Continual Robot Skill and Task Learning via Dialogue 10905 Robotics Lab Weiwei Gu, Suresh Kondepudi, Anmol Gupta, Lixiao Huang, and Nakul Gopalan # Motivation The capability of dialog is desirable for robots as it allows robots to ask for help in a way that non-expert users can understand. Furthermore, robots need to leverage the feedback from users and learn to perform the task. # Related Work - Human-robot dialog. [1] - Continual skill learning. [2] - Active Learning. [3] # Challenges - How does the robot know that it does not know the skill to perform a task? - How to continually learn novel skills without forgetting the existing ones, with only few instances? ### Methods - Use language embedding spaces to estimate whether the robot possesses the skill or not. - Introduce LoRA adapters to ACT to continually learn fine-grained control tasks - Combine a state machine with LLM to request information via dialog # COLADA Agent Interaction module Alignment Check Cosine Similarity Language Query Dialog State machine ## Limitations - Restricted domain for the human subject study. - Demographic limitation of participants of the human subject study. - Doesn't handle turn-taking naturally. - Have issues with heterogeneous demonstrations # Human Subject Study Results ### Objective metrics on agent task performance: | Agent | Phase 1 | | Phase 2 | | | | |-------------------|---------------|---------------|---------------|----------------|---------------|--| | | Sandwich SR | Pre-train SR | Sandwich SR | Few-shot SR | Pre-train SR | | | COLADA | 93.75%(15/16) | 97.92%(47/48) | 81.25%(13/16) | 100.00%(16/16) | 91.67%(44/48) | | | Inverse Semantics | 81.25%(13/16) | 93.75%(45/48) | 87.50%(14/16) | N/A | 91.67%(44/48) | | | Inarticulate | 0.00%(0/16) | 93.75%(15/16) | 0.00%(0/16) | 0.00%(0/16) | 87.50%(14/16) | | ### Objective metrics on distraction tasks: | Agent | Interruption Count | Normalized Completed Email Count | Normalized Word Count | Total Time | Task Time | |-------------------|---------------------------------|----------------------------------|-----------------------|---------------------|---------------------| | 100 | Phase One | | | | | | COLADA | 2.13 ± 0.13 | 0.27 ± 0.03 | 0.24 ± 0.01 | 2176.67 ± 57.06 | 1035.21 ± 26.10 | | Inverse Semantics | 1.13 ± 0.09 | 0.16 ± 0.02 | 0.20 ± 0.01 | 943.93 ± 32.41 | 753.21 ± 25.85 | | Inarticulate | 0.00 ± 0.00 0.07 ± 0.02 | | 0.08 ± 0.01 | 493.01 ± 58.62 | 412.98 ± 56.69 | | | | Ph | nase Two | | | | COLADA | 0.00 ± 0.00 | 0.25 ± 0.03 | 0.23 ± 0.02 | 1083.42 ± 27.28 | 1033.70 ± 26.32 | | Inverse Semantics | 1.00 ± 0.00 | 0.17 ± 0.02 | 0.17 ± 0.01 | 870.77 ± 26.26 | 738.27 ± 24.02 | | Inarticulate | 0.00 ± 0.00 | 0.08 ± 0.01 | 0.07 ± 0.01 | 426.94 ± 51.85 | 376.78 ± 48.74 | ### Simulation Results ### Results on RLBench: | Mod | del | Pre-trained Skills(1000 traj.) | Fine-tune Skills(1000 traj.) | Overall Success Rate(1000 traj.) | Fine-tune Skills(5 traj.) | Overall Success Rate(5 traj | |-------|------|--------------------------------|------------------------------|----------------------------------|---------------------------|------------------------------------| | ACT-L | oRA | 60.75 ± 2.40 | $54.00 \pm 9.73^*$ | 59.40 ± 1.52 | 77.67 ± 9.36 | $\textbf{64.13} \pm \textbf{1.80}$ | | GMM- | LoRA | 26.08 ± 4.02 | 13.33 ± 4.50 | 23.53 ± 2.99 | 16.67 ± 4.92 | 24.20 ± 3.72 | | AC | T | 9.25 ± 2.51 | $62.00 \pm 8.84^*$ | 19.80 ± 1.69 | 95.00 ± 4.22 | 26.40 ± 2.45 | ### Results on LIBERO: | Model | Pre-trained Skills(50 traj.) | Fine-tune Skills(50 traj.) | Overall Success Rate(50 traj.) | Fine-tune Skills(5 traj.) | Overall Success Rate(5 traj.) | |----------|------------------------------|----------------------------|--------------------------------|---------------------------|-------------------------------| | | | | LIBERO-Spatial | | | | ACT-LoRA | $65.38 \pm 4.51^*$ | 40.50 ± 6.09 | 60.40 ± 4.20 | 35.50 ± 8.27 | $59.40 \pm 4.40^{*}$ | | GMM-LoRA | $64.75 \pm 2.49^*$ | 9.00 ± 5.16 | 53.60 ± 1.70 | 6.00 ± 2.92 | $53.0 \pm 2.21^*$ | | ACT | 0.03 ± 0.02 | 68.50 ± 6.50 | 13.90 ± 1.31 | 55.00 ± 7.66 | 11.20 ± 1.43 | | | | | LIBERO-Object | | | | ACT-LoRA | 67.00 ± 2.20 | $68.00 \pm 8.57^*$ | $67.20 \pm 1.50^*$ | $48.00 \pm 10.23^*$ | $63.20 \pm 1.60^*$ | | GMM-LoRA | 77.75 ± 1.90 | 15.00 ± 5.65 | $65.20 \pm 2.15^*$ | 14.00 ± 5.89 | $65.00 \pm 1.08^*$ | | ACT | 12.88 ± 2.78 | $63.00 \pm 9.33^*$ | 22.90 ± 2.45 | $35.50 \pm 7.92^*$ | 17.40 ± 3.45 | | | | | LIBERO-Goal | | | | ACT-LoRA | $73.63 \pm 2.96^*$ | 49.00 ± 8.54 | 68.70 ± 3.70 | $23.00 \pm 8.57^*$ | $63.50 \pm 4.00^*$ | | GMM-LoRA | $75.38 \pm 1.63^*$ | 10.50 ± 5.61 | 62.40 ± 1.39 | 3.5 ± 2.92 | $61.00 \pm 1.72^*$ | | ACT | 0.00 ± 0.00 | 19.50 ± 3.66 | 3.90 ± 0.73 | $10.50 \pm 4.57^*$ | 2.10 ± 0.91 | ### References - [1] Dai et al., 2024. Think, act, and ask: Open-world interactive personalized robot navigation - [2] Liu et al., 2024. Tail: Task-specific adapters for imitation learning with large pre-trained models - [3] Maeda et al. Active incremental learning of robot movement primitives