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ABSTRACT

In many multi-objective reinforcement learning (MORL) applications, being able
to systematically explore the Pareto-stationary solutions under multiple non-convex
reward objectives with theoretical finite-time sample complexity guarantee is an
important and yet under-explored problem. This motivates us to take the first
step and fill the important gap in MORL. Specifically, in this paper, we propose
a weighted-Chebyshev multi-objective actor-critic (WC-MOAC) algorithm for
MORL, which uses multi-temporal-difference (TD) learning in the critic step and
judiciously integrates the weighted-Chebychev (WC) and multi-gradient descent
techniques in the actor step to enable systematic Pareto-stationarity exploration
with finite-time sample complexity guarantee. Our proposed WC-MOAC algorithm
achieves a sample complexity of Õ(ϵ−2p−2

min) in finding an ϵ-Pareto-stationary
solution, where pmin denotes the minimum entry of a given weight vector p in the
WC-scarlarization. This result not only implies a state-of-the-art sample complexity
that is independent of objective number M , but also brand-new dependence result
in terms of the preference vector p. Furthermore, simulation studies on a large
KuaiRand offline dataset, show that the performance of our WC-MOAC algorithm
significantly outperforms other baseline MORL approaches.

1 INTRODUCTION

1) Motivation: As a foundational machine learning paradigm for sequential decision-making,
reinforcement learning (RL) has found an enormous success in many applications (e.g., healthcare
(Petersen et al., 2019; Raghu et al., 2017b), financial recommendation (Theocharous et al., 2015),
ranking system (Wen et al., 2023), resources management (Mao et al., 2016) robotics (Levine et al.,
2016; Raghu et al., 2017a), and recently in generative AI (Franceschelli & Musolesi, 2024)). Also,
as more complex applications emerge, RL has increasingly evolved from single-objective to multi-
objective settings. For instance, in RL-driven short video streaming platforms (Cai et al., 2023), the
system sequentially displays short videos to optimize multiple rewards at the same time, including but
not limited to “WatchTime”, “Subscribe”, “Like”, “Dislike”, “Comment”, etc. As another example,
to attract diverse customers and maximize long-term total benefits, an e-commerce recommender
system sequentially ranks and displays products by balancing the conflicting preferences of different
user groups (e.g., some prefer low prices and can tolerate slow delivery, while others prefer quick
delivery over low prices). All of these applications entail the need for multi-objective reinforcement
learning (MORL) (Stamenkovic et al., 2022; Ge et al., 2022; Chen et al., 2021a).

Mathematically, an M -objective MORL problem can be formulated as finding an optimal policy πθ ,
which is parameterized by θ, to maximize multi-dimensional long-term accumulative rewards, i.e.,

max
θ∈Rd1

J(θ) :=
[
J1(θ), J2(θ), . . . , JM (θ)

]⊤
, (1)

where J i(θ) is the expected accumulative reward for the i-th objective under policy πθ, i ∈ [M ]1.
For the MORL problem in (1), since it is often infeasible to find a common policy parameter θ

1In this paper, we use shorthand notation [M ] to denote the set {1, · · · ,M}.
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that can simultaneously maximize all objectives in (1), a more appropriate goal in MORL is to find
a Pareto-optimal solution for all objectives (i.e., no objective can be further improved unilaterally
without decaying any other objective). However, due to the fact that Pareto-optimal solutions are
not unique in general, it is important to be able to systematically and efficiently explore the set of
all Pareto-optimal solutions (also known as the Pareto front), based on which one can then pick
the most desirable Pareto-optimal solutions. Unfortunately, due to the NP-hardness resulting from
non-convex objectives in most MORL problems (Danilova et al., 2022; Yang et al., 2024), finding
Pareto-optimal solutions is intractable in general and even developing algorithms that converge to a
weaker Pareto-stationary solution (a necessary condition for being Pareto-optimal, more on this later)
with low sample complexity is already highly non-trivial and remains under-explored in this literature
thus far. This motivates us to take the first step and fill this important gap in the MORL literature.

In light of the fact that MORL is a special class of multi-objective optimization (MOO) problems, in
this paper, we propose a weighted-Chebyshev multi-objective actor-critic (WC-MOAC) method by
drawing inspirations and insights from the MOO literature. More specifically, to enable systematic
Pareto-front exploration with low sample complexity in MORL, our proposed WC-MOAC method
uses temporal-difference (TD) learning in the critic component and judiciously integrates the weighted-
Chebyshev (WC) and multi-gradient-descent algorithmic (MGDA) techniques in the actor component.
The rationale behind our approach is three-fold: (i) Combining the strengths of value-based and policy-
based RL approaches, the actor-critic framework has been shown to offer state-of-the-art performance
in RL; (ii) in the MOO literature, it has been shown that an optimal solution under the WC-based
scalarization approach (also known as hypervolume scalarization) provably achieves the Pareto front
even when the Pareto front is non-convex (Zhang & Golovin, 2020); and (iii) for MOO problems, the
MGDA method is an efficient approach for finding a Pareto-stationary solution (Désidéri, 2012). 2

Finally, the connection between gradient information in optimization and TD-error in RL leads us to
generalize the WC and MGDA approaches from MOO to our WC-MOAC method for MORL.

2) Challenges: However, to show that WC-MOAC enjoys systematic Pareto-stationarity exploration
with provable low finite-time sample complexity remains highly non-trivial due to multiple challenges:
1) In the MOO literature, WC- and MGDA-based techniques are developed with very different goals

in mind: facilitating Pareto-front exploration and achieving Pareto-stationarity, respectively. To
date, it remains unclear how to combine them to achieve systematic Pareto-stationarity exploration
with low finite-time sample complexity simultaneously even for general MOO problems, not to
mention generalizing them to the more specially structured MORL problems and the associated
theoretical performance analysis. Indeed, to our knowledge, there is no such result in the literature
on integrating WC- and MGDA- techniques for designing MORL policies.

2) In WC-MOAC, the critic and actor components evaluate and improve the policies, respectively,
with an intricate dependence between these two components. Such a complex dependence
between actor and critic further renders standard convergence analysis in MOO irrelevant to our
proposed WC-MOAC methods. Thus, it remains an open question whether one can design a
multi-objective actor-critic algorithm to facilitate Pareto-stationarity exploration with a provable
finite-time sample complexity guarantee.

3) In WC-MOAC, both critic and actor components update their parameters through stochastic
TD-errors based on directions guided by a WC-scalarization weight vector and finite-length state-
action trajectories. All of these inject cumulative biases in policy parameter updates. If not handled
properly, such biases could significantly affect the performance of our WC-MOAC method for
MORL or could even lead to a divergence of policy parameter updates.

3) Key Contributions: In this paper, we overcome the aforementioned challenges and propose a
weighted-Chebyshev multi-objective actor-critic algorithmic framework with provable finite-time
Pareto-stationary convergence and sample complexity guarantees. Collectively, our results provide
the first building block toward a theoretical foundation for MORL. Our main contributions are
summarized as follows:

• We propose a weighted-Chebyshev multi-objective actor-critic algorithmic framework (WC-
MOAC) based on MGDA-style policy-gradient update for both (heterogeneous) discounted

2MGDA can be viewed as an extension of the standard gradient descent method to MOO, which dynamically
performs a linear combination of all objectives’ gradients in each iteration to identify a common descent direction
for all objectives. Also, the finite-time convergence rate of MGDA has recently been established under different
MOO settings, including convex and non-convex objective functions (Liu & Vicente, 2021; Fernando et al.,
2022) and decentralized data (Yang et al., 2024), etc.
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and average reward settings in MORL. Our WC-MOAC policy framework offers finite-time
convergence and sample complexity of Õ(ϵ−2p−2

min) for achieving an ϵ-Pareto stationary solution,
where pmin denotes the minimum entry of a given weight vector p in the WC scalarization. To
our knowledge, no such finite-time convergence and sample complexity results with respect to
the WC-scalarization parameter exist in the MORL literature.

• To mitigate the cumulative systematic bias injected from the WC-scalarization weight direction
and finite-length state-action trajectories, we propose a momentum-based mechanism in WC-
MOAC. Somewhat surprisingly, we show that this momentum approach in WC-MOAC enjoys a
convergence rate and sample complexity that are independent of the number of objectives. This is
fundamentally different from general MOO, where the scaling laws of the convergence results
could be linear (Fernando et al., 2022) or even cubic (Zhou et al., 2022) with respect to M .

• We show that, with the proposed momentum mechanism and an appropriate schedule of the
momentum coefficient, WC-MOAC can automate the initialization of the weights of individual
policy gradients from data samples in the environment, which avoids cumbersome manual
initialization. This significantly improves the practicality and robustness of the algorithm.

• We conduct empirical studies on a large-scale KauiRand offline dataset, to show our WC-
MOAC algorithm significantly outperforms other baseline MORL approaches that adopt linear
scalarization and other heuristic ideas.

2 RELATED WORK

In this section, we provide an overview on three closely related areas, namely multi-objective
optimization, multi-objective reinforcement learning, and RL problems with multiple rewards, thereby
putting our work in comparative perspectives.

1) Multi-Objective Optimization (MOO): Generally speaking, MOO approaches can be broadly
classified into four main categories (Miettinen, 1999): 1) no-preference methods, 2) a priori methods,
3) a posteriori methods, and 4) interactive methods. While the latter three categories all involve
preference weight information from a decision maker either directly or indirectly, the first category
does not require any preference information. A line of work (Fliege et al., 2019; Liu & Vicente,
2021; Zhou et al., 2022; Sener & Koltun, 2018; Yang et al., 2024; Fernando et al., 2022; Xiao
et al., 2023) has utilized the MGDA (Désidéri, 2012) technique to characterize the finite-time
convergence/sample complexity of MOO problems, including one recent work on no-preference
MORL (Zhou et al., 2024). However, in this paper, we are concerned with the finite-time convergence
and effectiveness in practical MORL setting that comes with given preference weight information
and further enabling Pareto-stationarity exploration. A closely related work in MOO can be found
in (Momma et al., 2022), where the authors studied MOO problem with pre-defined preference
weight incorporated by proposing a WC-based MGDA approach to align the Pareto solution with
the preference direction. However, this work only showed the empirical effectiveness and did not
provide finite-time convergence results. Another closely related work in (Xiao et al., 2024) proposed a
direction-oriented MOO algorithm based on a weighted sum of the MGDA and the linear scalarization
approaches. This is in stark contrast to the WC-scalarization technique in our approach. Extensive
empirical comparisons are provided in Section 5 to show the superiority of our WC-MOAC method
over the RL counterpart of (Xiao et al., 2024).

2) Multi-Objective Reinforcement Learning (MORL): MORL is a type of sequential decision-
making problems endowed with multiple rewards. Different from conventional RL problems with
scalar-valued rewards (e.g., Sutton & Barto (2018); Konda & Tsitsiklis (1999); Xu et al. (2020);
Guo et al. (2021)), MORL is concerned with optimizing vector-valued rewards, either directly or
through various types of scalarization. Although the studies on MORL are not new (see, e.g., Gábor
et al. (1998); Parisi et al. (2016); Van Moffaert & Nowé (2014); Abels et al. (2019); Yang et al.
(2019); Abdolmaleki et al. (2020); Reymond et al. (2023); Roijers et al. (2013); Ruadulescu et al.
(2020); Hayes et al. (2022)), finite-time convergence results for multi-objective actor-critic (MOAC)
algorithms remain quite limited. To our knowledge, the first MOAC algorithm was proposed in
(Chen et al., 2021a), which is based on deterministic policy gradients. Subsequently, a two-stage
constrained actor-critic algorithm was proposed in (Cai et al., 2023), where the MORL formulation is
different from ours and takes an ϵ-constrained scalarization approach (i.e., all except one objective are
reformulated as ϵ-constraints and the only remaining objective is set as the system objective). Also,
none of the above MORL works offers finite-time convergence rate or sample complexity results.
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3) RL Problems with Multi-Reward Scalarization: We note that several RL paradigms bear some
similarities with MORL in the sense of having multiple rewards. The first such RL paradigm is
cooperative multi-agent reinforcement learning (MARL) (Zhang et al., 2018; Chen et al., 2021b;
Hairi et al., 2022), where each agent has a scalar-valued reward. However, the global objective of
cooperative MARL is a static weighted sum of all agents’ rewards. Similarly, many MORL problems
are often scalarized to enable the use of single-objective RL techniques (e.g., linear scalarization in
(Stamenkovic et al., 2022)). Another multi-reward RL paradigm is the constrained (also known as
safe) RL Cai et al. (2023), which balances multiple RL objectives with a set of predefined parameters
associated with the constraints to indicate the constraint levels. Due to different problem structures,
these multi-reward RL problems are often concerned with other goals rather than Pareto-stationarity.

3 MORL PROBLEM FORMULATION

In this section, we first introduce the preliminaries and problem formulation of MORL problems.

1) Multi-Objective Markov Decision Process: Similar to its single-objective counterpart, an MORL
problem can be formulated as a multi-objective Markov decision process (MOMDP), which is
characterized by a quadruple (S,A, P, r), where S and A denote the state and action space of the
agent, respectively. For any given (s, a) ∈ (S,A), P (·|s, a) : S × A× S 7→ [0, 1] is the transition
kernel that maps a probability measure on S, and r(s, a) ∈ RM denotes an M -dimensional vector-
valued reward function. In this paper, we assume S and A to be finite. The instantaneous reward
ri(s, a) for each objective i ∈ [M ] is deterministic given state s and action a.3 In MOMDP, consider
a θ-parameterized stationary policy defined as πθ : S × A 7→ [0, 1], with πθ(at|st) denotes the
probability of taking action at ∈ A in state st ∈ S in time t. Next, we introduce the following
standard assumptions on πθ(a|s), which imposes smoothness and guarantees, for the underlying
Markov process, the existence of a unique steady state distribution for any given stationary policy,
and boundedness on rewards.
Assumption 1 (MOMDP). For any state s ∈ S , action a ∈ A, policy parameter θ ∈ Rd1 , the given
MOMDP satisfies the following:
(a) The policy function πθ(a|s) ≥ 0 is continuously differentiable with respect to the parameter θ;
(b) The Markov chain {st}t≥0 induced by the policy πθ is irreducible and aperiodic, with the

transition matrix Pθ(s
′|s) =

∑
a∈A πθ(a|s) · P (s′|s, a),∀s, s′ ∈ S;

(c) Each instantaneous reward rit is non-negative and uniformly bounded by a constant rmax > 0.

Assumption 1 (a) allows the smoothness of the parameterized policy πθ , which can be easily satisfied
with policies like soft-max; (b) guarantees that there exists a unique stationary distribution dθ(·)
over s ∈ S for the Markov chain induced by any stationary policy πθ; Also, (c) is common in the
literature (e.g., Zhang et al. (2018); Xu et al. (2020); Doan et al. (2019)) and easy to be satisfied in
many practical MOMDP models with finite state and action spaces.

2) Learning Goal and Optimality in MORL: We define the reward objective function J i(θ) for the
i-th objective to be the expected accumulative reward under policy πθ over all possible initial states
and trajectories. In this paper, we consider both accumulated discounted and average rewards in the
infinite time horizon setting defined as follows:

2-1) Discounted Reward: For each objective i ∈ [M ], the reward objective function under the
discounted reward setting is defined as J i(θ) := E[

∑∞
t=1(γ

i)trit(st, at)], where γi ∈ (0, 1) is the
discount factor associated with objective i.

2-2) Average Reward: For each objective i ∈ [M ], the reward objective function under the average
reward setting is defined as: J i(θ) := limT→∞ E[ 1T

∑T
t=1 r

i
t(st, at)].

The goal of MORL is to find an optimal policy πθ∗ with parameters θ∗ to jointly maximize all the
objective’s long-term rewards in the sense of Pareto-optimality (to be defined next). Specifically, we
want to learn a policy πθ that maximizes the following vector-valued objective:

max
θ∈Rd1

J(θ) := [J1(θ), . . . , JM (θ)]⊤.

3For ease of exposition in this paper, we consider the instantaneous rewards as deterministic given state-action
pair. However, the results holds similarly for stochastic instantaneous rewards as well.
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As mentioned in Section 1, due to the fact that the objectives in MORL are conflicting in general, the
more appropriate and relevant learning goal and optimality notions in MORL are the Pareto-optimality
and the Pareto front, which are defined as follows:

Definition 1 ((Weak) Pareto-Optimal Policy and (Weak) Pareto Front). We say that a policy πθ
dominates another policy πθ′ if and only if J i(θ) ≥ J i(θ′),∀i ∈ [M ] and J i(θ) > J i(θ′),∃i ∈ [M ].
A policy πθ is Pareto-optimal if it is not dominated by any other policy. A policy πθ is weak Pareto-
optimal if and only if there does not exist a policy πθ′ such that J i(θ′) > J i(θ),∀i ∈ [M ]. Moreover,
the image of all (weak) Pareto-optimal policies constitute the (weak) Pareto front.

In plain language, a Pareto-optimal policy identifies an equilibrium where no reward objective
can be further increased without reducing another reward objective, while a weak Pareto-optimal
policy characterizes a situation where no policy can simultaneously improve the values of all reward
objectives (i.e., ties are allowed). However, since MORL problems are often non-convex in practice
(e.g., using neural networks for policy modeling or evaluation), finding a weak Pareto-optimal policy
is NP-hard. As a result, finding an even weaker Pareto-stationary policy is often pursued in practice.
Formally, let ∇θJ i(θ) represent the policy gradient (to be defined later) direction of the i-th objective
with respect to θ. A Pareto-stationary policy is defined as follows:

Definition 2 (Pareto-Stationary Policy). A policy πθ is said to be Pareto-stationary if there exists no
common ascent direction d ∈ Rd2 such that d⊤∇θJ i(θ) > 0 for all i ∈ [M ].

Since MORL is a special-structured MOO problem, it follows from the MOO literature that Pareto
stationarity is a necessary condition for a policy to be Pareto-optimal(Désidéri, 2012). Note that in
convex MORL settings where all objective functions are convex functions, Pareto-stationary solutions
imply Pareto-optimal solutions.

4 WC-MOAC: ALGORITHM DESIGN AND THEORETICAL RESULTS

In this section, we will propose our WC-MOAC algorithmic framework for solving MORL problems.
As mentioned in Section 1, our WC-MOAC algorithm is motivated by two key observations: (i) actor-
critic approaches combine the strengths of both value-based and policy-based approaches to offer
the state-of-the-art RL performances; and (ii) an optimal solution under the WC-based scalarization
provably achieves the Pareto front even for non-convex MOO problems. In what follows, we will
first introduce some preliminaries of WC-MOAC in Section 4.1, which are needed to present our
WC-MOAC algorithmic design in Section 4.2. Lastly, we will present the finite-time Pareto-stationary
convergence and sample complexity results of WC-MOAC in Section 4.3.

4.1 PRELIMINARIES FOR THE PROPOSED WC-MOAC ALGORITHM

Similar to conventional single-objective actor-critic methods, the critic component in WC-MOAC eval-
uates the current policy by applying TD learning for all objectives. However, the novelty of WC-
MOAC stems from the actor component, which applies policy-gradient updates by judiciously
combining 1) WC-scalarization and 2) MGDA-style updates motivated from the MOO literature.

1) Weighted-Cheybshev Scalarization: The WC-scarlization is a scarlization method in MOO that
converts a vector-valued MOO problem into a scalar-valued optimization problem, which is more
amenable for algorithm design. Specifically, let ∆M represent the M -dimensional probability simplex.
For a multi-objective loss minimizaiton problem minx F(x) := [f1(x), . . . , fM (x)]⊤ ∈ RM

+ , the
WC-scalarization with a weight vector p ∈ ∆M is defined in the following min-max form:

WCp(F(x)) := min
x

max
i

{pifi(x)}Mi=1 = min
x

∥p⊙ F(x) ∥∞, (2)

where ⊙ denotes the Hadamard product. The use of WC-scalarization in our WC-MOAC algorithmic
design is inspired by the following fact in MOO (Golovin & Zhang, 2020; Qiu et al., 2024):

Lemma 1. A solution x∗ is weakly Pareto-optimal to the problem minx F(x) if and only if x∗ ∈
argminx WCp(F(x)) for some p ∈ ∆M .

Lemma 1 suggests that, by adopting WC-scalarization in MORL algorithm design (since MORL is a
special class of MOO problems), we can systematically obtain all weakly Pareto-optimal policies

5
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(i.e., exploring the weak Pareto front) by enumerating the WC-scalarization weight vector p if
the WC-scalarization problem can be solved optimally. As will be seen later, this motivates our
WC-MOAC design in Section 4.2.

2) Policy Gradient for MORL: Since the actor component in our WC-MOAC algorithm is a policy-
gradient approach, it is necessary to formally define policy gradients for MORL. Toward this end, we
first define the advantage function for each reward objective i ∈ [M ]: Advi

θ(s, a) = Qi
θ(s, a)−V i

θ(s),
where Qi(s, a) and V i(s) are the Q-function and value function for the i-th objective (cf. the
Appendix for detailed definitions). Let ψθ(s, a) := ∇θ log πθ(a|s) be the score function for state-
action pair (s, a). Then, the gradient policy of the i-th objective can be computed as follows:
Lemma 2 (Policy Gradient Theorem). Let πθ : S × A → [0, 1] be any policy and J i(θ) be the
accumulated reward function for the i-th objective. Then, the policy-gradient of J i(θ) with respect to
policy parameter θ is: ∇θJ i(θ) = Es∼dθ(·),a∼πθ(·|s)[ψθ(s, a) · Adviθ(s, a)].

We note that Lemma 2 is a straightforward adaptation of the policy gradient theorem in conventional
RL Sutton et al. (1999) to each individual objective i ∈ [M ] in the MORL setting.

3) Function Approximation: Similar to single-objective actor-critic methods, our WC-MOAC algo-
rithm adopts linear function approximation. Toward this end, we have the following assumptions:
Assumption 2 (Function Approximation). The value function of each objective i can be approximated
by a linear function: V i(s) ≈ ϕ(s)⊤wi, i ∈ [M ], where wi ∈ Rd2 with d2 ≤ |S| is a parameter to
be learnt, and ϕ(s) ∈ Rd2 is the feature mapping associated with state s ∈ S that satisfies:
(a) All features are bounded. Without loss of generality, we further assume ∥ϕ(s)∥2 ≤ 1,∀s ∈ S;

(b) The feature matrix Φ ∈ R|S|×d2 is full rank.

Assumption 2 is standard and has been widely used in the RL literature (e.g., (Tsitsiklis & Van Roy,
1999; Zhang et al., 2018; Qiu et al., 2021)). We note that linear representation includes tabular setting
as a special case by letting ϕ(s) be an appropriate unit vector when d2 = |S|. For simplicity, in this
paper, we assume that the same feature mapping is shared among all objectives.

4.2 THE PROPOSED WC-MOAC ALGORITHM FRAMEWORK

With the preliminaries in Section 4.1, we are in a position to present our WC-MOAC algorithm. For
ease of exposition, we will structure our WC-MOAC algorithm design in two main derivation steps.

Step 1) Multiple-TD Learning in the Critic Component: As stated in Assumption 2, the critic
component (i.e., policy evaluation) in WC-MOAC maintains value-function approximation parameters
wi for each objective i ∈ [M ]. For the current policy πθt , the critic component in WC-MOAC updates
the value function parameters wi

k, i ∈ [M ] in parallel via TD learning with mini-batch Markovian
samples. The TD-error δik,τ for objective i in iteration k using sample τ can be computed as:

• Average Reward Setting: µi
k,τ =(1− β)µi

k,τ−1 + βrik,τ , (3)

δik,τ =rik,τ − µi
k,τ + ϕ⊤(sk,τ+1)w

i
k − ϕ⊤(sk,τ )w

i
k, (4)

where the µi-values are to keep track of the J i(θt)-information in the average reward setting.
• Discounted Reward Setting: δik,τ = rik,τ + γiϕ⊤(sk,τ+1)w

i
k − ϕ⊤(sk,τ )w

i
k. (5)

Subsequently, each parameter wi is updated in a batch fashion in parallel using the following TD-
learning step: wi

k = wi
k−1 + (β/D)

∑D
τ=1 δ

i
k,τ · ϕ(sk,τ ). Once the critic component executes N

rounds, the parameters {wi}i∈[M ] can be used in the actor component for policy evaluation.

Step 2) The WC-MGDA-Type Policy Gradient in the Actor Component: As mentioned earlier,
the actor component in WC-MOAC is a “multi-gradient” extension of the policy gradient approach
in MORL, which determines a common policy improvement direction for all reward objectives by
dynamically weighting the individual policy gradients. Toward this end, we will further organize the
common policy improvement direction derivations in two key steps as follows:

Step 2-a) WC-Guided Common Policy Improvement Direction: First, we compute a dynamic weight-
ing vector λ̂∗

t in each iteration t that balances two key aspects: 1) find a common policy improvement

6
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direction based on multi-TD learning to converge to a Pareto-stationary solution; and 2) follow the
guidance of a WC-scalarization weight vector p. To adopt an MGDA-type policy improvement
update in WC-MOAC , we first convert the original MORL reward maximization problem in Eq. (1)
to the following logically equivalent “regret minimization” problem with respect to the Pareto front:

min
θ∈Rd1

(J∗
ub − J(θ)) :=

[
J1,∗
ub − J1(θ), J2,∗

ub − J2(θ), . . . , JM,∗
ub − JM (θ)

]⊤
, (6)

where J i,∗
ub is an estimated upper bound of J i,∗ := maxθ∈Rd1 J

i(θ) (i.e., the optimal value of the
i-th objective under single-objective RL). The rationale behind using J∗

ub in (6) is to ensure that the
polarity of the reformulated problem is conformal to the standard use of WC-scalarization in MOO.
Note that, regardless of the choice of the J∗

ub-estimation, there is always a 1-to-1 mapping between
the Pareto fronts between Problems (1) and (6). Hence, using the WC-scalarization to explore the
Pareto front of Problem (6) is logically equivalent to exploring the Pareto front of Problem (1), and
the tightness of the J∗

ub-estimation is not important. Next, since Problem (6) is in the standard MOO
form, according to (Désidéri, 2012), the MGDA approach for Problem (6) can be written as:

min ∥Kλ∥2 s.t. 1⊤λ = 1, λ ∈ RM
+ , (7)

where K :=
√
G⊤G and and G is the gradient matrix of J∗

ub − J(θ). On the other hand, fol-
lowing Eq. (2), the WC-scalarization of Eq. (6) with a given weight vector p is: minθ∈Rd1 ∥p ⊙
(J∗

ub − J(θ)) ∥∞, which can be reformulated as follows by introducing an auxiliary variable ρ:

min
ρ∈R,θ∈Rd1

ρ s.t. p⊙ (J∗
ub − J(θ)) ≤ ρ1. (8)

By the KKT stationarity condition on ρ and θ and associating Lagrangian dual variables λ ∈ RM
+ , it

can be readily verified that the Wolfe dual problem of Eq. (8) can be written as (Momma et al., 2022):

maxλ⊤(p⊙ (J∗
ub − J(θ))), s.t. Kpλ = 0, 1⊤λ = 1, λ ∈ RM

+ , θ ∈ Rd1 , (9)

where Kp := diag(
√
p)

√
G⊤Gdiag(

√
p). Since the condition Kpλ = 0 may not be satisfied at

all iterations in an algorithm, we incorporate the minimization of ∥Kpλ∥2 in (9) using a parameter
u > 0 to balance the trade-off with the objective λ⊤(p⊙ (J∗

ub − J(θ))) to yield:

min ∥Kpλ∥2 − uλ⊤(p⊙ (J∗
ub − J(θ))) s.t. 1⊤λ = 1, λ ∈ RM

+ ,θ ∈ Rd1 . (10)

Now, comparing (10) with (7) and (9), it is clear that solving for λ in Problem (10) under the current
θ-value yields a λ-weighting of the gradients of (J∗

ub − J(θ)), which achieves a balance between
Pareto-front exploration and Pareto-stationarity induced by WC and MGDA, respectively. Moreover,
upon fixing a θ-value, solving for λ in Problem (10) is a convex quadratic program (QP), which
can be efficiently solved similar to the standard MGDA (Désidéri, 2012). In iteration t, let λ̂∗

t be
the solution obtained from solving Problem (10) under current policy parameter θt. To mitigate the
cumulative systematic bias resulting from λt-weighting, we show that (cf. the Appendix) one can
update λt by using a momentum-based approach with momentum coefficient ηt ∈ [0, 1) as follows:

λt = (1− ηt)λt−1 + ηtλ̂
∗
t . (11)

Next, with the obtained λt from (11), we can update policy parameters θ by conducting a gradient-
descent-type update in (10) as follows: θt+1 = θt − αGt(p⊙ λt) with step size α > 0.

Step 2-b) Policy Gradient Computation for Individual Reward Objective: Although we have derived
the WC-MGDA-type update in Step 2-a, it remains to evaluate the gradient matrix G of (J∗

ub−J(θ)).
Note that J∗

ub is a constant, each column gi
t in G is equal to the negative policy gradient of each reward

objective i. To compute gi
t, the actor component starts with sampling and TD-error computations.

First, from Lemma 2, we compute the score function in the l-th actor step as follows:

ψt,l := ∇θ log πθt(at,l|st,l). (12)

Next, similar to the critic component, the actor computes the TD-error for objective i at time t using
sample l can be computed as follows:

• Average Reward Setting: µi
t,l = (1− α)µi

t,l + αrit,l, (13)

δit,l = rit,l − µi
t,l + ϕ

⊤(st,l+1)w
i
t − ϕ⊤(st,l)w

i
t, (14)

where the µi-values are to keep track of the J i(θt)-information in the average reward setting.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1: The WC-MOAC Algorithm.

Input :s0, θ1, Φ, {wi
0}i∈[M ], {µi

1,0}i∈[M ], p, {ηt}t∈[T ], actor step size α, actor iteration T ,
actor batch size B, critic step size β, critic iteration N , critic batch size D

for t = 1, · · · , T do
Critic Component:
for k = 1, · · · , N do

sk,1 = sk−1,D (when k = 1, s1,1 = s0)
for τ = 1, · · · , D do

execute action ak,τ ∼ πθt(·|sk,τ ),
observe state sk,τ+1, reward rk,τ+1

for i ∈ [M ] do in parallel
• Setting I: Average Reward:
update µi

k,τ , δik,τ by Eqs. (3),(4),
respectively

• Setting II: Discounted Reward:
update δik,τ by Eq. (5)

for i ∈ [M ] do in parallel
TD update:
wi

k = wi
k−1 +

β
D

∑D
τ=1 δ

i
k,τ ·ϕ(sk,τ )

for i ∈ [M ] do in parallel
denote wi

t = wi
k

Actor Component:
for l = 1, · · · , B do

execute action at,l ∼ πθt(·|st,l),
observe state st,l+1, reward rt,l+1

for i ∈ [M ] do in parallel
update ψt,l by Eq. (12),
• Setting I: Average Reward: update
µi
t,l, δ

i
t,l by Eqs. (13),(14), respectively

• Setting II: Discounted Reward:
update δit,l by Eq. (15)

for i ∈ [M ] do in parallel
gi
t = − 1

B

∑B
l=1 δ

i
t,l ·ψt,l

Solve for λ̂∗
t in Problem (10) under current θt;

Update λt by Eq. (11);
Update gt = Gt(p⊙ λt);
Update policy: θt+1 = θt − α · gt

Output :θT̂ with T̂ chosen uniformly random from {1, · · · , T}

• Discounted Reward Setting: δit,l = rit,l + γiϕ⊤(st,l+1)w
i
t − ϕ⊤(st,l)w

i
t. (15)

With the score function in (12) and the TD-error in (13) or (14) depending on the reward setting, one
can compute the individual policy gradient as gi

t = − 1
B

∑B
l=1 δ

i
t,l ·ψt,l following Lemma 2.

Lastly, to conclude the discussion on the WC-MOAC algorithmic development, we summarize the
full WC-MOAC algorithm in Algorithm 1.

4.3 THEORETICAL PERFORMANCE OF WC-MOAC

In this section, we analyze WC-MOAC’s convergence to a Pareto-stationary solution and the asso-
ciated sample complexity of the WC-MOAC. Due to space limitations, we relegate all proofs to
the Appendix. For finite-time Pareto-stationary convergence analysis, instead of using the original
definition in Defition 2, it is more convenient to use the following equivalent near-Pareto stationarity
characterization defined as follows (Désidéri, 2012; Sener & Koltun, 2018; Yang et al., 2024):
Definition 3. (ϵ-Pareto Statioinary Point) For a given ϵ > 0, a solution θ is ϵ-Pareto stationary if
there exists λ ∈ RM

+ satisfying λ ≥ 0, 1⊤λ = 1, such that minλ ∥∇θJ(θ)λ∥22 ≤ ϵ, where

∇θJ(θ) =
[
∇θJ1(θ) ∇θJ2(θ) · · · ∇θJM (θ)

]
∈ Rd1×M .

Next, we state the following assumptions needed for our Pareto-stationary convergence analysis:
Assumption 3. For any two policy parameters θ,θ′ ∈ Rd1 , and any state-action pair (s, a) ∈ S ×A,
there exist positive constants Cψ, L > 0 such that the following hold: (a) ∥ψθ(s, a)∥2 ≤ Cψ; and
(b) ∥∇θJ i(θ)−∇θJ i(θ′)∥2 ≤ LJ∥θ − θ′∥2,∀i ∈ [M ].

In Assumption 3, Part (a) requires that the score function is uniformly bounded for any policy and
state-action pair and Part (b) requires the gradient of each objective function is Lipschitz with respect
to the policy parameter. These assumptions are standard and has been adopted in the analysis of
the single-objective actor-critic RL algorithms in (Qiu et al., 2021; Xu et al., 2020). For discounted
reward setting, both items can be guaranteed by choosing common policy parameterizations (Xu
et al., 2020). For average reward setting, both assumptions can also be satisfied by the popular
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class of soft-max policy under Assumption 1 (Guo et al., 2021). The following lemma characterizes
the mixing time of the underlying Markov chain and the data sampled in WC-MOAC follows such
Markovian chain, which holds under Assumption 1 (Levin & Peres, 2017, Theorem 4.9).
Lemma 3. For any policy πθ, consider an MDP with P (· | s, a) and stationary distribution dθ(·).
There exist constants κ > 0 and ρ ∈ (0, 1) such that sups∈S ∥P (st | s0 = s)− dθ(·)∥TV ≤ κρt.

We let ζapprox := maxi∈[M ] maxθ E[|V i(s) − V i
wi,∗(s)|2] represent the approximation error of the

critic component, which is zero if the ground-truth value functions V i(·), ∀i, are in the linear function
class; otherwise, ζapprox is non-zero due to the expressitivity limit of the critics. We now state our
main convergence theorem of WC-MOAC to a neighborhood of a Pareto-stationary point as follows:
Theorem 4. Under Assumptions 1-3, set the actor and critic step sizes as α = 1

3LJ
and 0 < β ≤

min{ λA

8C2
A
, 4
λA

}, where CA is a constant depending on the problem setting. Then, the iterations
generated by Algorithm 1 satisfy the following finite-time Pareto-stationary convergence error bound:

E
[
∥λ∗⊤

T̂
∇θJ(θT̂ )∥

2
2

]
≤
16LJrmax

ζ1T

(
1 +

2

p2min

T∑
t=1

ηt

)
+

60

T

T∑
t=1

max
j∈[M ]

E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

]
ζ2(1− ρ+ 4κρ)

(1− ρ)B
+ 60ζapprox,

where T̂ is sampled uniformly among {1, · · · , T} and (i) for average setting ζ1 = 1 and ζ2 =
240(rmax +Rw)2; and (ii) for discounted setting ζ1 = 1− ∥γ∥∞ and ζ2 = 60(rmax + 2Rw)2.

Two remarks on Theorem 4 are in order: (1) Theorem 4 depends on the momentum coefficients ηt ∈
[0, 1] in Eq. (11). By letting ηt to be iteration-dependent, e.g., ηt = t−2, then WC-MOAC guarantees
convergence to a neighborhood of Pareto-stationarity at a rate of O(T−1). (2) Theorem 4 also
suggests that the convergence depends on the the minimum entry pmin of the WC-scalarization
weight vector p: the smaller pmin, the longer Pareto-stationary convergence time. The following
Pareto-stationarity sample complexity result immediately follows from Theorem 4:
Corollary 5. Under the same conditions as in Theorem 4, for any ϵ > 0, by setting T ≥
16LJrmax/(C4ϵ) · (1 + 2

p2
min

∑T
t=1 ηt),E[∥wi

t −wi,∗
t ∥22] ≤ ϵ/12,∀i ∈ [M ], and B ≥ C5(1− ρ+

4κρ)/(ϵ(1− ρ)), we have E
[
∥λ∗⊤

T̂
∇θJ(θT̂ )∥22

]
≤ ϵ+O

(
ζapprox

)
, with total sample complexity of

O(ϵ−2p−2
min log (ϵ

−1)). Further, by setting ηt=p2min/t
2, the sample complexity is O(ϵ−2 log (ϵ−1)).

Note that Theorem 4 and Corollary 5 show the convergence rate of WC-MOAC are independent of the
number of objectives M , and the sample complexity of WC-MOAC is the same as the state-of-the-art
sample complexity for single-objective RL (Xu et al., 2020).

5 EXPERIMENTS

In this section, we conduct experiments to evaluate our algorithm and compare it with other related
state-of-the-art methods on a large-scale real-world dataset. Due to space limitations, we present the
main experimental results here and relegate the full experimental setting details to the Appendix.

1) Dataset: We leverage a large-scale real-world dataset from the recommendation logs of the short
video streaming mobile app Kuaishou4. The dataset includes multiple reward signals, such as “Click”,
“Like”, “Comment”, “Dislike”, “WatchTime,” etc. The full statistics of the dataset is shown in Table 2
in the Appendix. Here, a state corresponds to the event that a video is watched by a user and is formed
by concatenating user and video features; an action corresponds to recommending a video to a user.

2) Baselines: In this experiment, we leverage the following state-of-the-art methods as baselines:

• Behavior-Clone: A supervised behavior-cloning policy πβ to mimic the recommendation policy
in the dataset, which takes the user states as inputs and the video IDs as outputs.

• TSCAC (Cai et al., 2023): An ϵ-constrained actor-critic approach that optimizes a single objective
(i.e., “WatchTime”), while treating other objectives as constraints bounded by some ϵ > 0.

4https://kuairand.com/
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Table 1: Comparison of WC-MOAC with baseline methods given a weight vector.

Objective Click↑ Like↑(e-2) Comment↑(e-3) Dislike↓(e-4) WatchTime↑
weights 0.2 0.2 0.2 0 0.4

Behavior-Clone 5.338 1.231 3.225∗ 2.304 1.285

TSCAC 5.485 1.328 2.877 1.177 1.365
2.75% 7.88% −10.80% −48.92% 6.23%

SDMGrad 5.434 1.279 3.136 1.166∗ 1.329
1.79% 3.87% −2.77% −49.41%∗ 3.46%

WC-MOAC 5.550 1.329 3.092 1.339 1.375
(Ours) 3.97% 7.96% −4.12% −41.88% 7.00%

0.543

1.284

3.151

-1.027

1.332

(a) SDMGrad.

0.547

1.449

3.169

-0.706

1.432

(b) WC-MOAC .

0.547

1.449

3.169

-0.706

1.432

0.543

1.284
3.151

-1.027

1.332

(c) Footprints of exploration.

Figure 1: Comparison of WC-MOAC and SDMGrad with five one-hot weight vectors.

• SDMGrad (Xiao et al., 2024): A weight/direction vector p oriented stochastic gradient descent
algorithm, which is shown to find an ϵ-accurate Pareto stationary point.

Due to the fact that the Kuaishou dataset is a static offline dataset and all baselines are off-policy, for
fair comparisons, we also adapt WC-MOAC to the off-policy setting. We adopt normalised capped
importance sampling (NCIS), a standard evaluation approach for off-policy RL algorithms (Zou et al.,
2019) to evaluate all methods. By definition, a larger NCIS score implies a better policy for reward
maximization. The definition of NCIS is provided in Section A.1.

3) Results and Observations: We summarize the performance of all methods based on a given
weight vector in Table 1, and only illustrate the comparison between WC-MOAC and SDMGrad
(since TSCAC cannot explore Pareto front) in Fig. 1. In Table 1, we set the weight vector p to be
(0.2, 0.2, 0.2, 0, 0.4)⊤ for “Click”, “Like”, “Comment”, “Dislike”, and “WatchTime”, respectively.
Note that TSCAC does not require a weight vector since it only optimizes “WatchTime”. All
methods start with the same critic and actor parameters initialized for policies that perform worse than
Behavior-Clone. From Table 1, we observe that WC-MOAC outperforms SDMGrad and TSCAC in
three out of four objectives, i.e., “Click”, “Like”, and “WatchTime”, implying that WC-MOAC is more
aligned with the weighted objectives. In Fig. 1, we set the weight vector to be one-hot vectors with
“Click”, “Like”, “Comment”, “Dislike”, and “WatchTime” as the only objective, respectively. All
figures are plotted in the same scale. Comparing Fig. 1a and Fig. 1b, we observe that i) WC-MOAC is
more aligned with weight vector in all directions; ii) among all the weight vector directions, WC-
MOAC possesses a larger footprint in the radar chart than SDMGrad (see Fig. 1c), which shows that
WC-MOAC is closer to being Pareto-optimal and has a better Pareto front exploration performance.

6 CONCLUSION

In this paper, we proposed a weighted Chebyshev multi-objective actor-critic (WC-MOAC) algorithm
for multi-objective reinforcement learning (MORL). Our proposed WC-MOAC method judiciously
integrates weighted Chebyshev and multi-policy-gradient techniques to facilitate systematic Pareto-
stationary solution exploration with provable finite-time sample complexity guarantee. Our numerical
experiments with real-world datasets also verified the theoretical results of our WC-MOAC method
and its practical effectiveness.
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A EXPERIMENTAL SETUP AND COMPLEMENTARY RESULTS

A.1 REAL-WORLD DATA

Environment and Setup. The data statistics are provided in the Table 2. In the dataset, logs
provided by the same user are concatenated to form a trajectory in one episode, and a batch of tuple
{st, at, rt, st+1} are sampled at each iteration. For all the methods, we leverage ADAM to optimize
the parameters. We only experiment on discounted total reward for fair comparison. For our method,
we set the momentum coefficient of gradient weight by ηt = 1/t (without pre-specifying values, the
gradient weights are initialized by the solution to a QP problem regarding the average gradients of
the first batch of samples), and set the same gradient weight initialization for all the other methods.

Table 2: Data statistic. The reward data is imbalanced, with a density of over 98% for the sum of
Click and WatchTime.

State: 1218 Action: 150
Reward

Click Like Comment Dislike WatchTime

Amount 254940 5190 1438 213 199122

Density 55.25% 1.125% 0.312% 0.046% 43.15%

Evaluation Metric. Specifically, NCIS score is defined as follows:

N(π) =

∑
s,a∈D w(s, a)r(s, a)∑

s,a∈D w(s, a)
, w(s, a) = min

{
C,

π(a | s)
πβ(a | s)

}
,

where D is the dataset, C is a positive constant, and πβ is a behavior policy.

A.2 ADDITIONAL EMPIRICAL RESULTS

In this subsection, we provide additional empirical results for WC-MOAC under varying weight
vectors p. Specifically, in addition to the 5 one-hot vectors, we have chosen the weight vectors to be
as follows in Table 3. The corresponding results in radar chart are provided in Figure 2. In Figure
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Table 3: Additional Weight Vectors p

radar result click like comment dislike watchtime

abl1 0.85 0.05 0.05 0 0.05
abl2 0.7 0.1 0.1 0 0.1
abl3 0.55 0.15 0.15 0 0.15
abl4 0.4 0.2 0.2 0 0.2
abl5 0.05 0.05 0.85 0.0001 0.05
abl6 0.10 0.10 0.70 0.0001 0.10
abl7 0.15 0.15 0.55 0.0001 0.15

(a) WC-MOAC Pareto Exploration. (b) Comparison of Pareto Footprints

Figure 2: Comparison of WC-MOAC and SDMGrad with additional weight vectors.

2a, we show the Pareto solutions explored by the 7 ablation p vectors in addition to those from the
one-hot vectors. In Figure 2b, we further show the footprint of exploration that includes the additional
p vectors.

From the empirical results in Figure 2a, we can see that with additional weight vectors p, WC-MOAC
is exploring more Pareto stationary solutions compared to WC-MOAC with only one-hot vectors as
the weight vectors. In Figure 2b, it further shows that with more p vectors, WC-MOAC explores even
wider Pareto footprints. This further confirms our theoretical prediction as well as strengthens the
empirical observation that, with increasing number of weight/explore vectors p, WC-MOAC possess
the potential to explore more Pareto stationary points.

B SUPPORTING DEFINITIONS, LEMMAS AND CRITIC RESULTS

B.1 DEFINITIONS AND ADDITIONAL ASSUMPTIONS

Here, we first define some standard terms and reiterate Assumption 2 for clarity.

For each objective i ∈ [M ], we define the state-action value function as follows: (i) for average
total reward: Qi

θ(s, a) := E
[∑∞

t=0 r
i(st, at)− J i(θ)|s0 = s, a0 = a

]
, and (ii) for discounted total

reward: Qi
θ(s, a) = E

[∑∞
t=0(γ

i)tri(st, at)|s0 = s, a0 = a
]
. It then follows that the value func-

tion satisfies: V i
θ(s) =

∑
a∈A Qi

θ(s, a) · πθ(a|s). We define the advantage function as follows:
Advi

θ(s, a) = Qi
θ(s, a)− V i

θ(s), ∀i ∈ [M ].

Assumption 4 (Reiteration of Assumption 2). The value function of each objective i is approximated
by a linear function: V i(s) ≈ ϕ(s)⊤wi, i ∈ [M ], where wi ∈ Rd2 with d2 ≤ |S| is a parameter to
be learnt, and ϕ(s) ∈ Rd2 is the feature associated with state s ∈ S, which satisfies:
(a) All features are normalized, i.e., ∥ϕ(s)∥2 ≤ 1,∀s ∈ S;

(b) The feature matrix Φ ∈ R|S|×d2 is full rank;
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(c) For any u ∈ Rd2 , Φu ̸= 1, where 1 ∈ Rd2 ;
(d) Let Aθ := Es∼dθ(·),s′∼P (·|s)[(ϕ(s

′) − ϕ(s))ϕ⊤(s)] if in average reward setting. Otherwise,
if in discounted reward setting, let Aθ := Es∼dθ(·),s′∼P (·|s)

[
(γϕ(s′)− ϕ(s))ϕ⊤(s)

]
. Then,

there exists a constant λA > 0 such that λmax(Aθ + A⊤
θ ) ≤ −λA for all θ ∈ Rd1 , where

λmax(A) is the largest eigenvalue of the matrix A.

Assumption 2 item (c) and item (d), which are used for average reward setting, imply that for
any policy πθ, the inequality w⊤Aθw < 0 holds for any w ̸= 0, and Aπθ

is invertible with
λmax(Aθ +A⊤

θ ) ≤ 0. This ensures that the optimal approximation wi,∗
θ for any given policy πθ and

i ∈ [M ] is uniformly bounded. Assumption 4 has been widely use in the literature (e.g., Tsitsiklis &
Van Roy (1999); Zhang et al. (2018); Qiu et al. (2021)).

B.2 SUPPORTING LEMMAS

Lemma 6 (Average reward setting). Given a policy πθ, for any objective i ∈ [M ], the TD fixed
point for average reward setting wi,∗

θ is uniformly bounded, specifically, there exists constant
Rw = 4rmax/λA > 0 such that

∥wi,∗
θ ∥ ≤ Rw,∀i ∈ [M ].

Proof.
∥wi,∗

θ ∥2 = ∥ −A−1
πθ

bi
πθ
∥2

= ∥ − Es∼dθ(s),s′∼P (·|s)[(ϕ(s
′)− ϕ(s))ϕT (s)]−1 · Es∼dθ,a∼πθ

[
ϕ(s)

(
ri(s, a)− J i(θ)

)]
∥2

≤ ∥ − Es∼dθ(s),s′∼P (·|s)[(ϕ(s
′)− ϕ(s))ϕT (s)]−1∥2 · ∥Es∼dθ,a∼πθ

[
ϕ(s)

(
ri(s, a)− J i(θ)

)]
∥2

(i)
=

∥Es∼dθ,a∼πθ

[
ϕ(s)

(
ri(s, a)− J i(θ)

)]
∥2

σmin

(
∥ − Es∼dθ(s),s′∼P (·|s)[(ϕ(s′)− ϕ(s))ϕT (s)]∥2

)
(ii)
≤

2∥Es∼dθ,a∼πθ

[
ϕ(s)

(
ri(s, a)− J i(θ)

)]
∥2

λA

(
−Aπθ

−A⊤
πθ

)
≤

2 · Es∼dθ,a∼πθ

[
∥ϕ(s)∥2 ·

(
|ri(s, a)|+ |J i(θ)|

)]
λA

=
4rmax

λA
,

where (i) follows from the fact ∥A−1∥ = 1/σmin(A), and (ii) follows from Bhatia (2013) (Proposition
III 5.1).

Lemma 7 (Discounted reward setting). Given a policy πθ, for any objective i ∈ [M ], the value
function approximation parameter wi,∗

θ is uniformly bounded, specifically, there exists constant
Rw = 2rmax/λA > 0 such that

∥wi,∗
θ ∥ ≤ Rw,∀i ∈ [M ].

Proof.
∥wi,∗

θ ∥2 = ∥ −A−1
πθ

bi
πθ
∥2

= ∥ − Es∼dθ(s),s′∼P (·|s)
[
(γϕ(s′)− ϕ(s))ϕT (s)

]−1 · Es∼dθ,a∼πθ

[
ri(s, a)ϕ(s)

]
∥2

≤ ∥ − Es∼dθ(s),s′∼P (·|s)
[
(γϕ(s′)− ϕ(s))ϕT (s)

]−1 ∥2 · ∥Es∼dθ,a∼πθ

[
ri(s, a)ϕ(s)

]
∥2

=
∥Es∼dθ,a∼πθ

[
ri(s, a)ϕ(s)

]
∥2

∥ − Es∼dθ(s),s′∼P (·|s) [(γϕ(s′)− ϕ(s))ϕT (s)] ∥2

≤
2∥Es∼dθ,a∼πθ

[
ri(s, a)ϕ(s)

]
∥2

λA

(
−Aπθ

−A⊤
πθ

)
≤

2 · Es∼dθ,a∼πθ

[
∥ϕ(s)∥2 · |ri(s, a)|

]
λA
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=
2rmax

λA
.

Lemma 8. (Hairi et al. (2022) Lemma 2) Let νθ denote the stationary distribution of the state-action
pairs given policy πθ, there exists constants κ > 0 and ρ ∈ (0, 1) such that

sup
s∈S

∥P (st, at | s0 = s)− νθ∥TV ≤ κρt.

Lemma 9. (Hairi et al. (2022) Lemma 3) Suppose Assumption 2 holds. Given a policy πθ , we have
the following:

(−wi,∗
θ )⊤Aπθ

(−wi,∗
θ ) ≤ −λA

2
∥wi,∗

θ ∥22.

Lemma 10. (Xu et al. (2020) Theorem 4) For any i ∈ [M ], consider mini-batch linear stochastic
approximation on Aπθ

, b′i
θ (discounted setting), and bi

θ (average setting). Let CA > ∥Aπθ
∥F

and Cb denote the upper bound for ∥bi
θ∥2 and ∥b′i

θ∥2, then by setting β ≤ min{ λA

8C2
A
, 4
λA

} and

D ≥
(

2
λA

+ 2β
)

192C2
A[1+ρ(κ−1)]
(1−ρ)λA

and we have

E
[
∥wi

N−wi,∗
θ ∥22

]
≤
(
1−

βλA

8

)N

·∥wi
0−wi,∗

θ ∥22+
(

2

λA
+ 2β

)
192

(
C2

AR2
w + C2

b

)
[1 + ρ(κ− 1)]

(1− ρ)λAD
.

Further, setting N ≥ 8
βλA

log
(
2∥wi

0 −wi,∗
θ ∥22/ϵ

)
and D ≥

(
2
λA

+ 2β
)

192(C2
AR2

w+C2
b)[1+ρ(κ−1)]

ϵ(1−ρ)λA
,

we have E
[
∥wi

N −wi,∗
θ ∥22

]
≤ ϵ with total sample complexity ND = O

(
ϵ−1 log (ϵ−1)

)
.

B.3 THEORETICAL RESULTS OF THE CRITIC OF WC-MOAC

The critic component of WC-MOAC outputs M value function approximation parameters based
on the same sequences of Markovian samplings. In the average reward setting, given a policy
parameter θ, define vector bi

θ := Es∼dθ,a∼πθ

[(
ri(s, a)− J i(θ)

)
ϕ(s)

]
,∀i ∈ [M ]. Then the fixed

point of TD-learning for objective i is wi,∗
θ = −A−1

πθ
bi
θ, where Aπθ

is defined in Assumption 2(d).
Similarly, in the discounted reward setting, define vector b′i

θ := Es∼dθ,a∼πθ

[
ri(s, a)ϕ(s)

]
and we

have wi,∗
θ = −A−1

πθ
b′i
θ , ∀i ∈ [M ]. Let constant CA > ∥Aπθ

∥F , where ∥ · ∥F denotes the Frobenius
Norm. We now state the convergence of the critic step of WC-MOAC as follows:
Theorem 11. Under Assumptions 1-3, for both average and discounted settings, let the critic step
size β ≤ min{ λA

8C2
A
, 4
λA

}. Then, for any objective i ∈ [M ], the iterations generated by Algorithm 1
satisfy the following finite-time convergence error bound:

E
[
∥wi

N−wi,∗
θ ∥22

]
≤C1

(
1−

βλA

8

)N
+
C2C3(

2
λA

+2β)

λAD
, (16)

where C1 = ∥wi
0 −wi,∗

θ ∥22, C2 = [1 + (κ− 1)ρ]/(1− ρ), and C3 > 0 is a constant depending on
Aπθ

, bi
θ, and b′i

θ .

Proof. The results of Theorem 11 follows directly from Lemma 10, by
setting Aπθ

:= Es∼dθ(s),s′∼P (·|s)[(ϕ(s
′) − ϕ(s))ϕ⊤(s)] and bi

θ :=

Es∼dθ,a∼πθ

[(
ri(s, a)− J i(θ)

)
ϕ(s)

]
,∀i ∈ [M ] for the average reward setting, and by setting

Aπθ
:= Es∼dθ(s),s′∼P (·|s)

[
(γϕ(s′)− ϕ(s))ϕT (s)

]
and b′i

θ := Es∼dθ,a∼πθ

[
ri(s, a)ϕ(s)

]
,∀i ∈

[M ] for the discounted reward setting.

For clarity, we present Theorem 11 with some terms simplified as constants, where C1 = ∥wi
0 −

wi,∗
θ ∥22, C2 = [1 + (κ− 1)ρ]/(1− ρ), and C3 = 192

(
C2

AR2
w + C2

b

)
.

Theorem 11 states that critic component of Algorithm 1 will evaluate and maintain a value function
parameter wi

θ each objective i ∈ [M ] for the given policy πθ. Compared to many existing works

17
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Lakshminarayanan & Szepesvari (2018); Doan et al. (2018); Zhang et al. (2021) in RL algorithm
finite-time convergence analysis, the samples in our method are correlated (i.e., Markovian noise)
instead of i.i.d. noise, which is equivalent to ρ = 0. Despite the fact that Markovian noise introduces
extra bias error seen from term C2, our batching approach with size D > 1 offer two-fold benefits:
1) Part of the convergence error can be controlled with increasing D (cf. the second term on the
RHS in Eq. (16); 2) it allows the use of constant step size, leading to a better sample complexity
comparing to non-batch approach Srikant & Ying (2019); Qiu et al. (2021); Hairi et al. (2024) and
faster convergence in practice in general.

Theorem 11 immediately implies the following sample complexity results for the critic component in
WC-MOAC:
Corollary 12. For both average and discounted settings, let N ≥ 8

βλA
log(2C1/ϵ) and D ≥

C2C3

(
2
λA

+2β
)
/(ϵλA). It then holds that E

[
∥wi

N −wi,∗
θ ∥22

]
≤ ϵ, i ∈ [M ], which implies a sample

complexity of O(ϵ−1 log(ϵ−1)).

C PROOF OF THEOREM 4

We first present the proof in average reward setting, then we show how to obtain the results in
discounted reward setting.

Proof. For any given θ and its associated policy πθ, we denote the gradient matrix to be

∇θJ(θ) =
[
∇θJ1(θ) ∇θJ2(θ) · · · ∇θJM (θ)

]
∈ Rd1×M .

Given θ ∈ Rd1 , w ∈ Rd2 , for t ≥ 0 and for any i ∈ [M ], by Lipschitzness in Assumption 3, we have

J i(θt+1) ≥ J i(θt) +
〈
∇θJ i(θt),θt+1 − θt

〉
−

LJ

2
∥θt+1 − θt∥2. (17)

Note that J i(θ) is an expected value taken, where the expectation is taken over steady-state dis-
tribution induced by policy πθ. We use λ∗

t to denote solution for λ ≥ 0, 1⊤λ = 1, such that
minλ ∥∇θJ(θt)λ∥2. In comparison, λt is the QP solution with momentum in Equation (11) for
using {gi

t}i∈[M ] as in Algorithm 1.

Let qt := λt⊙p
⟨λt,p⟩ , lt := ⟨λt,p⟩ and pmin := mini∈[M ] pi. Note that pmin ≤ lt ≤ 1. For t > 0, qt

serves as a pseudo-weight for the actor convergence analysis and lt measures the length of it.

Taking qt weighted summation over Eq. (17), we have

q⊤t J(θt+1) ≥ q⊤t J(θt) + ⟨∇θJ(θt)qt,θt+1 − θt⟩ −
LJ

2
∥θt+1 − θt∥22

= q⊤t J(θt) + αlt

〈
∇θJ(θt)qt,

M∑
j=1

qjtg
j
t

〉
−

α2LJ

2
∥gt∥22

= q⊤t J(θt) + αlt

〈
∇θJ(θt)qt,

M∑
j=1

qjt ·
(
gj
t −∇θJj(θt) +∇θJj(θt)

)〉
−

α2LJ

2
∥gt∥22

= q⊤t J(θt) + αlt

〈
∇θJ(θt)qt,

M∑
j=1

qjt∇θJj(θt)

〉

+ αlt

〈
∇θJ(θt)qt,

M∑
j=1

qjt ·
(
gj
t −∇θJj(θt)

)〉
−

α2LJ

2
∥gt∥22

= q⊤t J(θt) + αlt ∥∇θJ(θt)qt∥22 + αlt

〈
∇θJ(θt)qt,

M∑
j=1

qjt ·
(
gj
t −∇θJj(θt)

)〉
−

α2LJ

2
∥gt∥22

(i)
≥ q⊤t J(θt) +

αlt

2
∥∇θJ(θt)qt∥22 −

αlt

2

∥∥∥∥∥∥
M∑
j=1

qjt ·
(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

−
α2LJ

2
∥gt∥22
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= q⊤t J(θt) +
αlt

2
∥∇θJ(θt)qt∥22 −

αlt

2

∥∥∥∥∥∥
M∑
j=1

qjt ·
(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

−
α2l2tLJ

2

∥∥∥∥∥∥
M∑
j=1

qjt ·
(
gj
t −∇θJj(θt) +∇θJj(θt)

)∥∥∥∥∥∥
2

2

(ii)
≥ q⊤t J(θt) +

(
αlt

2
− α2l2tLJ

)
∥∇θJ(θt)qt∥22 −

(
αlt

2
+ α2l2tLJ

)∥∥∥∥∥∥
M∑
j=1

qjt ·
(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

,

(18)

where inequality (i) follows from〈
∇θJ(θt)qt,

M∑
j=1

qjt ·
(
gj
t −∇θJj(θt)

)〉
≥ −

1

2
∥∇θJ(θt)qt∥22−

1

2

∥∥∥∥∥∥
M∑
j=1

qjt ·
(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

,

and inequality (ii) follows from∥∥∥∥∥∥
M∑
j=1

qjt ·
(
gj
t −∇θJj(θt) +∇θJj(θt)

)∥∥∥∥∥∥
2

2

≤ 2 ∥∇θJ(θt)qt∥22+2

∥∥∥∥∥∥
M∑
j=1

qjt ·
(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

.

Taking expectation on both sides of Eq. (18) and conditioning on Ft, we have

E
[
∥∇θJ(θt)qt∥22 | Ft

]
≤

2
(
E
[
q⊤t J(θt+1)|Ft

]
− q⊤t J(θt)

)
αlt − 2α2l2tLJ

+
α+ 2α2ltLJ

α− 2α2ltLJ
E


∥∥∥∥∥∥

M∑
j=1

qjt

(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

∣∣∣∣Ft

 .

By the definitions of λ∗
t and qt, for any time t, we have

E
[
∥∇θJ(θt)λ∗

t ∥
2
2 | Ft

]
≤ E

[
∥∇θJ(θt)qt∥22 | Ft

]
.

Therefore, we have

E
[
∥∇θJ(θt)λ∗

t ∥
2
2 | Ft

]
≤

2
(
E
[
q⊤t J(θt+1)|Ft

]
− q⊤t J(θt)

)
αlt − 2α2l2tLJ

+
α+ 2α2ltLJ

α− 2α2ltLJ
E


∥∥∥∥∥∥

M∑
j=1

qjt

(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

∣∣∣∣Ft

 .

(19)

C.1 FOR THE 2ND TERM ON RHS OF EQ. (19)

Define a notation: ∆j
θt,w∗

t
= Edθ

[
EPθ

[
δjt,l(w

j,∗
t ) | (at,l, st,l)

]
·ψθt,l

]
. We first bound the last term

on the right hand side of Eq. (19) as follows:

E


∥∥∥∥∥∥

M∑
j=1

λj
t

(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

∣∣∣∣Ft


≤ E


 M∑

j=1

λj
t

∥∥∥∇θJj(θt)− gj
t

∥∥∥
2

2 ∣∣∣∣Ft


≤ E


 M∑

j=1

λj
t

(∥∥∥∇θJj(θt)−∆j
θt,w∗

t

∥∥∥
2
+
∥∥∥∆j

θt,w∗
t
− gj

θ∗
t

∥∥∥
2
+
∥∥∥gj
θ∗
t
− gj

t

∥∥∥
2

)2 ∣∣∣∣Ft


19
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≤ 3E


 M∑

j=1

λj
t

∥∥∥∇θJj(θt)−∆j
θt,w∗

t

∥∥∥
2

2 ∣∣∣∣Ft

+ 3E


 M∑

j=1

λj
t

∥∥∥gj
θ∗
t
− gj

t

∥∥∥
2

2 ∣∣∣∣Ft


+ 3E


 M∑

j=1

λj
t ·
∥∥∥∆j

θt,w∗
t
− gj

θ∗
t

∥∥∥
2

2 ∣∣∣∣Ft

 , (20)

where∥∥∥∇θJj(θt)−∆j
θt,w∗

t

∥∥∥2
2
=
∥∥∥Edθ

[
EPθ

[
δjt,l | (at,l, st,l)

]
·ψθt,l

]
− Edθ

[
EPθ

[
δjt,l(w

j,∗
t ) | (at,l, st,l)

]
·ψθt,l

]∥∥∥2
2

=
∥∥∥Edθ

[(
EPθ

[
δjt,l | (at,l, st,l)

]
− EPθ

[
δjt,l(w

j,∗
t ) | (at,l, st,l)

])
·ψθt,l

]∥∥∥2
2

≤ Edθ

[∥∥∥(EPθ

[
δjt,l | (at,l, st,l)

]
− EPθ

[
δjt,l(w

j,∗
t ) | (at,l, st,l)

])
·ψθt,l

∥∥∥2
2

]
≤ Edθ

[∣∣∣EPθ

[
δjt,l | (at,l, st,l)

]
− EPθ

[
δjt,l(w

j,∗
t ) | (at,l, st,l)

]∣∣∣2]
= Edθ

[∣∣∣E [V j
θ (st,l+1)− V j

θ (st,l+1;w
j,∗
t ) | (at,l, st,l)

]
+ V j

θ (st,l)− V j
θ (st,l;w

j,∗
t )
∣∣∣2]

≤ 4ζapprox.

We note that δjt,l denotes the TD error for objective j ∈ [M ] using the ground truth value functions.
We also remark that the above inequality holds for all j ∈ [M ]. As a result, for the first term on the
RHS of Eq. (20), we have

E


 M∑

j=1

λj
t

∥∥∥∇θJj(θt)−∆j
θt,w∗

t

∥∥∥
2

2 ∣∣∣∣Ft

 ≤ E


 M∑

j=1

λj
t2
√
ζapprox

2 ∣∣∣∣Ft

 = 4ζapprox

Furthermore, we have∥∥∥gj
θ∗
t
− gj

t

∥∥∥
2
=

∥∥∥∥∥ 1

B

B−1∑
l=0

(
δjt,l(w

j
t )− δjt,l(w

j,∗
t )
)
·ψθt,l

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

B

B−1∑
l=0

(ϕ(st,l+1)− ϕ(st,l))⊤
(
wj

t −wj,∗
t

)
·ψθt,l

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

B

B−1∑
l=0

(ϕ(st,l+1)− ϕ(st,l))⊤
(
wj

t −wj,∗
t

)∥∥∥∥∥
2

≤ max
l∈{0,...,B−1}

∥∥∥(ϕ(st,l+1)− ϕ(st,l))⊤
(
wj

t −wj,∗
t

)∥∥∥
2

≤ 2 ·
∥∥∥wj

t −wj,∗
t

∥∥∥
2
.

As a result, for the second term on the RHS of Eq. (20), we have

E


 M∑

j=1

λj
t

∥∥∥gj
θ∗
t
− gj

t

∥∥∥
2

2 ∣∣∣∣Ft

 ≤ E


 M∑

j=1

λj
t2
∥∥∥wj

t −wj,∗
t

∥∥∥
2

2 ∣∣∣∣Ft

 ≤ 4 max
i∈[M ]

E
[∥∥∥wi

t −wi,∗
t

∥∥∥2
2

∣∣∣∣Ft

]
.

(21)
For the second inequality above, it holds because

E


 M∑

j=1

λj
t

∥∥∥wj
t −wj,∗

t

∥∥∥
2

2 ∣∣∣∣Ft


20
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=E

 M∑
j=1

(λj
t )

2
∥∥∥wj

t −wj,∗
t

∥∥∥2
2
+ 2

∑
i ̸=j

λi
tλ

j
t

∥∥∥wi
t −wi,∗

t

∥∥∥
2
·
∥∥∥wj

t −wj,∗
t

∥∥∥
2

∣∣∣∣Ft


=

M∑
j=1

(λj
t )

2E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

∣∣∣∣Ft

]
+ 2

∑
i ̸=j

λi
tλ

j
tE
[∥∥∥wi

t −wi,∗
t

∥∥∥
2
·
∥∥∥wj

t −wj,∗
t

∥∥∥
2

∣∣∣∣Ft

]

=

M∑
j=1

(λj
t )

2E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

∣∣∣∣Ft

]
+ 2

∑
i ̸=j

λi
tλ

j
tE
[∥∥∥wi

t −wi,∗
t

∥∥∥
2

∣∣∣∣Ft

]
· E
[∥∥∥wj

t −wj,∗
t

∥∥∥
2

∣∣∣∣Ft

]

≤
M∑
j=1

(λj
t )

2E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

∣∣∣∣Ft

]
+ 2

∑
i ̸=j

λi
tλ

j
t

√
E
[∥∥∥wi

t −wi,∗
t

∥∥∥2
2

∣∣∣∣Ft

]
·

√
E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

∣∣∣∣Ft

]

≤

 M∑
j=1

(λj
t )

2 + 2
∑
i̸=j

λi
tλ

j
t

 max
i∈[M ]

E
[∥∥∥wi

t −wi,∗
t

∥∥∥2
2

∣∣∣∣Ft

]

=(
M∑
j=1

λj
t )

2 max
i∈[M ]

E
[∥∥∥wi

t −wi,∗
t

∥∥∥2
2

∣∣∣∣Ft

]

= max
i∈[M ]

E
[∥∥∥wi

t −wi,∗
t

∥∥∥2
2

∣∣∣∣Ft

]
,

where the third equality is due to the conditional independence of objective i and j given filtration Ft

and the first inequality is because of (E[X])2 ≤ E[X2] for a random variable X . Similarly, for the
last term in Eq. (20), we have

E
[( M∑

j=1

λj
t ·
∥∥∥∆j

θt,w∗
t
− gj

θ∗
t

∥∥∥
2

)2∣∣∣∣Ft

]
≤ max

i∈[M ]
E
[( M∑

j=1

λj
t ·
∥∥∥∆i

θt,w∗
t
− gi

θ∗
t

∥∥∥
2

)2∣∣∣∣Ft

]
= max

i∈[M ]
E
[∥∥∥∆i

θt,w∗
t
− gi

θ∗
t

∥∥∥2
2

∣∣∣∣Ft

]
.

In addition, for any j ∈ [M ], we have

E
[∥∥∥∆j

θt,w∗
t
− gj

θ∗
t

∥∥∥2
2

∣∣∣∣Ft

]

= E

∥∥∥∥∥ 1

B

B−1∑
l=0

δjt,l(w
j,∗
t ) ·ψθt,l −∆j

θt,w∗
t

∥∥∥∥∥
2

2

∣∣∣∣Ft


= E

[〈
1

B

B−1∑
l1=0

δjt,l1(w
j,∗
t ) ·ψθt,l1 −∆j

θt,w∗
t
,
1

B

B−1∑
l2=0

δjt,l2(w
j,∗
t ) ·ψθt,l2 −∆j

θt,w∗
t

〉∣∣∣∣Ft

]

= E

 1

B2

B−1∑
l=0

∥∥∥δjt,l(wj,∗
t )ψθt,l −∆j

θt,w∗
t

∥∥∥2
2
+

1

B2

∑
l1 ̸=l2

〈
δjt,l1(w

j,∗
t ) ·ψθt,l1 −∆j

θt,w∗
t
, δjt,l2(w

j,∗
t ) ·ψθt,l2 −∆j

θt,w∗
t

〉 ∣∣∣∣Ft


(i)
≤

16

B
(rmax +Rw)

2
+

1

B2

∑
l1 ̸=l2

E
[〈

δjt,l1(w
j,∗
t ) ·ψθt,l1 −∆j

θt,w∗
t
, δjt,l2(w

j,∗
t ) ·ψθt,l2 −∆j

θt,w∗
t

〉 ∣∣∣∣Ft

]

=
16

B
(rmax +Rw)2 +

2

B2

∑
l1<l2

E
[〈

δjt,l1(w
j,∗
t ) ·ψθt,l1 −∆j

θt,w∗
t
, δjt,l2(w

j,∗
t ) ·ψθt,l2 −∆j

θt,w∗
t

〉 ∣∣∣∣Ft

]

=
16

B
(rmax +Rw)2 +

2

B2

∑
l1<l2

E
[〈

δjt,l1(w
j,∗
t ) ·ψθt,l1 −∆j

θt,w∗
t
,E
[
δjt,l2(w

j,∗
t ) ·ψθt,l2

∣∣Ft,l1

]
−∆j

θt,w∗
t

〉 ∣∣∣∣Ft

]

≤
16

B
(rmax +Rw)2 +

2

B2

∑
l1<l2

E
[∥∥∥δjt,l1(wj,∗

t ) ·ψθt,l1 −∆j
θt,w∗

t

∥∥∥
2
·
∥∥∥E [δjt,l2(wj,∗

t ) ·ψθt,l2
∣∣Ft,l1

]
−∆j

θt,w∗
t

∥∥∥
2

∣∣∣∣Ft

]

≤
16

B
(rmax +Rw)2 +

2

B2

∑
l1<l2

4 (rmax +Rw)E
[∥∥∥E [δjt,l2(wj,∗

t ) ·ψθt,l2
∣∣Ft,l1

]
−∆j

θt,w∗
t

∥∥∥
2

∣∣∣∣Ft

]
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(ii)
≤

16

B
(rmax +Rw)2 +

2

B2

∑
l1<l2

16(rmax +Rw)2κρl2−l1 ,

where (i) follows from the facts that

|δjt,l(w
j,∗
t )| = |rjt,l+1 − µj

t,l + ϕ(st,l+1)
⊤wj

t − ϕ(st,l)⊤w
j
t |1

≤ |rjt,l+1|+ |µj
t,l|+ ∥ϕ(st,l+1)− ϕ(st,l)∥2 · ∥wj

t∥2
≤ 2rmax + 2Rw,

thus, ∥δjt,l(w
j,∗
t )ψθt,l∥2 ≤ 2rmax+2Rw, and ∆j

θt,w∗
t
= Edθ

[
EPθ

[
δjt,l(w

j,∗
t ) | (at,l, st,l)

]
·ψθt,l

]
≤

2rmax + 2Rw, and (ii) follows from∥∥∥E [δjt,l2(wj,∗
t ) ·ψθt,l2

∣∣Ft,l1

]
−∆j

θt,w∗
t

∥∥∥
2

=
∥∥∥E [δjt,l2(wj,∗

t ) ·ψθt,l2
∣∣Ft,l1

]
− Edθ

[
EPθ

[
δjt,l(w

j,∗
t ) | (st,l, at,l)

]
·ψθt,l

]∥∥∥
2

=

∥∥∥∥ ∑
(st,l2 ,at,l2

)

EPθ

[
δjt,l2(w

j,∗
t ) | (st,l2 , at,l2)

]
·ψθt,l · P (st,l2 , at,l2 | Ft,l1)

−
∑

(st,l,at,l)

EPθ

[
δjt,l(w

j,∗
t ) | (st,l, at,l)

]
·ψθt,l · νθt(st,l, at,l)

∥∥∥∥
2

≤
∑

(st,l,at,l)

∥∥∥EPθ

[
δjt,l(w

j,∗
t ) | (st,l, at,l)

]
·ψθt,l

∥∥∥
2
·
∣∣P l2−l1(st,l, at,l | Ft,l1)− νθt(st,l, at,l)

∣∣
(i)
≤ 4(rmax +Rw) ·

∥∥P l2−l1(s, a | Ft,l1)− νθt(s, a)
∥∥
TV

≤ 4(rmax +Rw)κρl2−l1 ,

where (i) follows from Lemma 8.

Therefore, for the last term in Eq. (20), we have

E


 M∑

j=1

λj
t ·
∥∥∥∆j

θt,w∗
t
− gj

θ∗
t

∥∥∥
2

2 ∣∣∣∣Ft

 ≤
16

B
(rmax +Rw)2 +

32

B2

∑
l1<l2

(rmax +Rw)2κρl2−l1

≤
16

B
(rmax +Rw)2 +

32

B2
(rmax +Rw)2

2κρB

1− ρ

=
16(rmax +Rw)2(1− ρ+ 4κρ)

(1− ρ)B
. (22)

Substituting Eqs. (21), (21), (22) into Eq. (20) yields the expected gradient bias as follows

E


∥∥∥∥∥∥

M∑
j=1

λj
t

(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

∣∣∣∣Ft


≤ 12ζapprox + 12E

[∥∥∥wi
t − wi,∗

t

∥∥∥2
2

∣∣∣∣Ft

]
+

48(rmax +Rw)2(1− ρ+ 4κρ)

(1− ρ)B
. (23)

By letting α =
1

3LJ
, we have

2

αlt − 2α2l2tLJ
=

18LJ

−2l2t + 3lt
≤ 16LJ

due to the facts pmin ≤ lt ≤ 1 and pmin ≤ 1
M ≤ 3

4 = argminlt −2l2t + 3lt. Similarly, we also have

α+ 2α2ltLJ

α− 2α2ltLJ
=

3 + 2lt
3− 2lt

≤ 5.
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Further, Substituting Eq. (23) into Eq. (19) and taking expectation of Ft yield

E
[
∥∇θJ(θt)λ∗

t ∥
2
2

]
≤ 16LJ

(
E
[
q⊤t J(θt+1)

]
− q⊤t J(θt)

)
+ 60ζapprox + 60 max

j∈[M ]
E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

]
+

240(rmax +Rw)2(1− ρ+ 4κρ)

(1− ρ)B
. (24)

C.2 FOR THE 1ST TERM ON RHS OF EQ. (19)

Let T̂ denote a random variable that takes value uniformly random among {1, . . . , T}, then taking
average of Eq. (24) over T and we have

E
[∥∥∇θJ(θT̂ )λ∗

T̂

∥∥2
2

]
=

1

T

T∑
t=1

E
[
∥∇θJ(θt)λ∗

t ∥
2
2

]
≤

16LJ

T

T∑
t=1

(
E
[
q⊤t J(θt+1)

]
− q⊤t J(θt)

)
+

60

T

T∑
t=1

max
j∈[M ]

E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

]
+

240(rmax +Rw)2(1− ρ+ 4κρ)

(1− ρ)B
+ 60ζapprox.

Specifically,

T∑
t=1

(
E
[
q⊤t J(θt+1)

]
− q⊤t J(θt)

)
= E

[
T−1∑
t=1

(−qt+1 + qt)
⊤J(θt+1)− q⊤1 J(θ1) + q⊤T J(θT+1)

]
(i)
≤ E

[
T−1∑
t=1

|qt+1 − qt|1∥J(θt+1)∥∞ + ∥qT ∥1∥J(θT+1)∥∞

]

≤ rmax + rmax

T∑
t=1

E [|qt+1 − qt|1]

≤ rmax

(
1 +

2

pmin

T∑
t=1

ηt

)
,

where (i) follows from Hölder’s Inequality since 1/1 + 1/∞ = 1. Meanwhile, the above result also
used the facts

qt+1 − qt =
λt+1 ⊙ p

lt+1
− λt ⊙ p

lt

=

(
λt+1

lt+1
− λt

lt

)
⊙ p

and

λt+1

lt+1
− λt

lt
=

(1− ηt)λt + ηtλ̂
∗
t

lt+1
− λt

lt

=

[
(1− ηt)λt + ηtλ̂

∗
t

]
⟨λt,p⟩ − (1− ηt)λt⟨λt,p⟩ − ηtλt⟨λ̂∗

t ,p⟩

lt+1lt

=
ηt

(
λ̂∗
t ⟨λt,p⟩ − λt⟨λ̂∗

t ,p⟩
)

lt+1lt
.

By the above, we have

|qt+1 − qt|1 ≤

∣∣∣∣∣∣
ηt

(
λ̂∗
t ⟨λt,p⟩ − λt⟨λ̂∗

t ,p⟩
)

lt+1lt

∣∣∣∣∣∣
1
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≤ ηt
p2min

(
∣∣∣λ̂∗

t ⟨λt,p⟩
∣∣∣
1
+
∣∣∣λt⟨λ̂∗

t ,p⟩
∣∣∣)

≤ 2ηt
p2min

. (25)

This facilitates the analysis to be M -independent in the telescoping process. Then, we have

E
[∥∥∇θJ(θT̂ )λ∗

T̂

∥∥2
2

]
≤

16LJrmax

T

(
1 +

2

p2min

T∑
t=1

ηt

)
+

60

T

T∑
t=1

max
j∈[M ]

E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

]
+

240(rmax +Rw)2(1− ρ+ 4κρ)

(1− ρ)B
+ 60ζapprox.

C.3 FINAL RESULT FOR AVERAGE REWARD SETTING

Recalling that α =
1

3LJ
and by letting T ≥

48LJrmax

ϵ
· (1 + 2

p2
min

∑T
t=1 ηt), E

[∥∥∥wj
t −wj,∗

t

∥∥∥2
2

]
≤

ϵ

180
for any objective j ∈ [M ], and B ≥

720(rmax +Rw)2(1− ρ+ 4κρ)

ϵ
yields

E
[∥∥λ⊤

T̂
∇θJ(θT̂ )

∥∥2
2

]
≤ ϵ+ 60ζapprox,

with a total sample complexity given by

(B +ND)T = O
((

1

ϵ
+

1

ϵ
log

1

ϵ

)
1

ϵp2min

)
= O

(
1

ϵ2p2min

log
1

ϵ

)
.

C.4 FINAL RESULT FOR DISCOUNTED REWARD SETTING

Similar to the proof in average reward setting, we have

E
[
∥∇θJ(θt)λ∗

t ∥
2
2 | Ft

]
≤

2
(
E
[
λ⊤
t J(θt+1)|Ft

]
− λ⊤

t J(θt)
)

α− 2α2LJ
+
α+ 2α2LJ

α− 2α2LJ
E


∥∥∥∥∥∥

M∑
j=1

λj
t

(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

∣∣∣∣Ft

 ,

(26)
where the last term on the right hand side is bounded by

E


∥∥∥∥∥∥

M∑
j=1

λj
t

(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

∣∣∣∣Ft


≤ 3E


 M∑

j=1

λj
t

∥∥∥∇θJj(θt)−∆j
θt,w∗

t

∥∥∥
2

2 ∣∣∣∣Ft


+ 3E


 M∑

j=1

λj
t

∥∥∥gj
θ∗
t
− gj

t

∥∥∥
2

2 ∣∣∣∣Ft

+ 3E


 M∑

j=1

λj
t ·
∥∥∥∆j

θt,w∗
t
− gj

θ∗
t

∥∥∥
2

2 ∣∣∣∣Ft

 . (27)

Considering the discounted factor γ, we have∥∥∥∇θJj(θt)−∆j
θt,w∗

t

∥∥∥
2
≤ 2
√
ζapprox, (28)

and ∥∥∥gj
θ∗
t
− gj

t

∥∥∥
2
≤ 2 ·

∥∥∥wj
t −wj,∗

t

∥∥∥
2
. (29)

For the last term in Eq. (27), we have

E


∣∣∣∣∣∣
M∑
j=1

λj
t ·
∥∥∥∆j

θt,w∗
t
− gj

θ∗
t

∥∥∥
2

∣∣∣∣∣∣
2 ∣∣∣∣Ft

 ≤
4(rmax + 2Rw)2(1− ρ+ 4κρ)

(1− ρ)B
, (30)
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since the facts

|δjt,l(w
j,∗
t )| = |rjt,l+1 + γϕ(st,l+1)

⊤wj
t − ϕ(st,l)⊤w

j
t |1

≤ |rjt,l+1|+ ∥γϕ(st,l+1)− ϕ(st,l)∥2 · ∥wj
t∥2

≤ rmax + 2Rw,

thus, ∥δjt,l(w
j,∗
t )ψθt,l∥2 ≤ rmax + 2Rw, and ∆j

θt,w∗
t
= Edθ

[
EPθ

[
δjt,l(w

j,∗
t ) | (at,l, st,l)

]
·ψθt,l

]
≤

rmax + 2Rw.

Substituting Eqs. (28), (29), (30) into Eq. (27), we have

E


∥∥∥∥∥∥

M∑
j=1

λj
t

(
∇θJj(θt)− gj

t

)∥∥∥∥∥∥
2

2

∣∣∣∣Ft

 ≤ 12ζapprox+12 max
j∈[M ]

E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

∣∣∣∣Ft

]
+
12(rmax + 2Rw)2(1− ρ+ 4κρ)

(1− ρ)B
.

(31)

Substituting Eq. (31) into Eq. (26), letting α =
1

3LJ
, taking expectation of Ft, and taking average of

Eq. (26) over T yields

E
[∥∥∇θJ(θT̂ )λ∗

T̂

∥∥2
2

]
=

1

T

T∑
t=1

E
[
∥∇θJ(θt)λ∗

t ∥
2
2

]
≤

16LJ

T

T∑
t=1

(
E
[
λ⊤
t J(θt+1)

]
− λ⊤

t J(θt)
)
+

60

T

T∑
t=1

max
j∈[M ]

E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

]
+

60(rmax + 2Rw)2(1− ρ+ 4κρ)

(1− ρ)B
+ 60ζapprox,

where
T∑

t=1

(
E
[
q⊤t J(θt+1)

]
− q⊤t J(θt)

)
= E

[
T−1∑
t=1

(−qt+1 + qt)
⊤J(θt+1)− q⊤1 J(θ1) + q⊤T J(θT+1)

]

≤ E

[
T−1∑
t=1

|qt+1 − qt|1∥J(θt+1)∥∞ + |qT |1∥J(θT+1)∥∞

]

≤
T−1∑
t=1

(
2ηt
p2min

· rmax

1− ∥γ∥∞

)
+

rmax

1− ∥γ∥∞

≤
rmax

1− ∥γ∥∞
(1 +

2

p2min

T∑
t=1

ηt),

where the 2nd from the last inequality, we used inequality 25 for discounted setting. Then, we have

E
[∥∥∇θJ(θT̂ )λT̂

∥∥2
2

]
≤

16LJrmax

T (1− ∥γ∥∞)
(1 +

2

p2min

T∑
t=1

ηt) +
60

T

T∑
t=1

max
j∈[M ]

E
[∥∥∥wj

t −wj,∗
t

∥∥∥2
2

]
+

60(rmax + 2Rw)2(1− ρ+ 4κρ)

(1− ρ)B
+ 60ζapprox.

By letting T ≥
48LJrmax

ϵ(1− ∥γ∥∞)
· (1 + 2

p2
min

∑T
t=1 ηt), E

[∥∥∥wj
t −wj,∗

t

∥∥∥2
2

]
≤

ϵ

240
for any objective

j ∈ [M ], and B ≥
240(rmax + 2Rw)2(1− ρ+ 4κρ)

ϵ
yields

E
[∥∥λ⊤

T̂
∇θJ(θT̂ )

∥∥2
2

]
≤ ϵ+ 60ζapprox,
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with total sample complexity given by

(B +ND)T = O
((

1

ϵ
+

1

ϵ
log

1

ϵ

)
1

ϵp2min

)
= O

(
1

ϵ2p2min

log
1

ϵ

)
.
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