
A Proofs421

A.1 Proof of Theorem 4.5422

Proof. We first rewrite Ltri as a matrix decomposition objective423

Ltri(f) = −2Ex,x+f(x)⊤Sf(x+) + ExEx−
(
f(x)⊤Sf(x−)

)2
=

∑
x,x′

(
A2

xx′

DxxDx′x′
+DxxDx′x′

(
f(x)⊤Sf(x′)

)2 − 2Axx′f(x)⊤Sf(x′)

)
+ const

= ∥Ā− FSF⊤∥2.

(16)

According to the Eckart-Young Theorem [Eckart and Young, 1936], the optimal solutions F ⋆, S⋆424

satisfy425

F ⋆S⋆(F ⋆)⊤ = UkΣ(V k)⊤,

where Σ ∈ Rk×k is a diagonal matrix with the k-largest eigenvalues of Ā and U ∈ RN×k contains426

the corresponding eigenvectors of the k-largest eigenvalues. When the regularizer LDec is minimized,427

F ⋆ satisfy (F ⋆)⊤F ⋆ = I . In the next step, we prove the uniqueness of the optimal solution.428

We denote H = F ⋆Σ(F ⋆)⊤. As (F ⋆)⊤F ⋆ = I , we obtain HH⊤ = F ⋆S⋆(S⋆)⊤(F ⋆)⊤. If ζ, σ are429

a pair of eigenvector and eigenvalue of HH⊤, we have430

HH⊤ζ = F ⋆S⋆(S⋆)⊤(F ⋆)⊤ζ = σζ,

S⋆(S⋆)⊤(F ⋆)⊤ζ = σ(F ⋆)⊤ζ,

S⋆(S⋆)⊤
(
(F ⋆)⊤ζ

)
= σ

(
(F ⋆)⊤ζ

)
.

(17)

So the eigenvalues of HH⊤ are the eigenvalues of S⋆(S⋆)⊤. As the positive eigenvalues of HH⊤431

are uniquely determined and S⋆ has a descending order, S⋆ is also determined and S⋆ =
∑

.432

We note that HH⊤ = F ⋆S⋆(S⋆)⊤(F ⋆)⊤, i.e., HH⊤F ⋆ = F ⋆S⋆(S⋆)⊤, which means that the k433

columns of F ⋆ are the eigenvectors of HH⊤ and the corresponding eigenvalues are σ1 · · ·σk. As434

HH⊤ only has k different non-negative eigenvalues σ1, · · · , σk, the eigenspace of each eigenvalue435

is one-dimensional. When we consider the real number space, any two eigenvectors ζi, ζ ′i of the436

same eigenvalue σi satisfy ζi = cζ ′i. As (F ⋆)⊤F ⋆ = I , we obtain c = ±1. As f(x) = 1√
Dxx

Fx, we437

obtain438

f⋆
j (x) = ± 1√

Dxx

(
Uk
x

)
j
, S∗ = diag(σ1, . . . , σk), (18)

439

A.2 Proof of Theorem 5.1440

We first introduce a lemma which theoretically guarantees the generalization performance of spectral441

contrastive learning.442

Lemma A.1 ([HaoChen et al., 2021]). For the optimal solutions to spectral contrastive learning443

(SCL), we have444

E(f⋆
SCL) ≤ O(

α

1− σk+1
),

where we denote α as the probability that the natural samples and augmented views have different445

labels, i.e., α = Ex̄∼Pu
Ex∼A(·|x̄)1[y(x̄) ̸= y(x)] and σk+1 as the (k + 1)-th largest eigenvalue of446

the normalized adjacent matrix Ā.447

Then we construct the generalization guarantee of tri-contrastive learning.448

Proof. Following the proof of Theorem 4.5, we know that the optimal solutions learned by triCL are449

F ⋆ = Uk,

S⋆ = diag(σ1, · · ·σk).
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So we know that the optimal encoder of triCL satisfies, ∀x ∈ D450

f∗(x) =
1√
Dxx

(
Uk
x

)⊤
.

Compared with the optimal solutions of spectral contrastive learning (Eq. 2), we know451

(diag(σ1, · · ·σk)R)⊤f∗
triCL(x) = f⋆

SCL(x), (19)

where f⋆
triCL, f

⋆
SCL denote the optimal solutions of tri-contrastive learning and spectral contrastive452

learning. As diag(σ1, · · ·σk)R is an invertible matrix, we then prove that the invertible matrix can453

be absorbed in the linear probing. We denote diag(σ1, · · ·σk)R as Q and we denote the linear454

classifier as B, i.e., g(f(x)) = f(x)⊤B. For a linear classfier B, let B̃ = BQ−1. We then obtain455

f⋆
triCL(x)

⊤B̃ = f⋆
SCL(x)

⊤B.456

So457

E(f⋆
triCL) = E(f⋆

SCL).

With lemma A.1, we have458

E(f⋆
triCL) ≤ O(

α

1− σk+1
).

459

A.3 Proof of Theorem 5.2460

Proof. Based on the proof of Theorem 4.5, we know that the t-th dimension of the optimal solutions461

satisfies462

F ⋆ = Uk
t ,

S⋆
t = diag(σ1, · · ·σk)t.

With the analysis in Eckart-Young theorem [Eckart and Young, 1936], we have463

∥Ā− F ⋆
t S

⋆
t (F

⋆
t )

⊤∥2F = ∥Ā− Uk
t diag(σ1, · · ·σk)t(U

k
t )

⊤∥2F

=

t−1∑
i=1

σ2
i +

k∑
i=t+1

σ2
i .

As σi is the i-th largest eigenvalues of Ā, so464

∥Ā− F ⋆
1 S

⋆
1 (F

⋆
1 )

⊤∥2F ≤ · · · ≤ ∥Ā− F ⋆
kS

⋆
k(F

⋆
k )

⊤∥2F .

Following Eq 16, we obtain465

LtriCL(ft, St) = ∥Ā− F ⋆
t S

⋆
t (F

⋆
t )

⊤∥2F + const,

we obtain466

LtriCL(f
⋆
1 , S

⋆
1 ) ≤ · · · ≤ LtriCL(f

⋆
k , S

⋆
k).

467

A.4 Feature Identifiability of Asymmetric Tri-contrastive Learning468

We first extend the augmentation graph to an asymmetric form. The asymmetric augmentation graph469

is defined over the set of all samples with its adjacent matrix denoted by PO. In the augmentation470

graph, each node corresponds to a sample, and the weight of the edge connecting two nodes xA and471

xB is equal to the probability that they are selected as a positive pair, i.e.,(PO)xa,xb
= PO(xa, xb).472

And we denote P̄O as the normalized adjacent matrix of the augmentation graph, i.e., (P̄O)xa,xb
=473

PO(xa,xb)
2

PA(xa)PB(xb)
.474
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Similar to the symmetric form, we then rewrite Ltri as a matrix decomposition objective475

Ltri(fA, fB , S) = −2Exa,xb
fA(xa)

⊤SfB(xb) + Ex−
a ,x−

b

(
fA(x

−
a )

⊤SfB(x
−
b )

)2
=

∑
xa,xb

(
PO(xa, xb)

2

PA(xa)PB(xb)
+ PA(xa)PB(xb)

(
fA(xa)

⊤SfB(xL)
)2

− 2PO(xa, xb)fA(xa)
⊤SfB(xL)) + const

= ∥P̄O − FASF
⊤
B ∥2.

According to the Eckart-Young Theorem [Eckart and Young, 1936], the optimal solutions F ⋆
A, S

⋆, F ⋆
B476

satisfy477

F ⋆
AS

⋆(F ⋆
B)

⊤ = UkΣ(V k)⊤,

where Σ ∈ Rk×k is a diagonal matrix with the k-largest eigenvalues of P̄O and U ∈ RNA×k contains478

the corresponding eigenvectors of the k-largest eigenvalues. When the regularizer LDec is minimized,479

F ⋆
A and F ⋆

B satisfy (F ⋆
A)

⊤F ⋆
A = I , (F ⋆

B)
⊤F ⋆

B = I . In the next step, we prove the uniqueness of the480

optimal solution.481

We denote H = F ⋆
AΣF

⋆
B , and we obtain HH⊤ = F ⋆

AS
⋆(S⋆)⊤(F ⋆

A)
⊤. If ζ, σ are a pair of482

eigenvector and eigenvalue of HH⊤, we have483

HH⊤ζ = F ⋆
AS

⋆(S⋆)⊤(F ⋆
A)

⊤ζ = σζ,

S⋆(S⋆)⊤(F ⋆
A)

⊤ζ = σ(F ⋆
A)

⊤ζ,

S⋆(S⋆)⊤
(
(F ⋆

A)
⊤ζ

)
= σ

(
(F ⋆

A)
⊤ζ

)
.

(20)

So the eigenvalues of HH⊤ are the eigenvalues of S⋆(S⋆)⊤. As the positive eigenvalues of HH⊤484

are uniquely determined and S⋆ has an increasing order, S⋆ is also determined and S⋆ =
∑

.485

We note that HH⊤ = F ⋆
AS

⋆(S⋆)⊤(F ⋆
A)

⊤, i.e., HH⊤F ⋆
A = F ⋆

AS
⋆(S⋆)⊤, which means that the k486

columns of F ⋆
A are the eigenvectors of HH⊤ and the corresponding eigenvalues are σ1 · · ·σk. As487

HH⊤ only has k different non-negative eigenvalues σ1, · · · , σk, the eigenspace of each eigenvalue488

is one-dimensional. When we consider the real number space, any two eigenvectors ζi, ζ ′i of the489

same eigenvalue σi satisfy ζi = cζ ′i. As (F ⋆
A)

⊤F ⋆
A = I , we obtain c = +1. Then we eliminate the490

ambiguity of sign following Eq 11 and F ⋆
A is unique. Similarly, F ⋆

B is also unique. So the optimal491

solution of LtriCLIP is unique.492

B Experimental Details493

B.1 Experiment Details of Section 6.1494

We first generate a random matrix A with size 5000× 3000, and make sure that it does not contain495

multiple eigenvectors (which is easy to satisfy). For the matrix factorization problem ∥A− FG⊤∥2F ,496

we apply off-the-shelf algorithms and repeat this process ten times. We then calculate the mean and497

variance of the l2 pairwise distance between the obtained solutions of F . For the trifactorization498

objective ∥A− FSG⊤∥2F , we use SVD to obtain an initial solution, and apply the sign identification499

procedure to determine the sign of each eigenvector. Similarly, we also repeat this process ten times500

and calculate the mean and variance of the l2 pairwise distance between different solutions.501

B.2 Experiment Details of Section 6.2502

Pretraining Setups. For different evaluation tasks (k-NN, linear evaluation, image retrieval), we use503

the same pretrained models. We adopt ResNet-18 as the backbone. For CIFAR-10 and CIFAR-100,504

the projector is a two-layer MLP with hidden dimension 2048 and output dimension 256. And for505

ImageNet-100, the projector is a two-layer MLP with hidden dimension 4096 and output dimension506

256. We pretrain the models with batch size 256 and weight decay 0.0001. For CIFAR-10 and507

CIFAR-100, we pretrain the models for 200 epochs. While for ImageNet-100, we pretrain the models508

for 400 epochs. We use the cosine anneal learning rate scheduler and set the initial learning rate to509

0.4 on CIFAR-10, CIFAR-100, and 0.3 on ImageNet-100.510
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As the importance matrix is learned on the projection layer, we conduct the downstream tasks on the511

features encoded by the complete networks (containing both the backbones and the projectors).512

The Distribution of the Importance Matrix. When observing the distribution of feature importance513

discovered by the importance matrix S, we first apply the softmax activation functions on the514

diagonal values of S and sort different rows of S by the descending order of corresponding diagonal515

values in S. We denote the non-negative ordered diagonal values of S as (s1, · · · , sk). When516

we present the distribution of them in Figure 2(a), we normalize the diagonal values and obtain517

(s1/
k∑

i=1

si, · · · , sk/
k∑

i=1

si).518

The K-NN Accuracy on Selected Dimensions. For k-NN evaluation on 10 selected dimensions, we519

do not finetune the models. We sort the dimensions of f(x) by the descending order of corresponding520

diagonal values in the importance matrix. The k-NN is conducted on the standard split of CIFAR-10,521

CIFAR-100 and ImageNet-100 and the predicted label of samples is decided by the 10 nearest522

neighbors.523

Linear Evaluation on Selected Dimensions. We train the linear classifier on 20 dimensions of the524

frozen networks for 30 epochs during the linear evaluation. We set batch size to 256 and weight525

decay to 0.0001. For triCL, we sort the dimensions by descending order of the importance matrix.526

And for SCL, we randomly choose 20 dimensions.527

C More Extensions of Tri-contrastive Learning528

In this section, we apply tri-contrastive learning to another representative contrastive learning objec-529

tive: the non-contrastive loss [Grill et al., 2020, Chen and He, 2021].530

Besides contrastive learning, non-contrastive learning is another popular self-supervised framework531

that throws the negative samples in contrastive learning and learns the meaningful representations532

only by aligning the positive pairs. Taking the state-of-the-art algorithm BYOL [Grill et al., 2020] as533

an example, they use an MSE loss:534

LMSE(f, g) = 2− 2 · Ex.x+

g(x)⊤f(x+)

∥g(x)∥2 · ∥f(x+)∥2
, (21)

where g(x) and f(x) are two different networks to avoid the feature collapse. Then we consider535

adapting the tri-term loss to the non-contrastive learning, i.e.,536

LtriMSE(f, g) = 2− 2 · Ex.x+

g(x)⊤Sf(x+)

∥g(x)∥2 · ∥f(x+)∥2
+
∥∥Exg(x)g(x)

⊤ − I
∥∥2 . (22)

It is noticed that BYOL utilizes the stop-gradient technique on the target network f and it is updated537

by exponential moving average. So we only calculate the feature decorrelation loss on the online538

network g.539

15


	Introduction
	Related Work
	Preliminary
	Exact Feature Identifiability with Tri-contrastive Learning
	Feature Identifiability of Contrastive Learning 
	Tri-contrastive Learning with Exact Feature Identifiability

	Theoretical Properties of Tri-contrastive Learning
	Downstream Generalization of Tri-contrastive Learning
	Tri-contrastive Learning Sorts the Importance of Features
	Extensions to Other Contrastive Learning Frameworks

	Experiments
	The Verification of the Identifiability on the Synthetic Dataset
	The Automatic Discovery of Feature Importance
	Transfer Learning on Benchmark Datasets

	Conclusion
	Proofs
	Proof of Theorem 4.5
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Feature Identifiability of Asymmetric Tri-contrastive Learning

	Experimental Details
	Experiment Details of Section 6.1
	Experiment Details of Section 6.2

	More Extensions of Tri-contrastive Learning

