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A Related Work

This work primarily focuses on the design of sample-efficient sequential decision-making agents
through principled methods of information acquisition and information representation [Lu et al.,
2021]. While the use of information theory, and in particular rate-distortion theory, has been explored
for the latter [Abel et al., 2019, Dong and Van Roy, 2018], this work aims to advance understanding
of the role that rate-distortion theory plays in addressing the former challenge; we additionally hope
that future work may further capitalize on these insights and techniques for information representation
as well.

The challenge of efficient information acquisition is intimately tied to the exploration-exploitation
trade-off that quintessentially appears in multi-armed bandit problems [Bubeck et al., 2012, Lattimore
and Szepesvári, 2020]. Foremost among the various principled approaches for delicately negotiating
this trade-off is the algorithmic design principle known as information-directed sampling (IDS) [Russo
and Van Roy, 2018a]. IDS centers around a fundamental quantity known as the information ratio:
the ratio in each time period of the squared expected regret and the expected information gain. The
complimentary design principle naturally prescribed by this quantity is for an agent to, in each
timestep, compute the policy that minimizes this information ratio. Accompanying the algorithmic
simplicity that IDS espouses are the simple yet elegant theoretical analyses that it facilitates, which
have been extended and adapted in numerous works [Lattimore and Szepesvári, 2019, Zimmert and
Lattimore, 2019, Bubeck and Sellke, 2020, Lattimore and György, 2020, Kirschner et al., 2020].
While IDS has been extensively studied and the information ratio has been refined and generalized in
numerous ways, there has been an almost exclusive focus on measuring information gained about the
optimal action. While optimal actions are the prominent object of study throughout the sequential
decision-making literature, the challenges of sample-efficient learning when faced with the complexity
and scale of the real world motivate the need for fine-grained control over more generic notions of
learning targets. This fact has been recognized by previous works [Russo and Van Roy, 2018b, Lu
et al., 2021] which identify the utility of rate-distortion theory in overcoming these challenges, but
offer no concrete algorithmic mechanisms for leveraging it fruitfully. Meanwhile, Arumugam and
Van Roy [2021] succeed in addressing the algorithmic hurdle but only examine and analyze action
selection via Thompson Sampling; our work closes this natural gap and offers a new generalization
of IDS that accommodates effective information acquisition about alternative learning targets.

Finally, we note that the Blahut-Arimoto algorithm [Blahut, 1972, Arimoto, 1972] proves to be
a critical algorithmic tool for enjoying the practical virtues of rate-distortion theory in sequential
decision-making problems. The algorithm itself has been a popular object of study for its utility
in the information-theory community as well as its efficacy as an alternating optimization algo-
rithm [Boukris, 1973, Rose, 1994, Sayir, 2000, Matz and Duhamel, 2004, Niesen et al., 2007,
Vontobel et al., 2008, Naja et al., 2009, Yu, 2010]. While we do not explore any extensions of the
Blahut-Arimoto algorithm in this work due to their focus on improving computational efficiency,
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practitioners may find these computational advantages meaningful and potentially necessary when
implementing and deploying BLAIDS for real-world applications.

B Background & Notation

In this section, we begin with an overview of several standard quantities in information theory as
well as some useful facts. For more background on information theory, see Cover and Thomas
[2012], Gray [2011]. All random variables are defined on a probability space (Ω,F,P). For any
random variable X : Ω→ X taking values on a measurable space (X ,X), we denote the associated
(marginal) distribution of X as

PX(A) = P(X−1(A)) = P({ω | X(ω) ∈ A}) ∀A ∈ X.
We adopt analogous conventions for the joint and (regular) conditional probability measures,
PX,Y ,PX|Y , with respect to another random variable Y . For three random variables X; Y ; and Z,
we define entropy; conditional entropy; mutual information; and conditional mutual information as
follows:

H(X) = −E[log(PX(·))]
H(Y |X) = −E[log(PY |X(·))]
I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) = H(Y |Z)−H(Y |X,Z)

It is also useful to note another definition of mutual information through the Kullback-Leibler (KL)
divergence:

I(X;Y ) = DKL(PX,Y || PX × PY ) DKL(P || Q) =

{∫
log
(
dP
dQ

)
dP P� Q

∞ P 6� Q
,

where dP
dQ denotes the Radon-Nikodym derivative of probability measure P with respect to Q, with

both measures defined on the same measurable space. Note that PX × PY denotes the product
measure over the associated marginals.

Consider a random variable X : Ω → X taking values on the measurable space (X ,X) with an
associated marginal distribution PX that represents an information source. Similarly, define the
random variable X̂ : Ω→ X̂ that takes values on (X̂ , X̂) and corresponds to a channel output. Given
a known, measurable distortion measure d : X × X̂ 7→ R≥0 and a desired upper bound on distortion
D, the rate-distortion function is defined as:

R(D) = inf
P
X,X̂
∈Λ
I(X; X̂) (1)

quantifying the minimum number of bits (on average) that must be communicated from X across a
channel in order to adhere to the specified expected distortion thresholdD. Here, the infimum is taken
over Λ = {PX,X̂ | ∀A ∈ X : PX,X̂(A×X̂ ) = PX(A) and E[d(X, X̂)] ≤ D} representing the set of

all joint distributions on the product space (X×X̂,X×X̂) whose corresponding marginal distribution
on X matches the original information source PX while also satisfying the constraint on bounded
expected distortion. Intuitively, a higher rate corresponds to requiring more bits of information and
smaller information loss between X and X̂ , enabling higher-fidelity reconstruction (lower distortion);
conversely, lower rates reflect more substantial information loss, potentially exceeding the tolerance
on distortion D.

We will make use of the following facts:
Fact 1 (Chain Rule for Radon-Nikodym Derivatives - Lemma 6.6 [Gray, 2009]). Let µ, ν, ρ be
σ-finite probability measures on (Ω,F). If ν � µ and µ� ρ with corresponding Radon-Nikodym
derivatives dν

dµ ,
dµ
dρ <∞, then ν � ρ and has an associated Radon-Nikodym derivative ρ-a.s.

dν

dρ
=
dν

dµ

dµ

dρ
.
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Fact 2 (Gibb’s Inequality - [Cover and Thomas, 2012]). For any two probability measures P,Q on
(Ω,F),

DKL(P || Q) ≥ 0.

Fact 3 (Mutual Information as an Infimum over Product Measures - Corollary 7.12 [Gray, 2011]).
Let PX,Y be a joint probability measure and letM denote the collection of all product measures
MX ×MY . Then

I(X;Y ) = inf
MX×MY ∈M

DKL(PX,Y ||MX ×MY ).

Fact 4 (Uniform Continuity of Entropy - [Cover and Thomas, 2012]). Let P,Q be two discrete
probability distributions (that is, probability mass functions) on the same measurable space (X ,X).
If

||P−Q||1 ≤
1

2
,

then

|H(P)−H(Q)| ≤ ||P−Q||1 log

(
|X |

||P−Q||1

)
.

C Technical Proofs

Lemma 1 (Lemma 1.2 [Csiszár, 1974]).

R(D) = max
β≥0
F(β)− βD

The value of β that achieves this maximum is characterized as being associated with the distortion
threshold D. Conversely, a joint distribution PE,χ that achieves the infimum of F(β) has an associate
rateR(D) = I(PE,χ) where β is associated with D = EPE,χ [d(E , χ)] ,

∫
d(E , χ)dPE,χ(E , χ).

Proof. The correspondence between values of β and values of D is a geometric argument. We have
that for any fixed D ≥ 0 and for all β ≥ 0,

R(D) = inf
PE,χ∈Λ:E[d(E,χ)]≤D

I(PE,χ)

= inf
PE,χ∈Λ:E[d(E,χ)]≤D

(
I(PE,χ) + βEPE,χ [d(E , χ)]− βEPE,χ [d(E , χ)]

)
≥ inf

PE,χ∈Λ:E[d(E,χ)]≤D

(
I(PE,χ) + βEPE,χ [d(E , χ)]

)
− βD

≥ inf
PE,χ∈Λ

(
I(PE,χ) + βEPE,χ [d(E , χ)]

)
− βD

= F(β)− βD

This inequality coupled with the fact that R(D) is convex implies the existence of a straight line
with slope βD passing through the point (D,R(D)) such that F(β)− βDD = R(D) with no points
above the rate-distortion curve. Consequently, the notion of a particular βD associated withD implies
that for all D′,

R(D′) + βDD
′ ≥ R(D) + βDD.

To see that this lower bound is achieved by the βD value associated with a given threshold D, let
PE,χ be a joint distribution with expected distortion D′ such that for ε > 0,

I(PE,χ) + βDEE,χ[d(E , χ)] ≤ F(βD) + ε.

Using the previous two inequalities, we have

F(βD) + ε ≥ R(D′) + βDD
′ ≥ R(D) + βDD ≥ F(βD)

Since our choice of ε was arbitrary, taking the limit as ε→ 0 yields

F(βD) = R(D) + βDD.
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Notably, the Blahut-Arimoto algorithm for computing rate-distortion functions operates with a
specification of β, rather than D. Let P?E,χ be the joint distribution such that

F(β) = inf
PE,χ∈Λ

(
I(PE,χ) + βEPE,χ [d(E , χ)]

)
= I(P?E,χ) + βEP?E,χ [d(E , χ)].

Defining Dβ = EP?E,χ [d(E , χ)] and Rβ = I(P?E,χ), we have the lower bound

F(β) = Rβ + βDβ ≥ inf
PE,χ∈Λ:E[d(E,χ)]≤Dβ

I(PE,χ) + βDβ = R(Dβ) + βDβ .

For the upper bound, we have

F(β) = inf
PE,χ∈Λ

(
I(PE,χ) + βEPE,χ [d(E , χ)]

)
= inf

PE,χ∈Λ:E[d(E,χ)]≤Dβ

(
I(PE,χ) + βEPE,χ [d(E , χ)]

)
≤ inf

PE,χ∈Λ:E[d(E,χ)]≤Dβ
(I(PE,χ) + βDβ)

= inf
PE,χ∈Λ:E[d(E,χ)]≤Dβ

I(PE,χ) + βDβ

= R(Dβ) + βDβ

Putting both inequalities together shows that F(β) = R(Dβ) + βDβ , which implies that β is
associated with Dβ andR(Dβ) = F(β)− βDβ .

Lemma 2 (Lemma 1.2 [Csiszár, 1974]). Let Qχ be an arbitrary marginal distribution over χ.
Moreover, let PE,χ be an arbitrary joint distribution over E , χ with an associated marginal distribution
Pχ and take QE,χ to be the joint distribution as defined in Equation ??. Then,

J (PE,χ,Qχ, β) ≥ J (PE,χ,Pχ, β)

J (PE,χ,Qχ, β) ≥ J (QE,χ,Qχ, β)

Proof. For the first inequality, recall that Pχ is the true marginal distribution over learning targets
induced by PE,χ. Moreover, by definition, we have that

J (PE,χ,Pχ, β) = DKL(PE,χ||PE × Pχ) + βEPE,χ [d(E , χ)] = I(E ;χ) + βEPE,χ [d(E , χ)].

Therefore, by Fact 3, it follows that

J (PE,χ,Qχ, β) = J (PE,χ,Pχ, β) +DKL(Pχ || Qχ).

The inequality then follows immediately by Fact 2.

For the second inequality, we have

J (PE,χ,Qχ, β) = DKL(PE,χ || PE ×Qχ) + βEPE,χ [d(E , χ)]

=

∫
log

(
dPE,χ

dPE ×Qχ
(E , χ)

)
dPE,χ(E , χ)−

∫
log (exp (−βd(E , χ))) dPE,χ(E , χ)

=

∫
log

(
dPE,χ

dPE ×Qχ
(E , χ)

)
dPE,χ(E , χ)−

∫
log
(
αQχ,β(E) exp (−βd(E , χ))

)
dPE,χ(E , χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

=

∫
log

(
dPE,χ

dPE ×Qχ
(E , χ)

)
dPE,χ(E , χ)−

∫
log

(
dQE,χ

dPE ×Qχ
(E , χ)

)
dPE,χ(E , χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

=

∫
log

(
dPE,χ

dPE ×Qχ
(E , χ) · dPE ×Qχ

dQE,χ
(E , χ)

)
dPE,χ(E , χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

=

∫
log

(
dPE,χ
dQE,χ

(E , χ)

)
dPE,χ(E , χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

= DKL(PE,χ || QE,χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)
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where the sixth line employs the chain rule for Radon-Nikodym derivatives (Fact 1). Expanding the
second term and using the fact marginal distribution over E induced by QE,χ is the same as PE , we
have∫

log
(
αQχ,β(E)

)
dPE(E) =

∫
log
(
αQχ,β(E)

)
dQE,χ(E , χ)

=

∫
log
(
αQχ,β(E) exp (−βd(E , χ)) exp (βd(E , χ))

)
dQE,χ(E , χ)

=

∫
log
(
αQχ,β(E) exp (−βd(E , χ))

)
dQE,χ(E , χ) +

∫
log (exp (βd(E , χ))) dQE,χ(E , χ)

=

∫
log

(
dQE,χ

dPE ×Qχ
(E , χ)

)
dQE,χ(E , χ) + β

∫
d(E , χ)dQE,χ(E , χ)

= DKL(QE,χ || PE ×Qχ) + βEQE,χ [d(E , χ)]

= J (QE,χ,Qχ, β)

Substituting back and applying Fact 2 once more yields the inequality

J (PE,χ,Qχ, β) = DKL(PE,χ || QE,χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

= DKL(PE,χ || QE,χ) + J (QE,χ,Qχ, β)

≥ J (QE,χ,Qχ, β)

Lemma 3 (Lemma 2 - [Palaiyanur and Sahai, 2008]). Let E , χ be discrete random variables. Let PE
denote the agent’s current posterior over E and let P̂E be the empirical distribution. If ||PE − P̂E ||1 ≤
D(PE)

4 , then for any D ≥ 0,

|R(D)− R̂(D)| ≤ 7

D(PE)
||P− P̂E ||1 log

(
|Σ||Ξ|

||PE − P̂E ||1

)
.

Proof. The proof of this augmented result still follows the same argument outlined in Section V of
Palaiyanur and Sahai [2008].

Corollary 1 (Lemma 5 - [Palaiyanur and Sahai, 2008]). For any δ ∈ (0, 1), ε ∈ (0, log(Σ)) let
PE ∈ ∆(Σ) be the current posterior over E . Additionally, let φ−1 denote the inverse of the function

φ : [0, 1
2 ]→ R where φ(t) = t log

(
|Σ||Ξ|
t

)
. If

z ≥ 2

φ−1
(
εD(PE)

7

)2

(
log

(
1

δ

)
+ |Σ| log(2)

)
,

then
P(|R(D)− R̂(D)| ≥ ε) ≤ δ.

Proof.

P(|R(D)−R̂(D)| ≥ ε) ≤ P
(
||PE − P̂E ||1 ≥ φ−1

(
εD(PE)

7

))
≤ 2|Σ| exp

(
−z

2
φ−1

(
εD(PE)

7

))2

,

where the first inequality follows from Lemma 3 and the second inequality follows as Theorem 2.1
of [Weissman et al., 2003]. Setting the left-hand side equal to δ and re-arranging terms yields the
inequality.
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D On the Optimality of Rate-Distortion-Theoretic Learning Targets

We examine independent Bernoulli and Gaussian bandits with 50 arms and sweep across numerous β
values to trace the shape of the resulting rate-distortion curves associated with the various learning
targets induced at the first time period. We compare this to the hand-crafted target action of Russo
and Van Roy [2018b], Lu et al. [2021] that simply takes the first action whose average reward Ra is
within ε ≥ 0 of the optimal R

?
:

χ = min{a ∈ A | Ra ≥ R
? − ε}.

Analogously sweeping over values of ε generates the results of Figure 1 where we notice a substan-
tially improved information-performance trade-off from the Blahut-Arimoto algorithm. Such results
highlight the importance of rate-distortion theory in yielding optimized learning targets that may
otherwise be difficult for agent designers to engineer by hand.

(a) Independent Bernoulli bandit with 50 arms. (b) Independent Gaussian bandit with 50 arms.

Figure 1: Comparing target actions computed via the Blahut-Arimoto actions (BLASTS) vs. the
hand-crafted target action (STS) examined by Russo and Van Roy [2018b], Lu et al. [2021].
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