data scaling experiment to reduce the computational cost of
our experiments.

Performance Over Training Examples

—— 2 Hop - RE
2 Hop - AP
075 —— 1 Hop - RE
—— 1 Hop- AP
0.70 1
[
E 0.65 |
=
[J)
I~
& 0.60 1

0.5 - /\/\/\/\/\/\/\/\/\/\/\/
- /\/\/\/WV\/\/—\/\/\/

Figure 4: The model performance saturates quickly. Measuring the test performance of Llama
3 8b as training progresses on the preference dataset collected using LeReT on the full HotpotQA
train set (90,447 HotpotQA questions, 494,208 preference pairs).

For the retriever, we set up a local instance of ColBERTV2 with the Wiki 2017 abstracts index. For
Azure Al Search, we created a custom index by uploading all the abstracts from the Wiki 2017
abstracts index. We use the default settings, only using standard text search with no semantic or
vector search.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 JUSTIFYING GREEDY OPTIMIZATION

We run LeReT for two hops on all 90,447 questions in HotpotQA. After sampling the first hop,
we chose two sets of documents that have different rewards. We then run the second hop with no
few-shot prompting and evaluate the reward after the second hop. We find that the lower reward set
of documents resulted in a higher reward after the second hop in only 0.026% of cases.

14

Published as a conference paper at ICLR 2025

B.2 AVERAGE PRECISION

Average precision is defined according to Eq. [3| where R is the total number of relevant documents,
P(k) is the precision of the first & documents, and rel(k) is 1 if the kth document is relevant and 0
otherwise:

1

AP = XN: P(k) - rel(k) 3)
k=1

=

B.3 MULTI-HOP SAMPLING

Can we get away without training on data from all hops? We run an ablation to determine the neces-
sity of sampling across multiple hops. Sampling across multiple hops requires is computationally
and less parallelizable. Specifically, we train Llama 3 8b on Hotpot and HoVer, sampling only the
data from the first half of the hops. For Hotpot, this amounts to sampling from just the first hop and
for HoVer, this amounts to sampling data from the first two hops.

1 Hop 2 Hops 3 Hops 4 Hops
Dataset | Method | —pp——4p—pp— AP [RE AP [RE AP
Thop | 588 547 | 708 625 —
Allhops (2) | 567 52.5 | 771 66.3 _
Thops | 455 422 | 628 543 | 697 593 | 3.6 622
Allhops (4) | 45.8 425 | 654 56.1 | 72.8 614 | 769 643

Hotpot

HoVer

Table 7: Sampling from all hops instead of only the first few significantly improves perfor-
mance. We train Llama 3 8b on preferences from only the first half of the hops in a pipeline, and
compare to training on the full dataset containing preferences over queries from all the hops.

We find training on data from all hops leads to substantial improvement in performance across both
the datasets, compared to training on only the first half leads to performance gains. The gain is
larger for Hotpot where the task only has two hops, and thus never sees data where the context has
additional documents from previous hops.

B.4 LONG FORM GENERATIONS

We present a preliminary attempt at long form generation. The majority of LLM use cases are for
long form generation, and as such we want to test LeReT’s ability to improve long form generations.
In addition, it is more to difficult to evaluate the factuality of long form answers, meaning that eval-
uating the relevance of the documents it conditioned its answer on as LeReT does may be simpler.
Current retrieval datasets focus on short question answering, leading us to generate our own long
form dataset.

To create a dataset with open ended questions that still had correct retrievals, we prompted GPT for
20 broad topics. From each of those 20 broad topics, we prompted GPT for 500 topics, giving us
a total of 10,000 topics such as “Injuries in American football” or “Effects of mobile radiation on
human health”. We then fed those topics into Colbert and retrieved the top 10 wikipedia abstracts.
We then prompt GPT with the 10 wikiepdia abstracts and asked it to come up with a question that
required students to use exactly 3 of the 10 articles. This gave it the freedom to choose articles that
were closely related and led to more natural questions than forcing it to use a given 3 articles.

We then train Llama 3 8b on this dataset using LeReT. We find an approximately 8.47% improve-
ment in document retrieval. We create long form generations by feeding the retrieved documents
into Llama 3.1 70B. We find that the LeReT-generations are superior to few shot prompting with a
55.56% win rate.

15

Published as a conference paper at ICLR 2025

B.5 POSSIBLE REWARD FUNCTIONS

Disagree (%) | Data Size 1
Dataset Hard Soft Generator | Retrieval
Hotpot 25.09 | 38.46 96,766 163,644
Hover 31.48 | 33.03 10,488 88,448

Table 8: Sampling data using the generator F1 score leads to poor quality data with many
wrong preference pairs (high disagree values) and less data (lower data size). We sample pref-
erence datasets using the F1 score of the generated answer. Hard disagree is preference pairs where
the ranking by the retrieval reward is swapped compared to the ranking by the generator reward.
Soft disagree is preference pairs where the retrieval reward is equal but the generator reward has a
ranking. Data size is the size of the preference dataset generated using each method.

Do we need direct supervision in LeReT for computing the reward function that outputs a reward for
a given question and set of retrieved documents or can we get away with indirect methods for super-
vising retrieval quality? We currently use average precision of retrieved documents, which provides
more direct supervision for retrieval but requires knowing a correct set of documents in advance, as
is available in Hotpot/HoVer. But, there are settings where the optimal retrieved documents may be
hard to specify in advance. In such cases, indirect supervision may be easier to provide, where the
final generated answer conditioned on the retrieved documents is reviewed, and a reward is gener-
ated based on the verification of the final answer. Such supervision can be quite weak and have a
high amount of noise, as the generator may answer correctly even when conditioned on incorrect
documents (because of internal knowledge) or provide incorrect answers even when conditioned on
the right documents.

To explore these different settings, we apply LeReT using the F1 score of the final generated answer
as the reward. We condition the LLM on retrieved documents along with the actual question to
generate an answer, and compare that to the correct answer. Formally, instead of using AP(C};) as
the reward, we use R = F1(m,(d, Ch)).

We find that the F1 score of the generator does not provide a very strong signal. For the preference
dataset that we constructed using the generator, over 50% of the preference pairs are wrong. We split
these incorrect pairs into two categories: hard and soft disagree. Hard disagree means that according
to the F1 generation reward, g; > ¢; but according to the AP retrieval reward, g; < ¢;. Soft disagree
means that according to the F1 generation reward, g; > ¢; but according to the AP retrieval reward,
¢; = q;. To reduce the number of soft disagrees, we experiment with adding a threshold for the
difference in F1 score to form a preference pair, but find that over half the questions in HotpotQA
and all the questions in HoVer have one word answers so this is not effective.

1 Hop 2 Hops
Model RE | AP | RE | AP
Base model 4472 | 406 | 555 | 43.0

LeReT-Retriever | 56.7 | 52.5 | 77.1 | 66.3
LeReT-Generator | 49.6 | 45.5 | 64.5 | 53.8

Table 9: With the weaker signal of generation, LeReT is able to improve upon the base model
but does not match the performance of using the retriever reward. We take the dataset sampled
on Hotpot and train Llama 3 8b.

We also find that the datasets generated using the generator reward are significantly smaller than
those generated using the AP retriever reward, for example about 8.4 times smaller in case of HoVer.
Since HoVer has one word answers, the generator F1 score is less fine grained than the retrieval
accuracy over 4 documents. This leads to a smaller preference dataset as LeReT provides contexts to
the next hop only if they have not achieved the maximum score. In the one-word answer case, there
could be queries that retrieve only some (or none) of the correct documents but give the generator
enough context to guess or use prior knowledge to output the correct answer. Thus, with this sort
of coarse reward, it is much more likely that a question will be excluded from subsequent hop even
though the model has not output an optimal query to the retriever.

16

Published as a conference paper at ICLR 2025

When we train a model on this data, we find that it significantly improves over the base model, but
substantially under performs the case where the reward signal is derived from average precision of
gold documents. We find that the first hop data is far better than the second hop data, (11.43% hard
disagree compared to 37.70, 37.04 soft disagree compared to 39.78) which likely contributes to the
decreased performance on the second hop.

B.6 GENERALIZATION

We test how well LeReT-trained models are able to generalize. Specifically, we take Gemma 9b
trained on Hover and evaluate its performance on Hotpotqa. Similarly, we take Llama 8b trained
on Hotpotqga and test in on Hover. We find that while these models do not perform as well as those
specifically trained on the dataset, they outperform few-shot prompting and as such with LeReT,
models are learning to search in ways that are broadly applicable to different datasets.

1 Hop 2 Hops 3 Hops 4 Hops
Test Dataset Model Method RE AP RE AP RE AP RE AP

Few-shot 499 456 | 648 539 —
HotpotQA Gemma 9b | LeReT-Hotpot | 56.7 52.5 | 77.1 66.3 —
LeReT-Hover | 51.3 472 | 73.8 60.7 —
Few-shot 45,6 422 | 534 459 | 56.0 46.0 | 57.3 46.1
HoVer Llama 8b LeReT-Hover | 45.8 425 | 654 56.1 | 728 614 | 769 64.3
LeReT-Hotpot | 42.6 393 | 60.1 51.6 | 67.5 56.6 | 71.2 59.2

Table 10: Models trained with LeReT on a given dataset lead to improved performance on the
other dataset. Gemma 9b trained on Hover is tested on Hotpot and Llama 8b trained on Hotpot is
tested on Hover. Both models outperform few shot prompting.

17

	Introduction
	Related Work
	Preliminaries
	LeReT: Learning to Retrieve by Trying
	Prompt Driven Diverse Query Generation
	Model Optimization
	Reward Labeling for Retrieved Documents

	Experimental Evaluation
	Results on HotpotQA & HoVer
	Iterative-LeReT
	Factuality with different generators
	Diverse Few-Shot Prompting versus High-Temperature Sampling
	Different retrievers

	Discussion
	Sampling and Training Details
	Data Scaling Analysis

	Additional Experimental Details
	Justifying Greedy Optimization
	Average precision
	Multi-Hop Sampling
	Long form generations
	Possible reward functions
	Generalization

