
Published as a conference paper at ICLR 2025

MATRYOSHKAKV: ADAPTIVE KV COMPRESSION
VIA TRAINABLE ORTHOGONAL PROJECTION

Bokai Lin1 Zihao Zeng1 Zipeng Xiao1 Siqi Kou1

Tianqi Hou2 Xiaofeng Gao1 Hao Zhang3 Zhijie Deng1∗
1Shanghai Jiao Tong University 2Huawei 3University of California, San Diego
{19821172068,zengzihao,xiaozp 25,happy-karry,zhijied}@sjtu.edu.cn
thou@connect.ust.hk, gao-xf@cs.sjtu.edu.cn, haozhang@ucsd.edu

ABSTRACT

KV cache has become a de facto technique for the inference of large language
models (LLMs), where tensors of shape (layer number, head number, sequence
length, feature dimension) are introduced to cache historical information for self-
attention. As the size of the model and data grows, the KV cache can quickly
become a bottleneck within the system in both storage and memory transfer. To
address this, prior studies usually focus on the first three axes of the cache tensors
for compression. This paper supplements them, focusing on the feature dimension
axis, by utilizing low-rank projection matrices to transform the cache features into
spaces with reduced dimensions. We begin by investigating the canonical orthogo-
nal projection method for data compression through principal component analysis
(PCA). We observe the issue with PCA projection where significant performance
degradation is observed at low compression rates. To bridge the gap, we propose
to directly tune the orthogonal projection matrices with a distillation objective
using an elaborate Matryoshka training strategy. After training, we adaptively
search for the optimal compression rates for various layers and heads given vary-
ing compression budgets. Compared to previous works, our method can easily
embrace pre-trained LLMs and hold a smooth tradeoff between performance and
compression rate. We empirically witness the high data efficiency of our training
procedure and find that our method can sustain over 90% performance with an
average KV cache compression rate of 60% (and up to 75% in certain extreme
scenarios) for popular LLMs like LLaMA2-7B-base and Mistral-7B-v0.3-base.

1 INTRODUCTION

Large language models (LLMs) like GPT-4 (OpenAI et al., 2024) and Claude3 (Enis & Hopkins,
2024) have shown great promise, finding applications in areas such as text generation (Brown et al.,
2020; Raffel et al., 2023), code completion (Rozière et al., 2024), and sentiment analysis (Zhang
et al., 2023a). The Key-Value (KV) cache, which is introduced to cache historical information for
self-attention, is essential for maintaining context and accelerating the inference of LLMs. How-
ever, as the size of the model and data continues to grow (Fu et al., 2024; Ding et al., 2024; Chen
et al., 2024), the KV cache can swiftly lead to system bottleneck in terms of storage and memory
transfer (Shi et al., 2024).

Considerable efforts have been devoted to addressing such an issue. Noting that the KV cache
contains tensors of shape (layer number, head number, sequence length, feature dimension), existing
works have investigated compressing the KV cache from the axes of layer number (Brandon et al.,
2024; Sun et al., 2024; Goldstein et al., 2024), head number (Ainslie et al., 2023; Shazeer, 2019; Yu
et al., 2024), and sequence length (Wang et al., 2024; Zhang et al., 2023b; Li et al., 2024; Xiao et al.,
2024). Conversely, the exploration of feature dimension for KV cache compression significantly lags
behind, partially because of the inherent difficulties of modifying a well-structured feature space.

∗Corresponding author.

1

Published as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex
Ke

y

ARC-C

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex

ARC-E

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex

WG

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex
Va

lu
e

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex

Figure 1: Visualization of the feasible compression level for the keys and values in our model
distilled from the LLaMA2-7B-base model. We individually leverage samples in ARC-challenge
(ARC-C), ARC-easy (ARC-E) (Clark et al., 2018), and Winogrande (WG) (Sakaguchi et al., 2019)
to determine the compression level. Lighter colors indicate higher compression levels. As shown,
our approach enables the use of various compression strategies for various tasks.

This paper aims to tackle this with the help of curated low-rank projection matrices, e.g., both the
query and key are projected into the same lower-dimensional space wherein the inner product closely
approximates that in the original space. We first identify the necessity to guarantee the orthogonality
among the rows of such matrices, and hence attempt to take the principal components of the keys
or values in each layer to instantiate the projections, given the prevalence of Principal Component
Analysis (PCA) for data compression. We observe that such projections can be seamlessly plugged
into pre-trained LLMs while retaining reliable generation quality at a moderate compression level.
Compared to the low-rank architectures of Multi-head Latent Attention (MLA) (DeepSeek-AI et al.,
2024), the PCA strategy is more approachable due to its training-free nature and also advocated by
Saxena et al. (2024). Yet, we note that the PCA projections suffer from quickly degraded perfor-
mance when further increasing the compression level. This is because, while the principal compo-
nents are optimal for recovering the keys or values in each individual layer, they may be suboptimal
for preserving the global outputs due to the non-linearity and compounding effects in LLM.

To bridge the gap, we propose to jointly adjust all orthogonal projection matrices incorporated into
the model with a knowledge distillation objective, enforcing the model output based on the projected
keys and values to remain close to the original one. The orthogonality constraint upon the projection
matrices is consistently enforced by a Cayley parameterization. Besides, we desire a hierarchy over
the columns of the projection matrices—as in PCA—so that we can smoothly trade-off between
compression level and performance. To this end, we introduce a Matryoshka training strategy—
compute the model output based on the first r columns of the matrices, where r is randomly sampled
from a predefined schedule such as {4, 8, 16, ...}, and ensure its closeness to the original output. In
practice, we sample various r for different layers, heads, and keys/values during training to disen-
tangle the projections in the model. Doing so enables the search for heterogeneous compression
rates for different projection matrices during inference and we develop a greedy algorithm for this.
Heterogeneous compression rates are displayed in Figure 1.

Experiments on both continual pre-training (CPT) and supervised fine-tuning (SFT) exhibit the ef-
ficacy of our MatryoshkaKV approach. For the former, we opt to experiment on LLaMA2-7B-
base (Touvron et al., 2023) with the RedPajama dataset (Computer, 2023). To demonstrate com-
patibility with Group Query Attention (GQA) (Ainslie et al., 2023), we also apply our approach to
the Mistral-v0.3-7B-base (Jiang et al., 2023) model. Moreover, we demonstrate that MatryoshkaKV

2

Published as a conference paper at ICLR 2025

is compatible with other KV cache compression techniques on other axes like H2O (Zhang et al.,
2023b) and KIVI (Liu et al., 2023). We observe that after rarely processing 200 million train-
ing tokens, MatryoshkaKV achieves a 37.5% compression rate while retaining over 90% of the
original model’s accuracy. In the SFT experiments, we train both MatryoshkaKV and LoRA (Hu
et al., 2021) on downstream tasks including OBQA (Mihaylov et al., 2018), GSM8K (Cobbe
et al., 2021), etc. The results show that our MatryoshkaKV can utilize less than 40% cache
while still achieving over 90% accuracy derived from full cache utilization. We also perform ex-
tensive ablation studies to chase a deep understanding of our approach. The code is available at
https://github.com/The-kamisato/MatryoshkaKV-cache.git.

2 RELATED WORK

KV cache eviction & merging. KVMerger (Wang et al., 2024) and PyramidKV (Cai. et al.,
2024) introduce innovative approaches to reduce KV cache memory consumption along sequence
length dimension in long-context tasks. KVMerger merges KV by Gaussian weights and attention
score, while PyramidKV uses a layer-wise approach with recent tokens occupying more weights.
CLA (Brandon et al., 2024), YOCO (Sun et al., 2024), and GoldFinch (Goldstein et al., 2024),
among others, exploit inter-layer KV cache reuse by sharing KV heads across layers. This signifi-
cantly reduces the KV cache size along the head number dimension without compromising model
capacity. GQA (Ainslie et al., 2023), MQA (Shazeer, 2019), and HeadKV Yu et al. (2024), espe-
cially the last one, have demonstrated the effectiveness of compressing KV cache on the axis of head
number due to their low-rank properties.

KV cache hidden size compression. DeepSeekv2 (DeepSeek-AI et al., 2024) employs MLA tech-
niques to reduce the feature dimension of keys and values within the attention mechanism, but this
requires costly retraining from scratch. Concurrent advancements, however, have addressed this
limitation. Eigen-Attention (Saxena et al., 2024) and HeadKV (Yu et al., 2024) achieve a 40% re-
duction in the KV cache sizes using orthogonal projections parameterized by the SVD of the Q, K,
and V matrices derived from a subset of samples. To mitigate performance degradation, LoRA (Hu
et al., 2021) is employed to fine-tune model parameters. However, this compression approach on
the axis of feature dimension results in a sharp decline in model performance when using less than
60% cache budget. Furthermore, fine-tuning the base model with LoRA may lead to catastrophic
forgetting. In this paper, our method MatryoshkaKV circumvents these risks and achieves higher
compression rate by directly fine-tuning orthogonal projections.

3 PRELIMINARY

This section provides a review of the KV cache mechanism and elucidates the implementation of
PCA projection for KV cache compression.

3.1 KV CACHE

Consider the inference of an LLM p(·|x) with x as the prompt. It is a common practice to deploy the
KV cache technique to each self-attention head in the model to store the key and value states for the
present context, including both the prompt x and the tokens that have already been generated. Given
the KV cache for the context of length L − 1 and dimension d in each head, the model generates
a subsequent new token y with the attention states softmax(QK⊤/

√
d)V , where Q ∈ R1×d is the

query vector for y and K,V ∈ RL×d denote the concatenation of the KV cache and the KV vectors
for y. This way, the computational complexity for one decoding step is reduced fromO(L) toO(1).
However, the size of the KV cache can grow quickly w.r.t. that of the model and context, often
causing system bottlenecks in terms of both storage and memory transfer during the inference phase.
To address this, various KV cache compression techniques have been proposed, e.g., sharing the KV
headers across layers inside LLMs (Brandon et al., 2024; Sun et al., 2024; Goldstein et al., 2024),
merging heads that require caching KV (Yu et al., 2024; Ainslie et al., 2023), evicting or merging
redundant tokens (Xiao et al., 2024; Li et al., 2024; Cai. et al., 2024; Zhang et al., 2023b). This work
alternatively focuses on compressing the feature dimension d of the KV cache, exploring a novel
axis for KV cache compression that is compatible with existing methodologies.

3

https://github.com/The-kamisato/MatryoshkaKV-cache.git

Published as a conference paper at ICLR 2025

3.2 TRAING-FREE DIMENSION REDUCTION VIA PCA

A simple way to reduce the dimension of the KV cache is finding some matrices to project K,V as
K ′, V ′ ∈ RL×r, (r < d). Then, we can only cache K ′ and V ′, reducing the storage and memory
transfer cost from O(d) to O(r). The rank r is desired to be adjustable based on the available
compression budget: when the budget is sufficient, caching full KV states helps prevent information
loss; in cases of limited budget, caching only the most essential information should be feasible.
To fulfill this, it is reasonable to introduce full-rank projection matrices U ∈ Rd×d and demand a
hierarchy over the columns of U so that the optimal r-rank cache can result from the first r columns
of U , denoted as Ur ∈ Rd×r. In practice, U should be distinct for K and V and vary across attention
heads and layers within the model, as these states commonly exhibit diverse distributions.

During the forward pass of the model, we should be able to recover the original K and V from
the reduced K ′ and V ′. A natural choice is using U⊤, the transposition of the projection matrices,
where UrU

⊤
r ≈ I needs to be satisfied. Given that r can vary from 1 to d, we identify that U should

be orthogonal matrices. It is known that the optimal orthogonal projections for compressing a set of
high-dimension vectors can be their principal components, so we suggest constructing U based on
the PCA results of the key or value states of a long sequence of tokens for each head separately.

Table 1 displays an empirical study of the efficacy of such training-free projections. As shown,
PCA projections exhibit reliable performance at moderate levels of compression budget. This is
remarkable because the PCA strategy does not need costly from-scratch training of the projection
matrices, in sharp contrast to the projection mechanisms used by MLA (DeepSeek-AI et al., 2024).
We note that PCA projection is also advocated by Saxena et al. (2024); refer to Appendix B for the
difference between our attempts and theirs regarding applying projections before or after RoPE (Su
et al., 2023) and whether performing fine-tuning.

Nevertheless, as the table displays, the PCA projections suffer from quickly degraded performance
when further increasing the compression level. This is because despite principal components being
optimal for key or value recovery in individual head layers, they may be inadequate for preserving
the final output due to the non-linearity and compounding effects of the attention mechanism.

4 METHODOLOGY

To address the aforementioned issue, we propose to jointly tune the orthogonal projection matrices
introduced to the LLM under an elaborate objective, to realize a more robust KV cache compres-
sion. The whole pipeline can be listed as follows: (1) Obtain the PCA initialization based on a small
subset of a general corpus. (2) Train our model on the corpus. (3) Search for the heterogeneous
compression levels for various heads with a small calibration dataset (5 - 10 samples) on the spe-
cific task. (4) Perform inference on that task given the identified compression levels. This section
provides the training and inference details of our approach.

4.1 MINIMIZE COMPRESSION LOSS BY KNOWLEDGE DISTILLATION

Recalling the objective for the compression is that the model outputs based on the compressed states
should stay close to the original one. This implies a knowledge distillation objective (Hinton et al.,
2015), which can be instantiated with the KL divergence:

LKD = DKL(p (·|x) ∥p′ (·|x)) (1)

where we abuse p′ to refer to the LLM equipped with low-rank projection matrices. As suggested
by the literature (Kou et al., 2024), we also incorporate a language modeling loss to p′ to prevent
the generated text from deviating from the context distribution of the dataset, thereby ensuring high-
quality generation. The tuning process involves only the update of U , which ensures that the model
performance under the full-rank KV cache is maintained.

Orthogonal constraint. We initialize the trainable orthogonal projections with the PCA ones due
to their effectiveness. To confine the evolution of the projection matrices within the orthogonal
matrix family throughout the tuning process, we employ Cayley parameterization to formulate the
orthogonal matrix. Specifically, there is U = (I +Q) (I −Q)

−1 with Q as a skew-symmetric

4

Published as a conference paper at ICLR 2025

Attention

Add & Norm

FFN

Add & Norm

KV cache

Matmul & Softmax

KV cache

�

Matmul & Softmax

Matmul

 A new
 linear layer

Mechanism of tradition attention using full-cache

Full dimension qkv states

Reduced dimension qkv states

Mechanism of our attention using reduced-cache

�

�

�

�

�� 푅표��

푅표����

��

�� 푅표��

푅표����

��

���

���

�’

�’

�’

Matmul & Reshape
� �’��

�’ ���
� � �’��

attention weights

attention weights
�

�

�

���

❄

❄

❄

❄

Figure 2: Vanilla KV cache vs. the proposed MatryoshkaKV. In particular, we introduce orthogonal
projection matrices to reduce the dimension of stored keys and values. We explicitly enforce a hier-
archy over the columns of projection matrices so as to concentrate the principal information on the
head dimensions and enable the adjustment of compression level according to resource constraints.

trainable matrix of size d × d. Considering that d is usually small (e.g., 64 or 128), the complexity
of performing such an orthogonal transformation during training is minimal.

4.2 ACQUIRE HIERARCHICAL KV CACHE BY MATRYOSHKAKV TRAINING

The tuning process can destroy the hierarchical structures present in the orthogonal matrices inher-
ited from the PCA ones because there is no prioritization given to the columns of the matrices U
from the training objective. Consequently, we lose the flexibility to achieve a smooth transition
between the level of compression and maintenance of the original performance.

To tackle this challenge, we draw inspiration for Matryoshka representation learning (Kusupati
et al., 2022), introducing a Matryoshka strategy for training the projection matrices U . In par-
ticular, for each training iteration, we randomly sample r from a predefined schedule such as
{4, 8, 16, ..., d/4, d/2, d} and use the first r columns of U , i.e., Ur, to construct the model p′ for
training. Note that the keys and values at different heads and layers use separately sampled r to
avoid the entanglement of the compression effect. An illustrative explanation of this is given in
Figure 4, and our approach is then called MatryoshkaKV for short.

4.3 FIND HETEROGENEOUS COMPRESSION RATES FOR VARIOUS LAYERS & HEADS

The Matryoshka training strategy enables the search for heterogeneous compression rates for various
layers and heads in the model given a specific compression budget. Basically, we can first propose
a compression level for the projection matrix at a particular position, assessing the deviation of the
model output from the original on a predefined calibration dataset (measured by KL divergence), and
determining whether to accept the proposal based on a predefined tolerance threshold for the devia-
tion. Algorithm 1 exhibits a greedy algorithm for accelerating this based on accepting proposals in
parallel. Note that this greedy algorithm also applies to the PCA projections.

Discussion. The recent KV cache compression approach on sequence length aspect (Cai. et al.,
2024) also observes that compared to uniformly compressed KV cache using the same rate across
all layers (Li et al., 2024), employing a distinct compression rate for each layer results in improved
information utilization. Furthermore, as observed in (Wu et al., 2024), certain retrieval heads within

5

Published as a conference paper at ICLR 2025

Algorithm 1: Greedy search for adaptive compression levels in our efficient LLM.
input : An base LLM p (·) and an efficient LLM equipped with MatryoshkaKV projections

p′ (·), layer num L, attention head num H , full KV cache feature dimension d, a
prompt x, compression rate interval ∆r, target cache budget γ.

output: Two tensors RK , RV ∈ RL×H specifying the heterogeneous key/value compression
rates for each head in each layer.

RK , RV ← d · 1L×H

repeat
RK

temp, R
V
temp ← RK , RV

for Every Layer-l in LLM do
for Every Attention Head-h do

RK
temp,l,h, R

V
temp,l,h ← RK

l,h −∆r,RV
l,h −∆r

εK
l,h ← DKL

(
p (·|x) ∥p′

(
·|x;RK

temp, R
V
))

εV
l,h ← DKL

(
p (·|x) ∥p′

(
·|x;RK , RV

temp

))
RK

temp,l,h, R
V
temp,l,h ← RK

l,h, R
V
l,h

Locate the index associated with the minimum value element in the joint error list [εK , εV].
Decrement the corresponding compression rate in [RK , RV] by ∆r.

until Budget
(
RK , RV

)
< γ;

return RK , RV

an LLM consistently attend to crucial information, regardless of contextual variations. The indis-
criminate compression rates of these heads can lead to significant performance degradation. These
both support the necessity of the proposed heterogeneous KV cache compression approach.

5 EXPERIMENTS

In this section, we conduct experiments on continual pre-training (CPT) and supervised fine-tuning
(SFT) scenarios to demonstrate that our MatryoshkaKV can not only preserve the foundation knowl-
edge of a base model but also be compatible with LoRA (Hu et al., 2021) for downstream tasks. Fur-
thermore, we combine our approach with a KV cache compression technique targeting the sequence
length dimension, referred to as H2O (Zhang et al., 2023b), and additionally implement another
experiment by integrating KIVI (Liu et al., 2023), a KV cache compression strategy focused on KV
cache quantization. Ablation studies in Section 5.4 validate the efficacy of our proposed method.

5.1 CONTINUAL PRE-TRAINING

Setup. We select LLaMA2-7B-base (Touvron et al., 2023) and Mistral-v0.3-7B-base (Jiang et al.,
2023) as our base models. We conduct continual pre-training (Ke et al., 2023) using the RedPa-
jama dataset (Computer, 2023). To rapidly validate the effectiveness of our proposed method, we
choose a subset of this dataset following RedPajama-Data-1T-Sample. We adopt the Matryoshka
training strategy detailed in Section 4.2 and fine-tune MatryoshkaKV projections with knowledge
distillation loss in Equation 1 and language modeling loss, applying a 1:3 weighting ratio between
the two losses. The projection rank rk and rv are randomly sampled from a predefined schedule
set { i8d}

8
i=1 during training and are chosen dynamically with the greedy search for adaptive com-

pression levels, as detailed in Section 4.3 during inference. During the greedy search for adaptive
compression levels, we define the compression rate interval ∆r = d/8 where the head dimen-
sion d for each attention head in LLaMA2-7B-base is 128. We use Opencompass (Contributors,
2023) to test performance on several widely-used zero-shot benchmarks: PIQA (Bisk et al., 2019),
ARC-challenge (ARC-C) (Clark et al., 2018), ARC-easy (ARC-E) (Clark et al., 2018), WinoGrande
(WG) (Sakaguchi et al., 2019), HellaSwag (HLSG) (Zellers et al., 2019), and CommonSenseQA
(CSQA) (Talmor et al., 2019). We compare our methods with Eigen-attention (Saxena et al., 2024)
(donated as PCA) in Table 1 and ASVD (Yuan et al., 2024) in Table 7.

6

https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample

Published as a conference paper at ICLR 2025

Table 1: Comparison between our MatryoshkaKV method (donated as MKV in the table) and PCA
projection. We use LLaMA2-7B-base and Mistral-v0.3-7B-base as our source models, and their per-
formance is used as a baseline. Accuracy on HellaSwag, ARC-challenge, ARC-easy, PIQA, Wino-
Grande, and CommonSenseQA is reported, with higher scores indicating superior performance, at
seven KV cache budgets. At the same budget, the higher average accuracy is underlined.

Model Budget Method HLSG ARCC ARCE PIQA WG CSQA Avg.

LLaMA2
7B-base

100.0%
Baseline 74.00 35.93 50.97 78.50 61.64 65.93 61.16

PCA 72.04 36.95 52.38 76.66 61.72 67.24 61.17
MKV 72.05 37.29 52.38 76.66 61.72 67.32 61.24

87.5% PCA 71.91 35.93 53.97 76.66 61.40 67.65 61.25
MKV 71.58 37.97 53.26 75.95 62.12 69.57 61.74

75.0% PCA 70.99 35.59 54.14 76.22 60.06 66.99 60.67
MKV 71.58 38.31 55.56 76.01 61.09 66.75 61.55

62.5% PCA 67.16 34.24 54.85 74.76 57.77 61.10 58.31
MKV 68.03 37.97 56.08 75.12 60.30 65.44 60.49

50.0% PCA 42.11 29.83 35.10 58.16 52.57 40.62 43.07
MKV 66.78 36.61 55.91 74.32 59.12 61.92 59.11

37.5% PCA 24.24 26.44 26.63 51.25 50.36 19.90 33.14
MKV 63.97 33.90 51.68 74.97 57.92 59.21 56.94

25.0% PCA 23.98 29.49 26.28 51.20 50.36 16.22 32.92
MKV 51.91 27.46 44.44 69.64 54.54 44.39 48.73

Mistral-v0.3
7B-base

100.0%
Baseline 75.50 42.03 63.14 80.25 65.43 70.68 66.17

PCA 75.46 42.03 62.96 80.25 65.35 70.27 66.05
MKV 75.44 42.03 62.96 80.25 65.51 70.27 66.08

87.5% PCA 73.46 42.71 63.32 79.54 63.93 70.76 65.92
MKV 75.63 42.03 64.37 79.71 65.51 70.35 66.27

75.0% PCA 70.75 37.63 61.73 78.18 62.59 68.47 63.23
MKV 75.29 43.39 63.14 79.54 64.96 69.12 65.90

62.5% PCA 63.48 34.24 55.73 75.90 60.77 62.24 58.73
MKV 74.23 40.34 62.96 79.33 64.25 68.63 64.96

50.0% PCA 28.12 22.71 28.40 58.16 49.64 22.85 34.98
MKV 73.32 38.98 62.08 79.16 61.88 67.08 63.75

37.5% PCA 25.04 22.03 28.04 53.86 49.25 21.21 33.24
MKV 70.40 35.93 58.91 77.91 60.30 64.29 61.29

25.0% PCA 24.91 26.10 25.40 52.67 48.30 19.74 32.85
MKV 59.21 25.42 48.68 73.83 54.30 45.13 51.10

Results. We train with a total of 30 GPU× hours, processing just under 200 million tokens (20% of
the RedPajama sample 1T, i.e. 0.02% of the full RedPajama dataset). Table 1 presents the results of
our experiments. In zero-shot tasks, our MatryoshkaKV cache substantially reduces the cache foot-
print with minimal impact on performance. Specifically, our method retains 93.10% of LLaMA2-
7B-base’s average accuracy and 92.63% of Mistral-v0.3-7B-base’s average accuracy, while utilizing
only 37.5% of the original cache size. For simpler tasks like PIQA, it achieves 88.71% and 92.00%
of the base model’s performance with just a 25% cache budget. On more challenging tasks such
as ARC-C, a larger cache budget is required, with 50% needed to retain 90% of the base model’s
performance. By contrast, PCA projection shows a sharp performance drop when the cache bud-
get is reduced below 62.5%, achieving just 70.42% accuracy of LLaMA2-7B-base and 52.86% of
Mistral-v0.3-7B-base. These results underscore the superior efficiency of our approach compared
with PCA. We attribute PCA’s performance decline to suboptimal projection matrices, whereas our
method maintains closer alignment with the base model, thereby mitigating this degradation.

Furthermore, we evaluate the inference speed of our LLM equipped with our MatryoshkaKV. The
results are presented in Table 3 and related discussions are detailed in Appendix F.

7

Published as a conference paper at ICLR 2025

Table 2: Accuracy of our Matryoshka method after SFT based on LLaMA2-7B-base on four down-
stream tasks: PIQA, GSM8K, HellaSwag, and OpenbookQA, at seven KV cache budgets. Degrada-
tion from baseline is shown in brackets.

Model Budget PIQA GSM8K HLSG OBQA Avg.

LLaMA2
7B-base

100.0 % 84.22 34.95 93.94 83.2 74.08 (-0.00%)
87.5 % 83.84 35.25 93.17 81.80 73.52 (-0.76%)
75.0 % 83.30 32.90 91.47 81.40 72.27 (-2.44%)
62.5 % 82.75 31.46 89.86 79.60 70.92 (-4.27%)
50.0 % 79.33 31.77 86.29 76.60 68.50 (-7.53%)
37.5 % 75.35 26.91 76.10 70.80 62.29 (-15.9%)
25.0 % 69.04 16.38 56.10 61.40 50.73 (-31.5%)

0
1.3

K
2.6

K
3.8

K
5.1

K
6.4

K
7.7

K

Num samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ev
al

 L
os

s

37.5%
50%
62.5%
100%

0
2.6

K
5.1

K
7.7

K
10

.2K
12

.8K
15

.4K
17

.9K
20

.5K
23

.0K
25

.6K
28

.2K

Num samples

0

1

2

3

4

5

6

7

8

Ev
al

 L
os

s

w/ PCA initialization
w/o PCA initialization

Figure 3: Evaluation loss of four budgets vs. the number of training samples during 1 epoch of
SFT on GSM8K (Left). Evaluation loss of models with and without PCA initialization, using a 50%
cache budget, vs. the number of training samples during 4 epochs of SFT on GSM8K (Right).

5.2 SUPERVISED FINE-TUNING

Setup. We use LLaMA2-7B-base (Touvron et al., 2023) as our base model and verify the efficacy
of our method on PIQA (Bisk et al., 2019), GSM8K (Cobbe et al., 2021), HellaSwag (Zellers et al.,
2019), and OpenbookQA (OBQA) (Mihaylov et al., 2018) datasets. We design a two-stage training
strategy to make Matryoshka training strategy compatible with LoRA (Hu et al., 2021) fine-tuning.
Specifically, LoRA is firstly used to adapt the base model to downstream tasks, following standard
SFT practices (Naveed et al., 2024; Zhao et al., 2024). In the second stage, we jointly fine-tune
the MatryoshkaKV projections with the Matryoshka training strategy and the LoRA parameters.
Further discussion on the superiority of this recipe is detailed in Appendix C.

Results. We report accuracy on four zero-shot benchmarks at seven KV cache budgets in Table 2.
As shown, our method demonstrates notable performance in the SFT scenario. It achieves 92.47%
of the baseline’s average accuracy while utilizing only 50% of the KV cache budget. On simple
tasks like PIQA, our method retains 89.47% of the full-cache performance with a 37.5% cache
budget. However, for more complex tasks such as GSM8K, a 50% cache budget is necessary to
achieve comparable results. Furthermore, we report the evaluation loss at four budgets: 100%,
62.5%, 50%, and 37.5% during the second stage of SFT on GSM8K in Figure 3 (Left). It shows
our method simultaneously optimizes models under various KV cache budgets and maintains the
hierarchical structures present in the orthogonal matrices. These findings highlight the robustness of
our approach, delivering consistent performance across both CPT and SFT scenarios.

5.3 COMPATIBILITY WITH OTHER KV CACHE COMPRESSION TECHNIQUES

To demonstrate the orthogonality and compatibility of our method with existing KV cache compres-
sion techniques, we conduct extensive experiments utilizing MatryoshkaKV in conjunction with
these methods. Based on the classification outlined in Section 2, we integrate MatryoshkaKV

8

Published as a conference paper at ICLR 2025

Table 3: Tokens per second at different KV cache budgets with a batch size of 32.

LLaMA2 100% 87.5% 75% 62.5% 50% 37.5% 25%

Tokens per second 33.65 34.12 34.08 34.90 35.27 36.42 36.75 37.22

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cache Utilization

35

40

45

50

55

60

Av
g

Ac
cu

ra
cy

PCA w/ search algorithm
MKV W/ search algorithm
PCA w/o search algorithm
MKV w/o search algorithm

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cache Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Ac
cu

ra
cy

w/o Orthogonal Constraint
w/o Matryoshka Training
Our setting

Figure 4: Comparison between PCA and distilled MatryoshkaKV Projections after CPT with and
without greedy search for adaptive compression levels. We report average accuracy on datasets
mentioned in the experimental setup of Section 5.1 (Left). Comparison between with and without
Matryoshka training strategy and orthogonal constraint after SFT on GSM8K. We report the relative
accuracy compared with the LLaMA2-7B-base model fine-tuned with LoRA on GSM8K, utilizing
the full KV cache (Right).

with prominent techniques such as KIVI (Hooper et al., 2024) for KV quantization, H2O (Zhang
et al., 2023b), and GQA (Ainslie et al., 2023) for KV cache eviction and merging. We apply Ma-
tryoshkaKV to Mistral-v0.3-7B-base in Section 5.1, demonstrating its enhanced compression capa-
bility in synergy with GQA (Ainslie et al., 2023).

Combination with H2O. Furthermore, we combine our methods with H2O. We first evaluate H2O
and our MatryoshkaKV on datasets mentioned in 5.1. To demonstrate improved compression rates in
long contexts, we select LongBench (Bai et al., 2024) and calculate perplexity under different cache
budget settings of two orthogonal KV compression techniques. For the detailed results, please refer
to Table 5 in Appendix E.

According to the results, by concurrently using MatryoshkaKV and H2O, the perplexity on long
contexts increases by merely 1.02 at 10% KV cache budget. Additionally, if we compress by 50%
on both the sequence length and feature dimension axes (with an actual cache usage rate of 25%),
we can achieve an average accuracy of 55.85 on 6 benchmarks, which is 91.32% of the baseline.

Combination with KIVI. In addition to integrating with H2O, we also explore the combination of
our methods with KIVI (Liu et al., 2023), a KV cache compression technique based on 2-bit cache
quantization. Similar to the previous approach, we conduct evaluations on the datasets described
in Section 5.1. The detailed results of this combination are presented in Table 6 in Appendix E
and analyzed in detail. The results show that our MatryohskaKV can be easily combined with KV
quantization techniques and achieve a higher compression rate.

5.4 ABLATION STUDIES

We conduct ablation studies on various components of our method to verify their effectiveness.

W/o greedy search for adaptive compression levels. We evaluate our trained models without our
greedy search for adaptive compression levels. Figure 4 (Left) represents the average accuracy on
four datasets mentioned in Section 5.2 as the cache budget varies. For the exact numerical values,
please refer to Table 4 in Appendix D. To ensure that each head in the LLM plays its due role,
we set 25% as our minimum cache budget for each head. At a 37.5% cache budget, the average
accuracy improves by 1.92%, indicating the significance of our search algorithm for further KV
cache compression. Furthermore, our MatryoshkaKV demonstrates robustness even when applying

9

Published as a conference paper at ICLR 2025

a uniform compression rate across all layers and heads, in contrast to PCA projection, which fails to
handle this setting effectively.

W/o Matryoshka training strategy. As discussed in Section 4.2, we point out that the tuning pro-
cess w/o Matryoshka training strategy can destroy the hierarchical structures present in the orthogo-
nal matrices inherited from the PCA ones. To validate this, we train MatryoshkaKV projections with
a fixed KV cache budget of 50%. The result is displayed in Figure 4 (Right). We observe that fix-
ing the compression rate at 50% hinders the potential for further compression. Moreover, when the
budget exceeds 50%, the model’s performance does not improve significantly but even deteriorates,
indicating the hierarchical structure of projections is destroyed.

W/o orthogonal constraint. We investigate the necessity of imposing the orthogonal constraint
during training, with experimental results presented by Figure 4 (Right). After training without
orthogonal constraint on GSM8K, we observe that non-orthogonal projections achieve performance
comparable to orthogonal projections when the cache budget is less than 50%. However, when
utilizing a full KV cache budget, this model is unable to maintain the performance of the base model.
This is due to the non-orthogonality of the projection matrix, which prevents LLM from replicating
the attention mechanism of the base model. This phenomenon also validates our discussion in
previous Section 3.2.

W/o PCA initialization. To demonstrate the necessity of using PCA results to initialize projections,
we train an LLM equipped with randomly initialized orthogonal matrices on GSM8K and impose
orthogonal constraints. In Figure 3 (Right), we report the evaluation loss during the second stage
of SFT on GSM8K. Despite training for four epochs, randomly initialized orthogonal projections
fail to converge to an optimal solution, and the text generated by our fine-tuned LLM projection is
composed of meaningless symbols. This highlights the importance of PCA initialization.

5.5 HETEROGENEOUS COMPRESSION RATES VISUALIZATION

Figure 1 shows the heterogeneous compression levels across all attention heads inside our Ma-
tryoshkaKV LLM distilled from the LLaMA2-7B-base. We acquire these results by leveraging the
greedy search for adaptive compression levels on the ARC-C, ARC-E, and WinoGrande datasets.
We observe that shallower layers require larger KV cache budgets, while in deeper layers, only a
minority of specific heads require a relatively high budget. PyramidKV (Cai. et al., 2024) also
observes that the model aggregates information globally from all available content in lower layers,
indicating that KV cache inside lower layers can exert a substantial influence over the final output
and should be allocated at a relatively high budget. Therefore, allocating more cache in lower layers
and less in higher ones is superior to maintaining a uniform KV cache size across layers. Also,
as Wu et al. (2024) point out, retrieval heads with high retrieval scores in LLaMA2-7B-base, are
much more important than other heads and should be preserved in KV cache compression. These
findings are consistent with our observations.

Moreover, we observe that keys can be more compressed than values. As shown by the heatmaps
in Appendix D, the compression of values affects downstream tasks more than keys. Specifically,
according to our greedy search for adaptive compression levels, for a 37.5% KV cache budget, the
optimized key cache budget is allocated 32.28%, and the value cache budget is allocated 42.72%.

6 CONCLUSION

In this study, we delve into how to compress the KV cache in LLMs by applying low-rank projec-
tion matrices to the feature dimension. We first investigate data compression using the canonical
orthogonal projection method through PCA. We observe significant performance degradation at a
relatively high compression rate, indicating that PCA projection is suboptimal for preserving global
outputs due to LLMs’ nonlinearity and compounding effects. To bridge the gap, we directly opti-
mize orthogonal projection matrices for KV cache compression in LLMs with a distillation objective
using an elaborate Matryoshka training strategy. After training, we show that adaptive compression
rates for different layers and heads ensure optimal performance compared to uniform compression
rates across all layers and heads in LLMs. Experimental results demonstrate significant performance
gains and flexibility in achieving desired compression rates compared to traditional PCA projection.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work was supported by NSF of China (Nos. 92470118, 62306176), Natural Science Founda-
tion of Shanghai (No. 23ZR1428700), and CCF-Zhipu Large Model Innovation Fund (No. CCF-
Zhipu202412).

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points, 2023. URL https://arxiv.org/abs/2305.13245.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, mul-
titask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/
2308.14508.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention, 2024. URL https:
//arxiv.org/abs/2405.12981.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Zefan Cai., Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling, 2024. URL https://arxiv.org/abs/2406.02069.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models, 2024. URL https://arxiv.
org/abs/2309.12307.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Together Computer. Redpajama: An open dataset for training large language models, October 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li,
Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao
Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai
Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue

11

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2405.12981
https://arxiv.org/abs/2405.12981
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://github.com/togethercomputer/RedPajama-Data
https://github.com/open-compass/opencompass

Published as a conference paper at ICLR 2025

Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming
Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,
Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q.
Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang
Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai
Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui
Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao,
Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang,
Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao,
Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and
Ziwei Xie. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024. URL https://arxiv.org/abs/2405.04434.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens, 2024.
URL https://arxiv.org/abs/2402.13753.

Maxim Enis and Mark Hopkins. From llm to nmt: Advancing low-resource machine translation
with claude, 2024. URL https://arxiv.org/abs/2404.13813.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context, 2024. URL https://arxiv.
org/abs/2402.10171.

Daniel Goldstein, Fares Obeid, Eric Alcaide, Guangyu Song, and Eugene Cheah. Goldfinch: High
performance rwkv/transformer hybrid with linear pre-fill and extreme kv-cache compression,
2024. URL https://arxiv.org/abs/2407.12077.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization, 2024. URL https://arxiv.org/abs/2401.18079.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
training of language models, 2023. URL https://arxiv.org/abs/2302.03241.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
models, 2024. URL https://arxiv.org/abs/2403.00835.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233–30249,
2022.

12

https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2402.13753
https://arxiv.org/abs/2404.13813
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2407.12077
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2302.03241
https://arxiv.org/abs/2403.00835

Published as a conference paper at ICLR 2025

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation, 2024. URL https://arxiv.org/abs/2404.14469.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: Plug-and-play 2bit kv cache quantization with streaming asymmetric
quantization. https://rgdoi.net/10.13140/RG.2.2.28167.37282, 2023. Unpub-
lished.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv.
org/abs/1809.02789.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models, 2024. URL https://arxiv.org/abs/2307.06435.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,

13

https://arxiv.org/abs/2404.14469
https://rgdoi.net/10.13140/RG.2.2.28167.37282
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2307.06435

Published as a conference paper at ICLR 2025

Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression, 2024. URL https://arxiv.org/abs/2408.
05646.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL https:
//arxiv.org/abs/1911.02150.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
methods to optimize llm’ s kv-cache consumption, 2024. URL https://arxiv.org/abs/
2407.18003.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models,
2024. URL https://arxiv.org/abs/2405.05254.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge, 2019. URL https://arxiv.org/
abs/1811.00937.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks, 2024. URL https://arxiv.org/
abs/2407.08454.

14

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2408.05646
https://arxiv.org/abs/2408.05646
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2407.18003
https://arxiv.org/abs/2407.18003
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2405.05254
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2407.08454

Published as a conference paper at ICLR 2025

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mecha-
nistically explains long-context factuality, 2024. URL https://arxiv.org/abs/2404.
15574.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm,
2024. URL https://arxiv.org/abs/2406.07056.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models, 2024.
URL https://arxiv.org/abs/2312.05821.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan, and Lidong Bing. Sentiment analysis in
the era of large language models: A reality check, 2023a. URL https://arxiv.org/abs/
2305.15005.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023b. URL https:
//arxiv.org/abs/2306.14048.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2024. URL https://arxiv.org/abs/
2303.18223.

A ERROR ANALYSIS

Consider in a decoder layer with key and value has same head dimension: d = dk/v , our orthogonal
projection UK , UV ∈ Rd×d , we donate the first r columns of orthogonal projection U as Ur and
the rest as U:,r:d, the error can be computed at a cache budget r/d as:

L (r) =
∥∥∥Attention(Q,K, V)WO − Attention(Q̃, K̃, Ṽ)WOV

∥∥∥2
F

=

∥∥∥∥∥Softmax
(
QK⊤
√
d

)
VWO − Softmax

(
Q̃K̃⊤
√
d

)
Ṽ UV⊤

r WO

∥∥∥∥∥
2

F

=

∥∥∥∥∥Softmax
(
QK⊤
√
d

)
V UV UV⊤WO − Softmax

(
Q̃K̃⊤
√
d

)
V UV

r UV⊤
r WO

∥∥∥∥∥
2

F

=

∥∥∥∥∥Softmax
(
QK⊤
√
d

)
V
(
UV
:,r:dU

V⊤
:,r:d + UV

r UV⊤
r

)
WO − Softmax

(
Q̃K̃⊤
√
d

)
V UV

r UV⊤
r WO

∥∥∥∥∥
2

F

=

∥∥∥∥∥
(

Softmax
(
QK⊤
√
d

)
− Softmax

(
Q̃K̃⊤
√
d

)
V UV

r UV⊤
r + Softmax

(
QK⊤
√
d

)
V UV

:,r:dU
V⊤
:,r:d

)∥∥∥∥∥
2

F

(2)

Consider the original parameter WO. By donating LQK = Softmax
(

QK⊤
√
d

)
− Softmax

(
Q̃K̃⊤
√
d

)
and A = Softmax

(
QK⊤
√
d

)
is a constant, we just need to minimize:

15

https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2406.07056
https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2305.15005
https://arxiv.org/abs/2305.15005
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

Published as a conference paper at ICLR 2025

L (r) =
∥∥(LQKV UV

r UV⊤
r +AV UV

:,r:dU
V⊤
:,r:d

)∥∥2
F

=
∥∥LQK + (A− LQK)V UV

:,r:dU
V⊤
:,r:d

∥∥2
F

(3)

While PCA on value states minimizes
∥∥∥V UV

:,r:dU
V⊤
:,r:d

∥∥∥2
F

and PCA on query and key states minimizes

LQK = Softmax
(

QK⊤
√
d

)
− Softmax

(
Q̃K̃⊤
√
d

)
, these optimizations do not necessarily guarantee the

minimization of the global error L, showing the PCA projection is suboptimal and has the room to
be optimized to make the global error minimized.

The LLM itself has numerous layers, and each layer is nonlinear. Strictly speaking, the error is
the output of the last layer of the model after low-rank projection and that of the original model’s
last layer. Here, we only conduct an intuitive analysis of a certain layer. The optimal solution
of this optimization problem is complex and difficult to solve mathematically. So, we make these
orthogonal matrices trainable to get optimal results.

Theoretically, the optimal solution also changes with the variation of the input data distribution. It is
difficult for us to model the distribution of all corpora in the world. Therefore, to minimize the error
of the model after KV cache compression on most tasks as much as possible, we consider using a
data-driven approach for optimization to be a reasonable method.

To minimize L (r) =
∥∥∥Attention(Q,K, V)WO − Attention(Q̃, K̃, Ṽ)WOV

∥∥∥2
F

, we use KL-
Divergence as a proxy loss to let the distributions of the two models’ outputs close to each other. As
we have discussed in Section 3.2, to recover the original K and V from the reduced K ′ and V ′ when
using full-rank, the orthogonality of U should be guaranteed. Thus, our optimization objective can
be derived as:

U∗ = argmin
U

∑
r∈M

DKL

(
p (·|x) ∥p′

(
·|x;UK

r , UV
r

))
s.t. DKL

(
p (·|x) ∥p′

(
·|x;UK

d , UV
d

))
= 0 (4)

where we abuse p′ to refer to the LLM equipped with low-rank projection matrices, andM is our
predefined schedule.

Our orthogonal constraints UU⊤ = I on U can guarantee DKL

(
p (·|x) ∥p′

(
·|x;UK

d , UV
d

))
= 0.

It is worth noticing that if we only use r < d columns to forward for KV cache compression, the
rest d − r columns, i.e. U:,r:d will not be updated. Thus, although experiments in Appendix G
demonstrate that our method is not sensitive to a predefined schedule, we point out that d ∈ M is a
must to guarantee all parameters of U to be trained.

B WEIGHT MERGING METHOD

Given that both WQ and WK , as well as our orthogonal projection, operate on hidden states, con-
solidating parameters evidently reduces computational time. However, many LLMs utilize RoPE Su
et al. (2023), introducing a relative position embedding between WQ and WK , which compli-
cates integrating the parameters with our unitary transform. This issue has been addressed in prior
works Saxena et al. (2024); Yu et al. (2024). The approach in Saxena et al. (2024) involves maintain-
ing the merged parameters and transforming the compressed dimension cache back to its original
dimensions for reapplication of RoPE. This does not reduce peak memory usage for attention and
necessitates RoPE for all past tokens. Alternatively, (Yu et al., 2024) compresses the key states
post-RoPE, which prohibits the merging of WQ/K and UK . However, as only a single new token
requires orthogonal transformation and dimensionality reduction during inference, the time increase
is merely slight as shown in (Yu et al., 2024). Consequently, our treatment of RoPE in the present
study is influenced by (Yu et al., 2024)’s methodology. The integration of the weight parameters of

16

Published as a conference paper at ICLR 2025

WO and UV⊤, given RoPE has no impact on value states, the details of our weight merging methods
can be formulated as follows and in Figure 5

MSA(X) = Concat(head1, head2, . . . , headH)WO

= Concat(A1V1, A2V2, · · · , AhVH)WO

= Concat(A1V1U
V
1 UV⊤

1 , A2V2U
V
2 UV⊤

2 , · · · , AhVhU
V
HUV⊤

H)WO

= Concat(A1V1U
V
1 , A2V2U

V
2 , · · · , AHVHUV

H)
(
ŨV WO

)
= Concat(A1Ṽ1, A2Ṽ2, · · · , AH ṼH)WOV

where Ai = Softmax
(
QiK

⊤
i√

dk

)
is the attention weights of a given head in each layer

Figure 5: After obtaining an orthogonal matrix through training, we merge the parameters in this
way, reducing the number of matrix multiplications required during inference without incurring any
inference time overhead. Truncation can be achieved simply by removing the columns correspond-
ing to WOV , thereby reducing peak memory consumption.

C TWO STAGE SFT

In this section, we provide a detailed discussion on our observations regarding fine-tuning with
LoRA and the orthogonal matrix. We elaborate on the issues stemming from calculating covariance
on a limited sample subset and performing spectral decomposition, which may lead to suboptimal
parameters. We hypothesize that larger gradients during training can arise from task-specific distri-
butions, such as in GSM8K, affecting the alignment of LoRA weights with the base model.

To mitigate these issues, our two-phase training approach involves initially training only the LoRA
weights to ensure adequate adaptation to downstream tasks. In the second phase, we introduce si-
multaneous training of the unitary transformation matrix and the LoRA weights, focusing on main-
taining performance while compressing the cache effectively. We also explore the impact of using
separate learning rates for the LoRA and orthogonal matrix parameters to further investigate these
phenomena. Extensive experimental results are provided to support our findings.

17

Published as a conference paper at ICLR 2025

Figure 6: Two-phase SFT on PIQA. Figure 7: Two-phase SFT on GSM8K.

Figure 8: Two-phase SFT on HellaSwag. Figure 9: Two-phase SFT on OBQA.

D ABLATION STUDY ON GREEDY SEARCH FOR ADAPTIVE COMPRESSION
LEVELS

We present some experimental results using a uniform compression rate across all heads after CPT
and SFT in our MatryoshkaKV LLM. The results are displayed in 4.

18

Published as a conference paper at ICLR 2025

Table 4: Accuracy of our distilled MatryoshkaKV Projections after CPT on six benchmarks w/o
greedy search for adaptive compression levels.

Model Budget Method HLSG ARC-C ARC-E PIQA WG CSQA Avg.

LLaMA2
7B-base

100.0%
baseline 74.00 35.93 50.97 78.50 61.64 65.93 61.16

PCA 72.04 36.95 52.38 76.66 61.72 67.24 61.17
MKV 72.05 37.29 52.38 76.66 61.72 67.32 61.24

87.5% PCA 30.28 23.73 30.34 58.05 51.30 22.60 36.05
MKV 72.22 35.93 52.20 76.28 62.12 65.27 60.67

75.0% PCA 25.47 27.80 27.51 52.67 49.72 20.56 33.96
MKV 70.98 34.58 55.20 76.77 61.56 63.64 60.46

62.5% PCA 24.22 28.81 27.51 51.58 50.28 21.29 33.95
MKV 69.22 37.29 55.73 75.22 59.35 64.21 60.17

50.0% PCA 24.04 28.47 25.22 52.29 50.67 20.72 33.57
MKV 66.62 34.24 52.91 75.46 58.41 62.00 58.27

37.5% PCA 24.08 28.47 25.40 50.76 49.49 18.35 32.76
MKV 62.38 32.20 50.26 73.34 56.67 55.28 55.02

25.0% PCA 23.98 29.49 26.28 51.20 50.36 16.22 32.92
MKV 51.91 27.46 44.44 69.64 54.54 44.39 48.73

Mistral-v0.3
7B-base

100.0%
baseline 75.50 42.03 63.14 80.25 65.43 70.68 66.17

PCA 75.46 42.03 62.96 80.25 65.35 70.27 66.05
MKV 75.44 42.03 62.96 80.25 65.51 70.27 66.08

87.5% PCA 37.09 22.03 34.57 59.85 53.67 33.99 40.20
MKV 77.01 42.37 62.43 80.09 65.51 70.52 66.32

75.0% PCA 30.58 20.68 30.86 58.92 51.14 24.65 36.14
MKV 75.55 40.34 63.49 80.47 64.48 70.60 65.82

62.5% PCA 28.91 21.69 26.46 56.58 51.14 21.70 34.41
MKV 73.95 38.98 62.61 79.22 64.40 68.39 64.59

50.0% PCA 27.40 23.73 26.28 55.01 50.43 22.77 34.27
MKV 71.65 36.95 60.85 78.40 62.19 66.91 62.83

37.5% PCA 25.77 21.69 24.34 53.70 49.57 21.46 32.76
MKV 68.63 33.56 56.26 77.48 59.83 62.16 59.65

25.0% PCA 24.91 26.10 25.40 52.67 48.30 19.74 32.85
MKV 59.21 25.42 48.68 73.83 54.30 45.13 51.10

E COMPATIBILITY WITH OTHER KV CACHE COMPRESSION TECHNIQUES

In this appendix, we present detailed results and analysis on the combination of MatryohskaKV
with two orthogonal key-value (KV) cache compression techniques: H2O (Zhang et al., 2023b) and
KIVI (Liu et al., 2023). Both combinations are evaluated on the datasets mentioned in Section 5.1,
and their performance is summarized in Table 5 and Table 6, respectively.

19

Published as a conference paper at ICLR 2025

Table 5: Results of Combination of Distilled MatryoshkaKV Projections and H2O across Seven
Benchmarks. We use uniform compression levels for inference here for simplicity. The first and
second columns indicate the individual compression rates along two axes. If H2O uses 20% cache
on the sequence length axis and MatryoshkaKV uses 50% cache on the feature dimension axis, the
overall cache utilization is 10%.

H2O MKV LongBench HLSG ARC-C ARC-E PIQA WG CSQA Avg.

100 %

100% 4.17 72.05 37.29 52.38 76.66 61.72 67.32 61.24

87.5% 4.44 72.22 35.93 52.20 76.28 62.12 65.27 60.67

75.0% 4.57 70.98 34.58 55.20 76.77 61.56 63.64 60.46

62.5% 4.70 69.22 37.29 55.73 75.22 59.35 64.21 60.17

50.0% 4.93 66.62 34.24 52.91 75.46 58.41 62.00 58.27

37.5% 5.47 62.38 32.20 50.26 73.34 56.67 55.28 55.02

25.0% 7.66 51.91 27.46 44.44 69.64 54.54 44.39 48.73

75 %

100% 4.18 70.71 36.61 52.38 76.55 60.54 66.50 60.55

87.5% 4.44 71.42 35.25 53.09 76.33 59.91 64.62 60.74

75.0% 4.57 70.31 34.34 54.14 76.39 59.27 62.90 59.94

62.5% 4.70 68.47 36.27 54.32 75.41 58.48 63.96 59.89

50.0% 4.94 66.00 32.54 51.50 75.63 57.30 61.43 57.46

37.5% 5.47 61.50 32.88 49.21 73.01 55.09 55.12 54.63

25.0% 7.67 51.32 27.80 44.09 69.37 53.59 44.55 48.47

50 %

100% 4.20 68.72 33.22 52.20 76.12 56.67 64.78 58.62

87.5% 4.46 67.89 34.58 51.85 76.28 55.88 62.00 58.13

75.0% 4.59 66.01 35.59 53.79 75.41 54.54 62.00 58.05

62.5% 4.73 63.59 34.92 51.32 75.68 55.25 60.52 57.04

50.0% 4.96 61.33 36.10 50.74 73.67 55.57 57.67 55.85

37.5% 5.50 59.26 29.83 49.91 73.61 53.04 54.14 53.29

25.0% 7.71 49.44 26.44 41.80 68.72 52.96 43.24 46.94

20 %

100% 4.40 61.55 25.76 41.27 73.29 53.28 47.01 49.98

87.5% 4.65 61.36 30.51 39.86 73.72 52.09 49.06 50.94

75.0% 4.79 60.29 28.47 38.62 72.75 53.12 50.45 50.62

62.5% 4.93 58.77 26.78 39.86 70.84 52.72 49.30 50.58

50.0% 5.19 56.39 26.78 38.10 71.22 51.62 49.16 49.66

37.5% 5.74 52.12 23.39 34.22 68.50 52.17 41.44 44.82

25.0% 8.01 43.22 21.02 31.92 63.93 51.38 33.09 40.75

F COMPARISONS WITH MORE BASELINES

We introduce an additional baseline, ASVD(Yuan et al., 2024), which has been developed to address
the low-rank characteristics of LLM parameters. This approach performs simultaneous compres-
sion of both the KV cache and the model parameters, allowing for efficient utilization of memory
resources. ASVD provides checkpoints for three specific cache budgets: 85%, 90%, and 95%. In
our experiments, we compare our MatryoshkaKV against ASVD under these budgets to evaluate
performance and efficiency. The results of these comparisons are detailed in Table 7, where we
present the performance metrics for our method alongside those obtained using ASVD.

We evaluate the inference speed of our LLM equipped with MatryoshkaKV and compare it to the
LLaMA2-7B-base model. The results are displayed in Table 8. Specifically, these evaluations were
conducted during the inference process with a batch size of 32. Our current implementation con-
sumes a slightly faster time than the baseline full-KV model. This is because we have not performed
system-level optimizations for memory copy and sparse computations involved in our KV mecha-
nism.

20

Published as a conference paper at ICLR 2025

Table 6: Results of Combination of Distilled MatryoshkaKV Projections and KIVI (2bit KV cache
quantization) on Six Benchmarks. We use uniform compression levels for inference here for sim-
plicity.

Model Budget Method HLSG ARC-C ARC-E PIQA WG CSQA Avg.

LLaMA2
7B-base

100.0% MKV 70.89 36.95 53.26 76.39 61.56 67.08 60.98
MKV+KIVI 69.76 35.93 51.98 76.55 61.48 66.26 60.49

87.5% MKV 70.87 36.95 51.15 76.17 61.80 64.95 60.47
MKV+KIVI 70.45 36.61 50.79 76.44 61.01 64.13 59.91

75.0% MKV 69.30 33.90 54.67 75.90 61.09 63.23 60.08
MKV+KIVI 68.62 32.20 54.85 76.06 60.30 63.23 59.68

62.5% MKV 67.25 36.27 53.62 75.52 59.27 64.46 59.39
MKV+KIVI 66.56 35.25 51.68 75.41 59.43 61.59 58.33

50.0% MKV 65.08 33.56 52.03 74.81 57.54 60.36 56.98
MKV+KIVI 63.25 32.54 51.15 74.43 57.38 59.46 56.35

37.5% MKV 61.02 29.83 49.21 73.45 55.64 55.36 54.09
MKV+KIVI 57.11 28.81 48.85 71.71 55.64 50.37 52.08

25.0% MKV 50.61 25.76 45.33 69.64 54.30 43.90 47.96
MKV+KIVI 48.12 27.80 42.86 67.85 53.59 40.54 46.78

Table 7: Comparison between our MatryoshkaKV and baseline ASVD. We use uniform compression
levels for inference here for simplicity.

Model Budget Method HLSG ARC-C ARC-E PIQA WG CSQA Avg.

LLaMA2
7B-base

100.0% baseline 74.00 35.93 50.97 78.50 61.64 65.93 61.16

95% ASVD 71.12 36.95 52.20 76.28 62.35 66.67 60.92
MKV 72.59 36.27 53.09 76.44 62.43 66.75 61.25

90% ASVD 70.45 34.92 52.03 75.63 61.72 64.70 60.06
MKV 72.30 36.61 54.50 76.50 62.90 65.93 62.03

85% ASVD 67.23 35.93 50.26 74.86 60.38 62.16 59.29
MKV 72.33 35.93 53.26 76.33 61.80 64.78 61.13

G EXPERIMENTS ON VARIOUS HYPER-PARAMETERS

In Section 5.1, during the training process, we initially predefine the schedule set as { i8d}
8
i=1. Sub-

sequently, we modify the schedule set to { i4d}
4
i=1 while keeping other hyper-parameters unchanged.

Then, we evaluate the accuracy using the same benchmarks. The results are listed in Table 9:

21

Published as a conference paper at ICLR 2025

Table 8: Tokens per second at different percentages.

LLaMA2 100% 87.5% 75% 62.5% 50% 37.5% 25%

Tokens per second 33.65 34.12 34.08 34.90 35.27 36.42 36.75 37.22

Table 9: Accuracy of our MatryoshkaKV after CPT on six benchmarks. We use uniform com-
pression levels for inference here for simplicity. Different hyper-parameters are compared. In the
table we donate the schedule { i8d}

8
i=1 asM2, and the schedule { i4d}

4
i=1 asM1. We use uniform

compression levels for inference here for simplicity.

Model Budget Method HLSG ARC-C ARC-E PIQA WG CSQA Avg.

LLaMA2
7B-base

100.0% M1 72.03 36.61 52.56 76.71 61.64 67.16 62.07
M2 72.05 37.29 52.38 76.66 61.72 67.32 61.24

87.5% M1 72.03 37.29 53.09 76.28 62.75 65.77 62.18
M2 72.22 35.93 52.20 76.28 62.12 65.27 60.67

75.0% M1 70.79 34.92 53.62 76.88 60.54 65.03 61.31
M2 70.98 34.58 55.20 76.77 61.56 63.64 60.46

62.5% M1 69.03 32.88 52.91 74.86 59.19 64.54 59.69
M2 69.22 37.29 55.73 75.22 59.35 64.21 60.17

50.0% M1 66.34 32.88 53.09 74.97 58.25 62.49 58.59
M2 66.62 34.24 52.91 75.46 58.41 62.00 58.27

37.5% M1 61.55 31.19 49.91 73.83 56.27 52.09 53.78
M2 62.38 32.20 50.26 73.34 56.67 55.28 55.02

25.0% M1 50.91 26.10 44.97 68.39 52.72 38.33 46.38
M2 51.91 27.46 44.44 69.64 54.54 44.39 48.73

The final results of our MatryoshkaKV are not very sensitive to the schedule choice.

22

	Introduction
	Related Work
	Preliminary
	KV Cache
	Traing-free Dimension Reduction Via PCA

	Methodology
	Minimize Compression Loss by Knowledge Distillation
	Acquire Hierarchical KV Cache by MatryoshkaKV Training
	Find Heterogeneous Compression Rates for Various Layers & Heads

	Experiments
	Continual Pre-training
	Supervised Fine-tuning
	Compatibility With Other KV Cache Compression Techniques
	Ablation Studies
	Heterogeneous Compression Rates Visualization

	Conclusion
	Error Analysis
	weight merging method
	Two stage SFT
	Ablation Study On Greedy Search For Adaptive Compression Levels
	Compatibility With Other KV Cache Compression Techniques
	Comparisons With More Baselines
	Experiments On Various Hyper-parameters

