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Abstract

Unsupervised skill discovery in reinforcement learning (RL) aims to learn diverse
behaviors without relying on external rewards. However, current methods often
overlook the periodic nature of learned skills, focusing instead on increasing the
mutual dependence between states and skills or maximizing the distance traveled
in latent space. Considering that many robotic tasks—particularly those involving
locomotion—require periodic behaviors across varying timescales, the ability
to discover diverse periodic skills is essential. Motivated by this, we propose
Periodic Skill Discovery (PSD), a framework that discovers periodic behaviors
in an unsupervised manner. The key idea of PSD is to train an encoder that maps
states to a circular latent space, thereby naturally encoding periodicity in the latent
representation. By capturing temporal distance, PSD can effectively learn skills
with diverse periods in complex robotic tasks, even with pixel-based observations.
We further show that these learned skills achieve high performance on downstream
tasks such as hurdling. Moreover, integrating PSD with an existing skill discovery
method offers more diverse behaviors, thus broadening the agent’s repertoire.

Our code and demos are available at https://jonghaepark.github.io/psd

1 Introduction

A fundamental observation in nature is that nearly all forms of locomotion are inherently periodic.
Rhythmic gaits of quadrupeds, the oscillatory motions of fish, and even human walking patterns
share a distinct periodic structure, which can be flexibly modulated across multiple timescales
[39, 28, 31]. This inherent periodicity not only enables energy-efficient movement [39, 82] but also
provides adaptability under varying conditions [28, 31, 82]. Motivated by this understanding, robotics
research has leveraged periodic priors to effectively control complex behaviors in various challenging
environments [77, 87, 78, 52, 86, 83, 47].

In contrast, unsupervised skill discovery methods [25, 84, 34, 13, 89, 20, 59, 50, 96]—despite their
success in learning diverse behaviors without external reward—have rarely addressed the role of
periodicity. They primarily focus on maximizing the mutual information (MI) between skills and
states [25, 84, 13, 89, 20, 50] or maximizing state deviation based on a given metric [65-67, 75],
both of which encourage state diversity, thereby biasing the learned skills toward discovering where
to go. However, none of these methods address how to behave, which requires modeling the periodic
structure of behaviors—especially across multiple timescales.

To address this gap, we propose a novel unsupervised skill discovery objective for learning periodic
behaviors, which we call Periodic Skill Discovery (PSD). The main idea of PSD is to train an
encoder that maps the state space to a circular latent space, where moving along this circular structure
naturally implies repetition—a fundamental property of periodicity. This geometric connection
between circular embeddings and periodic behaviors makes our approach both intuitive and effective
for capturing periodicity. Specifically, the latent space of PSD is designed to encode temporal distance,
so that moving along a larger circle corresponds to a longer period, directly linking latent geometry
to actual period (Figure 1).
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Figure 1: Visualization of the circular latent space for Walker2D and HalfCheetah. The core
idea of PSD is to map the state space into a circular latent space, where temporal distance is encoded
geometrically. The figure visualizes an actual policy learned by PSD, where following larger circular
paths (blue — magenta) corresponds to longer-period behaviors.

While the circular representation is being updated, PSD jointly trains an RL policy using a single-step
intrinsic reward defined in this latent space. By encouraging the policy to move along the circular
path in latent space, the RL agent can achieve periodic skills of varying lengths using only single-step
reward signals.

Through experiments on various robotic continuous-control tasks, we empirically demonstrate that
PSD can discover diverse periodic skills across multiple timescales. These learned skills are also
shown to be effective in solving complex downstream tasks that require multi-timescale prediction
(e.g., hurdling). Furthermore, since PSD encodes temporal distance in a manner that is invariant to the
underlying state representation [94, 67, 68], it can also discover periodic skills even in pixel-based
robotic environments. Moreover, PSD can be effectively combined with the existing skill discovery
method, METRA [67], thereby broadening the scope of learned behaviors. We empirically find that
this combination leads to more diverse and structured skill repertoires than either method alone.

To sum up, our contributions can be summarized as follows:

* We introduce PSD, a novel skill discovery objective that learns periodic behaviors across
multiple timescales by mapping states to a circular latent space, enabling the agent to exhibit
temporally structured behaviors with controllable periodicity.

* The discovered skills are predictive over multiple horizons, enabling agents to solve complex
downstream tasks (e.g., hurdling) more effectively.

* By encoding temporal distance rather than relying on specific state representations, PSD
can discover various periodic behaviors even in pixel-based environments.

* PSD can be combined with the existing skill discovery method, METRA [67], expanding
the range of learnable behaviors.

2 Related Work

Learning Periodic Motion Recent research has proposed various approaches to learning periodic
motion in robotics. In the domain of legged robots, conventional methods often rely on carefully
designed foot contact schedules [4, 8, 7] or central pattern generators (CPGs) [77, 87, 78] to manage
gait patterns. In RL-based approaches, hand-crafted reward functions [52, 86, 83, 2] or constraints
[47] are widely used to encourage specific gait behaviors. These reward functions often incorporate
phase variables [8, 52, 86] to inform the current gait phase, or leverage predefined foot trajectories
[83, 98, 58, 2] to establish joint targets via inverse kinematics. While effective in guiding legged
robots to achieve desired walking patterns, these approaches present significant limitations in terms
of generalizability and scalability. Designing such reward functions requires extensive manual tuning
and domain-specific knowledge, making it challenging to expand these methods to a wide range of
robotic platforms or high-dimensional observations.



Another line of research in learning structured periodic motion focuses on representing motion data
using frequency-domain features [57, 11, 92, 5, 97, 88]. In particular, PAE [88] leverages Fourier
transforms to encode motion data into a latent phase space, capturing nonlinear local periodicities
across different body segments and enabling structured motion representations. Building upon this,
FLD [56] introduced an RL stage to PAE, proposing a robust policy learning framework that generates
periodic behaviors over long-term horizons. Despite its contributions, FLD relies on offline data
to pre-train the autoencoder, limiting its applicability to the given data distribution. Furthermore,
it requires manually engineered reward functions for individual body segments, which hinders its
scalability to high-dimensional inputs such as pixel-based observations.

Mutual Information-based Skill Discovery A widely adopted approach to unsupervised skill
discovery is to learn skills that maximize the mutual information (MI) between states .S and skill Z,
namely I(S; Z). By maximizing I(S; Z), each distinct skill variable z corresponds to distinguishable
states s, which encourages skill policy to visit a diverse set of states. For example, DIAYN [25]
maximizes a variational lower bound of I(S; Z) through the following objective:

1(8;7) = ~H(Z|8) + H(Z) = E. . [log (s )] — E:logp(2)] 1)
> E, - [logqe(z|s)] + (constant) ~ E, . —%Hz — 11g(8)||2| + (constant), (2)

where gp(z | s) is a skill discriminator that infers the skill z from a given state s. The agent is rewarded
whenever it visits a state where the discriminator can predict the skill with high confidence.

However, MI-based methods tend to discover skills that are easy to distinguish, rather than skills
with diverse temporal patterns. The objective can be fully optimized simply by making the visited
states maximally separated for each skill (i.e., minimizing H(Z | S)), often leading to simple or
static behaviors as there is no additional motivation for exploration [89, 50, 66, 67]. Moreover,
when gg(z | s) is parameterized as a Gaussian N (u(s), 021, the MI objective can be viewed as a
goal-reaching objective in the latent space as shown in Eq. (2) [20, 65]. Consequently, MI-based skill
discovery methods do not consider periodic nature of behaviors, leaving temporal aspects of skills
underexplored.

Distance-Maximizing Skill Discovery As an alternative to MI-based approaches, distance-
maximizing methods have been proposed [65-607, 75]. Formally, they maximize the following
objective:

jDSD = E(z,T)NP (¢(st+1) - d)(st))—rz:| s.t. ||¢($) - ¢(y)|| S d(xvy) V»"Cay S D; (3)

where D is the replay buffer, and ¢ : S — Z is a trainable function that maps states into latent
representations. Here, the metric d enforces an upper bound on latent transitions so that differences
in the latent space do not exceed the distance measured by d. Under this constraint, the RL agent
learns to maximize ||@¢(s¢+1) — ¢(s¢)]| in certain directions z, thereby discovering diverse skills that
traverse the largest distances in latent space. Specifically, different choices of the metric d—such
as Euclidean [65], controllability-aware distance [66], temporal distance [67], and language-based
distance [75]—encourage different types of behavioral diversity.

However, a key limitation of distance-maximizing approaches is that they discover skills which
maximally deviate under their own metrics, yielding only “hard-to-achieve” behaviors. For instance,
METRA [67] employs a temporal distance as its metric and thus strongly prefers fast-moving skills
to maximize temporal state deviations. This suggests that these distance-maximizing approaches
provide no incentive to adjust the temporal patterns of the learned skills, making it difficult to capture
multi-timescale periodic behaviors.

Advantages of PSD Prior approaches in robotics often require extensive domain-specific knowledge
or offline data to learn periodic motion, while unsupervised skill discovery methods fail to capture the
periodic structure of behaviors. To overcome these limitations, our proposed method, PSD, constructs
a circular latent space that captures multi-timescale periodicity in an unsupervised manner. Moreover,
by encoding temporal distance in the latent space, PSD becomes invariant to the underlying state
representation and scales to high-dimensional observations. Overall, PSD offers a generalizable and
scalable framework for capturing multi-timescale periodicity, enabling RL agents to autonomously
achieve periods of diverse lengths.



3 Periodic Skill Discovery

In this section, we describe an objective designed to learn circular latent representations that capture
periodicity. Leveraging this latent structure, we define intrinsic reward functions to train a skill policy
that discovers periodic behaviors.

3.1 Preliminaries

For unsupervised skill discovery, we consider a Markov decision process (MDP) M = (S, A, P) in
the absence of external reward. Here, S is the state space, A is the action space, and P : S x A —
A(S) denotes the transition function. In this setup, we define a positive integer L as the period
variable, which conditions the policy 7(a|s, L) to produce behaviors with period 2L. Formally, we
refer to 7(a|s, L) as a periodic skill policy, which satisfies

St = St+2L where {3t+k}zio ~ ,Pﬂ—L Vit € {O, 1, . }

Here, P,, denotes the distribution over state trajectories induced by the policy 7 (a | s, L). At the
beginning of each training episode, the period variable L is sampled from a prior distribution p(L),
which we assume to be uniform over a bounded set of positive integers L € [Luin, Lmax]- Once
sampled, L remains fixed throughout the episode. We then roll out the periodic skill policy 7 (a|s, L)
using the chosen L to collect a skill trajectory.

3.2 Circular Latent Representation to Capture Periodicity

To capture periodicity in an unsupervised manner, we train an encoder ¢ : S x N — R? that
maps a state s and a period variable L to a latent circle of diameter L. For simplicity, we denote
¢r(s) := ¢(s,L) so that ¢ (-) highlights the dependence on L. Formally, PSD maximizes the
following constrained objective:

Ipsp = (15,504 1)~D [||¢L(St+L) —¢r(se)ll2 — kllér(serrn) + dr(se)ll2 )
st. [on(si+r) —or(se)llz < L, (%)
6L (st41) = ¢r(se)ll2 < Lsin(m/2L) V(L,st,8041,5041) € D, (6)

where D is the replay buffer and £ > 0 is a constant.

To construct a circular latent representation, Jpsp encourages
the encoder ¢, to map s; and sy, to opposite points of the

latent circle of diameter L. This is achieved by maximizing Pue)

||¢L(St+1) — @r(st)||2 while the first constraint ensures that this

distance does not exceed L. The second constraint enforces equal $1650) S15enl)
L\>t L\St+L

angular spacing between consecutive states, where each adjacent
pair is separated by an angle of 7/L, resulting in a regular
arrangement along the circle. Specifically, the term L sin(7/2L)
corresponds to the side length of a regular 2L-gon inscribed
in a circle of diameter L. As a result, the encoded states are
positioned at the vertices of the polygon, evenly distributed Figure 2: Latent space of PSD.
along the circular latent space (Figure 2), which facilitates the Illustration of the circular structure
design of a single-step intrinsic reward described in Section 3.3. induced by optimizing Jpsp.

Additionally, to prevent arbitrary translations in the latent space, we include the term —k ||¢r, (s¢+1) +
&1,(s¢)]|2 in Eq. (4). This ensures that the midpoint of opposite points is placed at the origin, aligning
circles of different diameters to share the same center and form concentric circles for each L.

By optimizing Jpsp, the latent representation is structured to capture temporal distances. States
that are L steps apart are mapped to opposite points on the latent circle, and after 2L steps, the
latent trajectory returns to its initial point, completing a full loop. We formally prove in Appendix A
that optimizing Jpsp induces a regular 2L-gon in latent space, where the encoded states satisfy
o1 (st) = ¢r(s¢12r1) and ¢ (s¢11,) lies opposite to ¢, (s¢) on a circle of diameter L.



Algorithm 1 Periodic Skill Discovery (PSD)

1: Initialize: policy 7, encoder ¢, sampling bound Lyin max, replay buffer D, Lagrange multiplier A
2: for each training epoch do
Update Lnin, Lmax if AdaptiveSampling is enabled
for each episode in the epoch do
Sample L ~ p(L) where L € [Luyin, Limax)
Execute 7(a|s, L) for the entire episode, and store transitions (L, s;, at, $¢41) in D
end for
Update ¢r,(s) by maximizing Jpsp, ¢ using samples from D
9:  Compute intrinsic reward rpsp
10:  Update 7(a|s, L) with rpsp using SAC
11: end for

w

AN A

Tractable Implementation To implement our constrained objective Jpsp in a tractable manner,
we use dual gradient descent [9, 24] with Lagrange multipliers A; 2 > 0 as follows:

Tpsp, = E[||<Z>L(St+L) — or(se)ll2 = kl|on(sesr) + or(se)l2
+ A min(e, L—|¢r(sirr) — ¢L(3t)||2)
+ A -min(e, Lsin(ﬂ'/QL) —|lor(st41) — ¢L(5t)“2)}7 N

where € > 0 is a small relaxation constant introduced to improve training stability [94, 67]. The tuple
(L, 8¢, St+1, St+1,) is sampled from the replay buffer, which stores trajectories collected by the skill
policy w(a|s, L).

3.3 Single-Step Transition Reward for Periodic Behavior

While a circular representation is being learned, the RL agent is jointly trained with an intrinsic reward
that encourages periodic behavior. Since the circular latent space is designed to capture periodicity,
rewarding the policy for moving along this circular space naturally promotes the learning of periodic
behaviors. To this end, we first quantify how much a single-step latent transition deviates from the
optimal length:

A = r(si+1) — ér(se)lls — Lsin(r/2L).

Here, L Sin(ﬂ / 2L) is the optimal single-step length from Eq. (6). We then define the intrinsic reward
rpsp as follows:
Tpsp(St, St41, L) := exp(—faA2), 3

where x > 0 is a positive constant. Maximizing rpsp penalizes deviation from the optimal single-
step distance in the latent space, thereby encouraging the policy 7(a | s, L) to follow the circular
path and complete a full cycle of period 2L, where ¢, (st) = ¢r(s¢421). By leveraging the latent
representation of PSD, the RL agent can discover diverse skills with varying periods using only a
single-step reward design, without requiring entire rollouts or specialized objectives for each period.

3.4 Adaptive Sampling Method

To enable the agent to discover a maximally diverse range of periods without any prior knowledge of
its inherent period ranges, we introduce an adaptive sampling method that dynamically adjusts the
sampling range [Lyin, Limax] during training. The idea is to evaluate the performance of the policy
conditioned on the boundary of the current sampling range. The performance is measured by the
average cumulative sum of rpgp as follows:

T-—1
Rp =Ey(r 1) [Z 7psp (8¢, S¢41, L)| for L € {Liin, Lmax )
=0

where p(7 | L) denotes the distribution over state trajectories induced by the policy 7(a| s, L). Notably,
since the 7psp is defined as exp(—xA?) € (0,1], Ry, is upper bounded by 7', which corresponds
to the maximum episode length. We use this upper bound to set a threshold for how accurately the
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Figure 3: Comparison of skill trajectories in the frequency domain. We apply a Fourier transform
to skill trajectories, where each skill is uniformly sampled from the skill prior of each method.
The resulting spectrum illustrates the frequency (z-axis) and amplitude (y-axis), representing the
temporal patterns of each skill. The accompanying bar chart visualizes the four most dominant
frequencies—ranked by amplitude—and highlights the range of discovered periods.

policy 7(a | s, L) follows the desired circular path in the latent space. The bounds are updated as
follows:

. Lo+ N if Ry, >al Luin— N if Ry, > oT
max Lmax — N if Ry, < BT i Lyin+ N ifRp,, < BT

Here, v and (3 are threshold coefficients, where &« > 3 > 0, and NN is a positive integer that determines
the step size for adjusting the bounds. Since 7psp quantifies the deviation between the optimal and
actual latent transitions, a large R, indicates that the current skill policy has the capability to achieve
the currently given period ranges and is ready to expand its skills. In such cases, the corresponding
bound is extended. Conversely, if Ry, is too small, the current bound is rejected and the previous
value is restored. This mechanism enables the agent to discover dynamically feasible period bounds,
thereby broadening the range of achievable periods. Details of the full algorithm and hyperparameters
are provided in Appendix C.

min

3.5 Algorithm Summary

To summarize, we train the encoder ¢ to construct the circular latent representation, and jointly
optimize the policy m(a | s, L) with the single-step intrinsic reward rpsp using SAC [33]. The
full procedure is described in Algorithm I, and additional implementation details are provided in
Appendix C.

4 Experiments

The main goal of our experiments is to demonstrate that PSD can discover diverse periodic skills
across multiple timescales by learning a circular latent representation. We also evaluate whether the
discovered skills are useful for solving downstream tasks. In addition, we examine the scalability
of PSD to high-dimensional observations such as pixel inputs. Finally, we explore the potential of
combining PSD with existing unsupervised skill discovery methods to enhance the agent’s behavioral
diversity.
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Figure 5: Trajectories of the skill policy and corresponding latent representation. The figure
shows the joint trajectories of Ant (fop) and Walker2D (bottom) and a 2D PCA projection of their
latent encodings learned by PSD. Within a single episode, we switch the period variable L at fixed
time intervals. The resulting behavior of the skill policy exhibits a period of 2L timesteps.
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Figure 6: Histogram of the representation learned by PSD in the Ant environment. The average
values of 1-step distance ||¢r,(s:) — ¢r(si41)|| and L-step distance ||¢r,(s:) — ¢r(si41)|| converge
to their optimal values, indicating that the constraints of the objective Jpsp are effectively satisfied.

Experimental Setup We evaluate PSDon five |
robotic locomotion tasks in the MuJoCo envi-

ronment [10, 91], both in state and pixel do- % =

main: Ant, HalfCheetah, Humanoid, Hopper, Ant HalfCheetah  Humanoid Hopper Walker2D
and Walker2D (Figures 4 and 7). Figure 4: MuJoCo locomotion environments.

Baselines We compare PSD with the four state-of-the-art unsupervised skill discovery methods:
DIAYN [25] is a mutual information-based method that discovers skills by training a skill discrimina-
tor gg(z| s) to infer the skill from a given state. DADS [84], similar to DIAYN, trains skill dynamics
qo(s’ | s, 2) to increase the mutual dependence between state transitions and the skill, enabling the
agent to learn diverse state transitions conditioned on the skill variable z. CSD [66] and METRA [67]
fall into the category of distance-maximizing skill discovery methods. These methods discover skills
by maximizing the latent distance traveled in a specific direction of the skill vector z. Specifically,
CSD uses a controllability-aware distance metric, and METRA uses a temporal distance metric.

Question 1. Can PSD discover diverse periodic skills across multiple timescales?

We first check whether PSD can learn a circular latent space constructed by the encoder ¢, and
whether the skill policy 7(a| s, L) actually produces behaviors with a period of 2L across different
values of L. Figure 5 shows the trajectories of representative states along with a 2D PCA projection
of the corresponding latent trajectories for the Ant and Walker2D environments. For varying values
of L, PSD successfully constructs a circular latent space whose diameter is proportional to the period
variable L, and learns behaviors with the desired period of 2L. For example, in the Ant environment
with L = 20, we can observe that the resulting behavior completes approximately five full cycles
of period 2L (= 40) over 200 timesteps. These results suggest that, by leveraging a circular-shaped
latent space, PSD can learn a policy that produces behaviors with controllable periodicity.



(a) Pixel-based observation (b) Frequency spectrum of skill trajectory

Figure 7: Frequency spectrum of skills in pixel-based environments. We visualize the pixel-
based observations used as input to PSD, along with the resulting frequency spectrum of skill
trajectories obtained via Fourier transform. The accompanying bar chart highlights the top-3 frequency
components ranked by amplitude.

Table 1: Comparison of downstream task performance. We evaluate PSD against existing skill
discovery methods. High-level policies are trained using PPO with the skill policies kept frozen. All
reported values are average returns over 10 seeds.

Downstream task DIAYN DADS CSD METRA PSD (Ours)

HalfCheetah-hurdle 0.6+05 0.9+03 0.8+06 1.9+0.8 3.8+20
Walker2D-hurdle 2.6+05 1.9+03 4.1+13 3.1+05 54+14
HalfCheetah-friction 13.2+34 124429 12.5+38 30.1+13.1 43.4+19.1
Walker2D-friction 4.6+12 1.6+0.1 5.3+03 52+16 8.7+17

To quantitatively evaluate whether the learned circular representation satisfies the objective Jpsp, we
sample 1k transitions from the replay buffer D and assess whether the 1-step constraint in Eq. (6) and
the L-step constraint in Eq. (5) are approximately satisfied. Figure 6 plots histograms of the 1-step
distance ||¢r(st) — ¢ (st+1)] and the L-step distance ||¢ 1, (st) — ¢ (st+1 )] in the circular latent
space, computed over sampled transitions. As shown in the figure, both distances converge closely
to their theoretical optima, L sin(w/2L) and L, with a small relative error. This strong alignment
between empirical measurements and analytical predictions indicates that the encoder ¢ successfully
enforces the geometric regularity of the circular latent space during training. The full experimental
results of Figures 5 and 6 are provided in Appendix D.

Next, we compare PSD with prior skill discovery methods—DIAYN, DADS, CSD, and ME-
TRA—that aim to learn diverse behaviors via policies of the form 7 (a | s, z), conditioned on
different skill variables z. For each method, we uniformly sample 16 skills from its skill prior and
roll them out in the environment to collect corresponding skill trajectories. For comparison, each
trajectory is normalized per dimension using statistics computed from random-action rollouts. The
normalized trajectories are then projected to a one-dimensional subspace using Principal Component
Analysis (PCA). Finally, we apply a Fourier transform to each projected trajectory to analyze its
frequency components and extract the four highest frequencies by amplitude, which are visualized as
bar charts.

As shown in Figure 3, PSD consistently discovers skills that exhibit a wide range of frequencies
due to its explicit modeling of circular periodicity. In contrast, distance-maximizing approaches like
METRA and CSD tend to concentrate on narrow frequency bands and often produce inconsistent,
indistinguishable behaviors in Hopper and Walker2D, limiting the diversity of the discovered temporal
patterns and frequencies. Also, MI-based methods often produce either static or partially random
behaviors, as they do not incorporate the temporal aspects of skills.

Question 2. Are the discovered skills useful for solving downstream tasks?

To evaluate the utility of the discovered skills, we conduct downstream experiments by training a high-
level policy " (L | s) (or 7"*(z | s) for baseline methods). For each method, the skill policy is kept
frozen, and the high-level policy is trained using PPO [80] to select skills that maximize task-specific
rewards. We design downstream environments featuring two types of challenges—hurdles and varying
ground friction. In the hurdle task, the agent should select skills to jump over the irregularly placed
hurdles, which requires adaptive coordination between multi-timescale skills. Similarly, in the friction
task, the agent should select skills to robustly walk across terrain whose surface friction coefficients
are randomly assigned. (see Appendix C for details).
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Figure 8: Visualization of traveled distance and frequency spectrum of skills learned via the
combination of METRA and PSD. Colors indicate skills conditioned on the same value of the
period variable L. Videos are available at our project page.

Since our method is not explicitly optimized for exploration in the state space, we add an external
velocity-based reward 7yt to encourage forward progress. For fair comparison, the same external
reward is linearly combined with the intrinsic rewards of all baseline methods. Table | shows that
PSD outperforms the baselines on most tasks, demonstrating that PSD provides skills that are both
adaptable and robust.

Question 3. Is PSD scalable to high-dimensional observations such as pixel-based input?

Since PSD encodes periodicity by capturing temporal distances between states, its latent space is
invariant to the specific state representation. To validate this, we conducted experiments in pixel-based
Ant and HalfCheetah environments, as depicted in Figure 7, and found that PSD successfully learns
periodic behaviors even from raw pixel inputs. These results demonstrate that PSD generalizes ro-
bustly to visual domains without any modification to its objective or reward formulation, highlighting
its scalability to high-dimensional inputs. Additional analyses are provided in Appendix D.

Question 4. Can PSD become fully unsupervised by combining it with other unsupervised methods?

Since rpgp is designed to provide additional variations in the learned behaviors, it could be combined
with any type of reward, even with an unsupervised one. To validate it, we combine PSD with METRA
[67], enabling a fully unsupervised extension. As discussed in Section 2, METRA optimizes the
following objective:

T-1
gnax Ep(r,2) [Z Om(St+1) ¢m,(5t))Tz:| st |@m(s") — dm(s)| <1 V(s,s") € Saas, (9)
moT t=0

where ¢,,, denotes the encoder used in METRA. METRA discovers exploratory skills that maximally
deviate along directions z in latent space, while constraining the latent distance between adjacent
states to 1, thus capturing temporal distance. PSD naturally aligns with this formulation, as both
methods capture temporal aspects of skills: METRA adjusts the temporal direction of skills (i.e., the
skill variable z), whereas PSD modulates their temporal length (i.e., the period variable L). By jointly
training both encoders and using the sum of their rewards, we can obtain a skill policy that enables
independent control over both variables (> and L), as follows:

m(al|s,z, L) + arg max Ep z_: (D (8141) — Dm(50)) 2 +exp(=r A(L)?)].  (10)
t=0

T"METRA 'PSD

In Figure 8, we visualize the traveled XY-coordinates (or X-coordinates) alongside the frequency
spectrum of the corresponding skill trajectories. By adjusting the variables z and L of the policy
m(a | s,z, L), the agent can modulate both the movement direction and the period of skills in a
fully unsupervised manner, yielding a more diverse behavioral repertoire. This result suggests that
the temporal property of PSD is orthogonal to the exploratory objectives of METRA, making it
a complementary component for constructing fully unsupervised policies. (see Appendix C for
implementation details)
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5 Conclusion

We introduce Periodic Skill Discovery (PSD), a framework for unsupervised skill discovery that
captures the periodic nature of behaviors by embedding states into a circular latent space. By optimiz-
ing a constrained objective that encodes temporal distance, PSD enables agents to learn skills with
controllable periods. Our experiments demonstrate that PSD discovers diverse and temporally struc-
tured skills across various MuJoCo environments, and scales to raw pixel observations. Furthermore,
combining PSD with METRA leads to richer behaviors by jointly modulating temporal direction
and period. Overall, PSD provides a scalable and principled framework for discovering temporally
structured behaviors in reinforcement learning.

Limitations and Future Work. While our experiments primarily focus on locomotion tasks,
due to their suitability for showcasing multi-timescale behaviors, the PSD framework is applicable
to any domain that exhibits periodic structure. However, PSD may underperform in settings with
large persistent external disturbances (e.g., constant interference from another agent) where periodic
behavior becomes infeasible. An interesting future direction is to extend PSD to non-periodic
tasks, such as robotic manipulation, by generalizing the latent geometry beyond circular structures.
Moreover, directly integrating frequency-domain analysis, such as Fourier representations, into the
training process could further improve PSD in capturing temporal patterns.
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A Theoretical Results

Theorem 1. Given a positive integer L, ¢1, is an optimal solution to Jpsp if and only if it forms a
regular 2L-gon of diameter L centered at the origin.

Proof. We prove the claim by showing both directions of the equivalence.

(<) Suppose ¢, forms a regular 2L-gon of diameter L centered at the origin. Then, for all
(L, 8¢, $t+1,8t+1) € D, we have ||¢r(st4r) — dn(st)||l2 = L and ¢ (st4n) = —dr(s¢), which
implies ||¢(s¢+1) + ¢r(st)]|2 = 0. Thus, the objective becomes Jpsp = E[L — k - 0] = L. Since
Eq. (5) requires ||¢r(st+r) — ¢r(st)]|2 < L, any feasible solution must satisfy Jpsp < L, and no
higher value can be attained. Under this condition, the given regular 2L-gon satisfies both constraints
in Eq. (5) and Eq. (6). Hence, ¢y, is optimal.

(=) Suppose ¢, is optimal and achieves Jpsp = L. Then ||¢r(st+r) — ¢r(s¢)|l2 = L and
62 (se4r) + dr(se)ll = 0, implying ér(sirz) = —dr(se) and ¢ (s,) lies on a hypersphere
of radius L/2 centered at the origin for all (L, s, S¢41,8¢+1) € D. From Eq. (6), we have
oL (se+1) — dr(se)]|l2 < Lsin (n/2L), which implies that the maximum angular distance between
adjacent points is 7/L. Under this condition, reaching the antipodal point ¢, (s¢41) = —¢r(st)
starting from ¢, (s;) is only possible if the points are equally spaced along the circumference of a
great circle on the hypersphere, with an angular distance of exactly 7 /L between adjacent points.
Hence, ¢, forms a regular 2L-gon of diameter L centered at the origin. O

B Extended Related Work

PSD primarily falls into the category of unsupervised skill discovery methods [, 25, 84, 34, 13, 89,
20, 43, 46, 59, 50, 17, 42, 65, 69, 66, 53, 96, 44, 67, 45, 3, 75, 100, 41, 95, 14, 76], which aim to
learn a diverse set of skills without external rewards, and the resulting skills can be effectively adapted
to downstream tasks or leveraged for high-level planning. In this regard, these methods also share
conceptual similarities with Quality-Diversity (QD) algorithms [55, 61, 74, 22,79, 21, 16, 63, 70, 32,
15], an evolutionary optimization framework that iteratively explores and refines diverse behavioral
patterns without external task rewards, using behavior descriptors as implicit objectives to guide
exploration. Both frameworks aim to discover a broad repertoire of distinct and high-performing
behaviors by optimizing for diversity rather than maximizing a single task-specific reward.

Discovering these diverse and useful repertoires inherently requires an agent to explore the environ-
ment broadly and encourage skills to visit a wide range of states. This emphasis on broad exploration
shows a strong connection to exploration methods [38, 6, 64, 90, 30, 36, 85, 12, 73, 81,71, 60, 40, 19,
54, 18] that explicitly aim to maximize state coverage through intrinsic rewards. From this perspective,
the PSD framework can also be viewed as exploring the environment in the frequency domain (see
Figure 3), as it learns diverse periodic behaviors across multiple timescales in an unsupervised manner
through an adaptive sampling method.

Moreover, since PSD learns a latent representation where distances between states capture their
temporal relationships, it is closely related to prior works [72, 29, 23, 35, 26, 27, 94, 67, 68, 3, 62, 99]
that aim to encode temporal structure in RL representations.
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C Experimental Details

C.1 Environments

MuJoCo locomotion environments We adopt MuJoCo environments including Ant, HalfCheetah,
Humanoid, Hopper, and Walker2D [10, 91] to evaluate our method and baselines. Episode lengths
are set to 200 timesteps for Ant and HalfCheetah, and 400 timesteps for Humanoid, Hopper, and
Walker2D. For state-based observations, we follow the default Gym setting [10], which includes
proprioceptive information in the observation space. However, since both CSD and METRA rely on
global position information to construct their latent representations, we include the global position
in the observation when applying these methods, following the setups described in their original
papers. For the pixel-based experiments of PSD, we use 90 x 90 x 3 RGB images captured from a
tracking camera (view shown in Figure 7) as input to both the RL agent and the encoder ¢, without
incorporating any additional proprioceptive information.

Downstream tasks environments In the HalfCheetah-hurdle and Walker2D-hurdle environments,
the high-level policy receives a reward whenever the agent successfully jumps over a hurdle. For
HalfCheetah-hurdle, the hurdle positions are [2.5,4.0, 7.0, 10.0, 15.0, 22.0, 30.0], with a height of
0.26, which is higher than the setting used in METRA [67]. For Walker2D-hurdle, the hurdle
positions are [1.2,2.7,4.1,5.8,7.0,9.2,11.0, 12.8, 14.2], with a height of 0.11. In both environments,
the hurdles are unevenly spaced, requiring multi-timescale coordination for successful locomotion.
We provide the distance to the nearest hurdle as part of the task-specific input sy, to the high-level
policy. The episode lengths are set to 300 timesteps for HalfCheetah-hurdle and 600 timesteps for
Walker2D-hurdle.

In the HalfCheetah-friction and Walker2D-friction environments, the agent is rewarded for main-
taining forward velocity, which encourages robust locomotion while avoiding falls under changing
friction conditions. For implementation simplicity, we do not modify the ground friction directly.
Instead, we sequentially change the friction parameters of the agent’s feet in the XML file every
100 timesteps, cycling through the values [0.5, 1.5, 2.0], given that the default friction parameter in
MulJoCo is 1.0. Additionally, the current friction coefficient is provided as task-specific input Sk to
the high-level policy, enabling it to adapt to the changing frictions. The episode lengths are set to 500
for both HalfCheetah-friction and Walker2D-friction.

C.2 Implementation Details

We implement PSD on top of the publicly available PyTorch SAC implementation'. For fair compari-
son, we implement all baseline methods within the same codebase as PSD to ensure consistency in
training procedures and infrastructure. To train the high-level policy for downstream tasks, we use
PPO implemented in a public PyTorch repository”. All experiments are conducted on an NVIDIA
A6000 GPU, and training for each task typically completes within 24 hours.

Training PSD  For training PSD, we uniformly sample four discrete values of the period variable
L from the range [Lmin, Lmax], including both bounds, to ensure coverage of the range while
maintaining training efficiency. As shown in Appendix D.2, we found that this sampling strategy is
sufficient, as the model is able to generalize to intermediate L values via interpolation.

Additionally, since L is a scalar value, directly feeding it into the encoder ¢, the policy 7, and the
Q-function may limit the representational capacity of these networks. To address this, we apply sinu-
soidal positional embeddings—commonly used in transformers [93] and diffusion models [37]—to
project L into a higher-dimensional space. As an example, rather than using L directly in the policy
in the form of 7(a | s, L), we use 7(a | s, Embed(L)), where Embed(L) denotes the embedded
representation of L as follows:
sin(L - w;) ifimod 2 =0,
Embed(L) = [eg,€1,...,ep—1], wheree; = {COS(L ‘wi) ifimod2=1,

"https://github. com/pranz24/pytorch-soft-actor-critic
https://github.com/nikhilbarhate99/PP0-PyTorch
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where the frequency term w; is defined as w; = 10000~ 21/21/P ' We apply this sinusoidal embedding
to the period variable L whenever it is used as input to the network, enabling the model to better
distinguish and generalize across different temporal scales. In addition, we found that using fixed
values for A; and s works well in practice, when optimizing Jpsp via dual gradient descent method.
The full set of hyperparameters is summarized in Table 2.

Training baseline methods For baseline methods, we closely followed the implementation details
described in their original papers. For METRA, we use a 2-dimensional continuous skill vector
z € R? for Ant and Humanoid, and 16-dimensional discrete skills for other environments. In CSD,
a 16-dimensional discrete skill vector is used for all environments. For both METRA and CSD,
continuous skills are sampled from a standard Gaussian distribution and normalized to have unit
norm, and discrete skills are designed to be zero-centered one-hot vectors. For DADS, we use 2-
dimensional continuous skills sampled from the uniform range [—1, 1]? for Ant and Humanoid, and
16-dimensional one-hot vectors for the remaining environments. In DIAYN, we use 16-dimensional
one-hot vectors across all environments. For training the low-level policy for downstream tasks, we
use 16-dimensional discrete skills for all baseline methods.

Adaptive sampling method For the adaptive sampling method, we evaluate the periodic skill policy
conditioned on the current boundary periods every 1k episodes. To measure performance, we roll out

5 episodes and compute the average cumulative sum of rpsp, defined as R, = Ep -1 [Z;T:_Ol TPSD)-
For the threshold coefficients « and /3, we found that setting o = 0.9 and 5 = 0.4 works well in
practice. To avoid abrupt narrowing of the radius range in the early stages of training, each bound is
allowed to shrink only after it has first been expanded, i.e., after R, > 0.97 has been satisfied at
least once. The full algorithm is described in Algorithm 2, and a complete list of hyperparameters is
provided in Table 2.

Training PSD with pixel-based observations For experiments using pixel-based observations, we
use a CNN-based encoder [51] to process visual inputs. To capture temporal continuity, we concate-
nate consecutive frames as input. We also apply random cropping as a form of data augmentation,
following CURL [49]. We found that action repeat was not necessary to achieve stable training in our
setup. A complete list of hyperparameters is provided in Table 3.

Task-specific reward Since PSD is designed to enrich the agent’s behavior with additional diversity
while still achieving the primary task, we optionally combine the velocity-based external reward 7,
with the intrinsic reward 7psp.

Given that rpsp = exp(—/f AQ) is bounded in the range (0, 1], we design the external reward to also
have an upper bound of 1, ensuring a balanced contribution of both rewards when the agent reaches
optimal performance, as follows:

1.0 if vy, > v}
vy /v otherwise

res(en) = {

This reward function assigns rex = 1.0 when the agent’s forward velocity v, exceeds the threshold
v}, and increases linearly as v, approaches the threshold from below. We set v, = 0.5 for Ant and
HalfCheetah, and v}, = 1.0 for Humanoid, Hopper, and Walker2D.

Training the high-level policy for downstream tasks For downstream tasks, we train the high-
level policy using PPO [80] while keeping the low-level skill policies frozen. This training utilizes a
task-specific reward and an additional observation, S, Which are detailed in Appendix C.1. In all
experiments, the high-level policy, 7 (L | susk, 5) (or 7/ (2| susk, 5) for baseline methods), selects a
skill every H environment steps, and the low-level policy then executes this skill for the subsequent H
steps. The high-level policy is trained for 100k episodes using the hyperparameters listed in Table 4.
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Training PSD combined with METRA METRA [67] learns an encoder ¢,,, and a skill policy 7 (a |
s, z) that encourages transitions to deviate maximally along latent directions z, while constraining
the one-step latent distance to capture temporal coherence. As described in the original paper [67],
the constrained objective in Eq. (9) is optimized by maximizing the following components:

IMETRA, 6., = E(S,S’,Z)~D [(¢m(sl) - ¢m(3))T2 + Ay min (67 1- ||¢m(5/) - (bm(S)H%ﬂ , (1)
IMETRA A, = —Am E(s,5 2)op [min (6,1 = [|¢m(s") — dm(s)113)] (12)

where \,, is a Lagrange multiplier, updated during training via the dual gradient method to enforce
the constraint.

A naive combination of PSD and METRA—training their encoders independently and simply
summing their intrinsic rewards—fails in practice. As explained in Section 2, the METRA objective
strongly favors skills with the shortest possible period. This is because shorter periods typically
correspond to faster motions, which lead to larger per-step deviations in the latent space and thus
yield higher values of (¢, (s") — ¢m(s)) " z. Consequently, all discovered skills collapse into a single
short-periodic behavior, undermining the diversity of the learned skill of PSD.

To address this issue, we condition each encoder on the other method’s skill variable by incorporating
it as an additional input to the state. Specifically, we augment the input to ¢y, with the skill variable 2
from METRA, and the input to ¢,, with the period variable L from PSD, resulting in:

¢L(S> - ¢L($7 :)a QSm(S) - ¢m(53 L)

This mutual conditioning allows each encoder to account for the temporal properties imposed by the
other method, thereby regularizing their joint optimization and preventing skill collapse. For example,
from the perspective of training ¢,, (s, L), the METRA objective in Egs. (11) and (12) encourages
latent representations that exhibit large per-step deviations in the latent space while satisfying the
periodicity determined by L.

By jointly optimizing both encoders with this conditioning, we obtain a policy 7(a | s, z, L) that
can independently modulate both the temporal direction (i.e., the skill variable z) and the temporal
length (i.e., the period variable L) in a fully unsupervised manner. The full algorithm is described in
Algorithm 3 and a complete list of hyperparameters is provided in Table 5.

Latent Space Dimensionality As summarized in Table 2, we used {3, 6}-dimensional latent spaces
across all embodiments, which we found to work well in practice. In contrast, a 2-dimensional latent
space (i.e., a plane) led to unstable performance for complex agents such as Ant or Humanoid. We
hypothesize that, since the PSD objective does not explicitly constrain the latent circles for each L
to lie on the same plane, having additional degrees of freedom allows different circles to occupy
different planes. This, in turn, helps stabilize the embedding during training. Conversely, when the
latent space is restricted to only 2 dimensions, this flexibility is lost, which leads to instability.

C.3 Visualizations

PCA visualization for latent space As described in Section 3.2 and Appendix C.2, the circular
latent space of PSD is not necessarily 2-dimensional. Given the PSD formulation, we map states s to
latent vectors ¢, (s) with 3 or more dimensions in practice to better capture periodicity. To visualize
this circular latent space, as shown in Figure 5 and our video, we apply Principal Component Analysis
(PCA) to obtain a 2-dimensional projection that clearly illustrates the underlying circular structure.

20


https://jonghaepark.github.io/psd

C.4 Full Algorithm of Adaptive Sampling Method

Algorithm 2 Adaptive Sampling Method

1: Imitialize: policy 7, encoder ¢, current sampling bound Lin, Limax
2. updated_once_min < False
3: updated_once_max < False

4: for each evaluation episode do

5:  for L € {Luin, Limax} do

6: Execute 7(a | s, L) for the entire episode

7: Compute cumulative reward Zz:ol rpsp(L)
8: end for

9: end for

0:

Compute average reward Ry, , Rp ..

11: if Ry, > oT then

12: Lmin < Lmin - N

13:  updated_once_min < True
14: end if

15: if Ry, > oT then

16:  Lpax < Lpax + N
17:  updated_once_max < True

18: end if

19: if Ry, < BT and updated_once_min = True then
20: Loyin < Lypin + N

21: end if

22: if Ry, < BT and updated_once_max = True then

23: Lmax < Lmax - N
24: end if
25: return Lin, Lmax

C.5 Full Algorithm of PSD Combined with METRA

Algorithm 3 PSD combined with METRA

1: Imitialize: policy 7, PSD encoder ¢, METRA encoder ¢,,, sampling bound Ly max, replay
buffer D, Lagrange multiplier A1 2.,

2: for each training epoch do

3:  Update Lyin, Lmax if AdaptiveSampling is enabled

for each episode in the epoch do

Sample L ~ p(L) where L € [Luyin, Limax)

Sample z ~ p(z) where p(z) is the skill prior of METRA

Execute 7(a | s, z, L) for the entire episode, and store transitions (z, L, s, at, S¢41) in D
end for

A A

9:  Update ¢,(s, z) by maximizing Jpsp, 4 using samples (z, L, s¢, $¢+1) from D
10:  Update ¢,,(s, L) by maximizing JMmerrA,é,,,2,, Using samples (z, L, ¢, S¢+1, S¢+1,) from D
11:  Compute intrinsic reward rpsp
12:  Compute intrinsic reward rvgTRA
13: Update 7T(a | S, z, L) with apsp - 7psp + TMETRA USINg SAC
14: end for
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C.6 Hyperparameters

Table 2: Hyperparameters for training PSD.

Parameter Value
Learning rate 1x1074
Discount factor v 0.99
Optimizer Adam [48]
N of episodes per epoch 8
N of gradient steps per epoch 64
Replay buffer size 5 x 10°
Minibatch size 1024 (¢1,), 256 (others)
Target smoothing coefficient 0.995
Entropy coefficient Auto-tuned
Circular latent dimension d {3,6}
Output dimension of the positional encoding D 8
TpSD K 10
Jpsp € 1075
Jpsp k 0.5
5 (Ant, HalfCheetah),

Jpsp A1 10 (Humanoid, Hopper, Walker2D)
oty A 5 (Ant, HalfCheetah),

PSD A2 10 (Humanoid, Hopper, Walker2D)
N of hidden layers 2

N of hidden units per layer

Step size of adaptive sampling N

Adaptive sampling interval

N of evaluation episodes for adaptive sampling
Thresholds («, 3) for adaptive sampling

1024
1
2000 episodes
5
(0.9, 0.4)

Table 3: Hyperparameters for training PSD with Pixel-based observation (others same as Table 2).

Parameter Value

Replay buffer size 3 x 104
Minibatch size 512 (¢1.), 256 (others)
Circular latent dimension d {3,6}

Output dimension of the positional encoding D 128

Jpsp M1

Jpsp A2

Encoder

Random crop

N of stacked frames
N of action repeat

5 (Ant), 3 (HalfCheetah)
5 (Ant), 3 (HalfCheetah)

CNN [51]
x990 x3 — 84 x84 x3
3

1
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Table 4: Hyperparameters for training the high-level policy using PPO.

Parameter Value
Learning rate 3 x 10~* (actor), 1 x 10~3 (critic)
Discount factor ~y 0.99
Optimizer Adam [48]
Skill duration H 10

N of episodes per epoch 4

N of gradient steps per epoch 80
Batch size 256
PPO clipping parameter e 0.2

N of hidden layers 2

N of hidden units per layer 256

Table 5: Hyperparameters for training PSD Combined with METRA.

Parameter Value
Learning rate 1x 1074
Discount factor ~y 0.99
Optimizer Adam [48]
N of episodes per epoch 8

N of gradient steps per epoch 64
Reward coefficient apsp 1.0
Replay buffer size 5 x 10°
Minibatch size 1024 (¢1,), 256 (others)
Target smoothing coefficient 0.995
Entropy coefficient Auto-tuned

Skill dimension of METRA

Circular latent dimension d

Output dimension of the positional encoding D
TPSD K

Jpsp €

Jpsp k

Jpsp M1

Jpsp A2

JMETRA €

IMETRA Am,
N of hidden layers
N of hidden units per layer

2-D cont. (Ant), 1-D cont. (Walker2D)
6 (Ant), 3 (Walker2D)
6

10
1075
0.5
5 (Ant), 10 (Walker2D)
5 (Ant), 10 (Walker2D)
1073
30
2
512 (Ant), 1024 (Walker2D)
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D Additional Experimental Results

D.1 Evolution of Learned Bounds via Adaptive Sampling Method
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Figure 9: Evolution of the L,in, Lmax during training. The figure shows how the period variable
Lyin, Limax evolves over training episodes with the adaptive sampling method applied to the Ant,
HalfCheetah, Humanoid, Hopper, and Walker2D environments. As training progresses, increasingly
challenging periods are proposed to the agent based on the average cumulative sum of rpgp, enabling
the discovery of a wider range of periodic behaviors.

In Figure 9, we visualize the evolution of the sampling range of L during training with the adaptive
sampling method. To prevent the period variable L,;,, which must be a positive integer, from
becoming too small, we set the minimum value L, = 5.

Although training begins with a single period value, the adaptive sampling method gradually proposes
more challenging periods, enabling the agent to acquire skills across a broad range of dynamically
feasible period lengths. Moreover, since training is conducted with the combined reward of 7¢ and
Tpsp (as described in Appendix C.2), the agent learns to maintain a velocity above the target v}, while
acquiring maximally diverse skills to optimize the overall reward. A notable property of this method
is that even if a proposed period is initially rejected due to low performance, the agent may later learn
to handle it as training progresses. Overall, this method enables PSD to autonomously discover a
wide range of periodic behaviors without requiring prior knowledge of agent-specific period scales.
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D.2 Skill Interpolation

Ant Walker2D
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Figure 10: Trajectories of the skill policy 7(a | s, L) under different values of L. The figure
shows representative joint trajectories of Ant (left) and Walker2D (right) generated by the skill policy
m(a| s, L) under different values of L. The blue trajectories are rollouts of the policy conditioned
on the final sampling candidates after convergence, while the magenta ones are generated using
intermediate integer values between these candidates. Although the magenta trajectory does not
perfectly satisfy the 2L periodicity, it still generalizes well, indicating that our sampling strategy is
effective and the circular representation of PSD generalizes across diverse periods.

D.3 Additional Analysis of Pixel-based Observation Experiments

Comparing Figure 3 and Figure 7, we observe that the pixel-based HalfCheetah exhibits narrower
and higher-frequency periodic behaviors than its state-based counterpart, despite having identical
robot dynamics. We hypothesize that this is due to the inability to differentiate periodic variations
in the vertical direction from pixel observations. As shown in our video, it is difficult to perceive
z-axis variations from raw images, and this issue is exacerbated by random cropping. In contrast, in
state-based settings, the z-coordinate is explicitly provided as the first dimension of the observation
vector, making it easier for the neural network to recognize vertical changes. This suggests that the
ability to represent vertical height enables PSD to learn longer-period behaviors (e.g., jumping) in
the state-based setting, as is also visually demonstrated in the video. On the other hand, in the Ant
environment, both pixel-based and state-based observations provide similar levels of information,
and thus result in similar walking behaviors.
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D.4 Full Experimental Results of Figure 5
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Figure 11: Full experimental results of Figure 5. The figure shows the state trajectories and the
2D PCA projection of their latent encodings learned by PSD. Within a single episode, we switch the
period variable L at fixed time intervals.
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D.5 Full Experimental Results of Figure 6
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Figure 12: Full experimental results of Figure 6 (4 seeds). We compute the relative error of the
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction match the contributions described
and validated throughout the paper (see Introduction and Experiments).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our limitations are discussed in the Conclusion and Appendix, including
generalization and scalability.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theoretical assumptions and proofs are included in Appendix A, with a
formal statement and verification of the main objective.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe all necessary details for reproducing our experiments, including
architecture, training procedure, and hyperparameters (see Experiments and Appendix C).

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code with instructions and scripts to reproduce key experi-
ments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and evaluation details including model architecture, optimizer,
hyperparameters, and sampling procedures are provided in Experiments and Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation across multiple seeds in Table 1 in the
Experiment, as an estimate of variability.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We provide details on the computing resources used in our experiments in
Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics. It does not involve human
subjects, sensitive data, or potentially harmful applications.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA|

Justification: Our work is research in unsupervised reinforcement learning and does not
involve real-world deployment, human subjects, or safety-critical systems. We found no
direct societal impact based on current usage.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|

Justification: Our work does not involve any high-risk models or datasets. The experiments
are conducted entirely in simulated environments and pose no foreseeable misuse concerns.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets (e.g., MuJoCo environments, baseline methods) are properly
cited with their original papers and used according to their licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release code assets implementing PSD. The repository includes documen-
tation, usage instructions.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve any crowdsourcing or research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve any human subjects, and therefore no IRB or
equivalent approval is required.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our research does not involve LLMs in the core method, experiments, or
results. Any LLM-assisted editing, if used, did not influence the scientific content.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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