
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Proofs in appendix, experiments in the paper.
(b) Did you describe the limitations of your work? [Yes] We talked about the difficulty of

training the networks.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Mostly

theoretical contribution.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions
are stated in each Proposition or Theorem.

(b) Did you include complete proofs of all theoretical results? [Yes] Yes (in appendix).
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Experimental
setting is given in appendix, and the code is in supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Yes, in the core paper for toy experiments and in appendix K for
large scale experiments.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [No] Toy experiments were run only once. CIFAR-10
experiments like in Figure3 and Figure 4 involved multiple runs (with different values
for hyper-parameters). All the runs are reported (no cherry-picking), and the results
show a coherent trend. Other experiments (see Appendix) showed our experiments are
robust with respect to random seed, but discussing stability of the training of LipNet1 is
out of the scope of this article.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See appendix L.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Yes for Deel-Lip

library we used.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Our code is available in supplementary.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16

Contents

1 Introduction 1

2 Notations and experimental setting 2

3 1-Lipschitz classifiers are expressive 3

3.1 Boundary decision fitting . 3

3.2 Understanding why LipNet1 are often perceived as not expressive 4

4 1-Lipschitz classifiers are certifiably robust 5

4.1 Improving the robustness of the maximally accurate classifier 5

4.2 Improving the accuracy of the maximally robust classifier 5

4.3 Controlling the accuracy/robustness tradeoff with loss parameters 6

5 1-Lipschitz classifiers have generalization guarantees 6

5.1 Consistency of LipNet1 class . 7

5.2 Understanding why unconstrained networks are prone to overfitting 7

5.3 Lipschitz classifiers are PAC learnable . 8

6 Related work 9

7 Conclusions 10

8 Perspectives 10

A Proofs of Section 3 18

A.1 Single class case . 18

A.2 Multiclass case . 19

A.3 Proofs of Section 3.2 . 20

B Proofs of Section 4 21

C Proofs of Section 5 22

C.1 Consistency of Lipschitz estimators . 22

C.2 Proofs of Section 5.2 . 23

C.3 VC dimension for Lipschitz classifiers with margin 24

C.4 VC dimension for GroupSort networks . 25

C.5 Generalization bounds literature survey . 27

D Deel.Lip networks 27

E Multiclass Hinge Kantorovich Rubinstein 28

F Gradient Norm Preserving (GNP) networks 29

17

G Wasserstein discriminator does not depend of the Lipschitz constant 30

H BCE through the lens of OT 30

I Fitting CIFAR100 with random labels 31

J 1-Lipschitz estimators are consistent (experimental protocol of figure 4) 31

K Controlling the accuracy/robustness tradeoff (experimental protocol of figure 3) 33

L Hardware 34

M Divergence of the weights on AllNet networks 34

N Stability of training of LipNet1 35

N.1 Moving along Pareto front by tuning temperature 35

N.2 Shifting Pareto front by tuning architecture . 36

A Proofs of Section 3

A.1 Single class case

The properties of Lebesgue measure over euclidean space Rn are recalled in [78]. Impor-
tantly, the Lebesgue measure µ is translation invariant and measure the volume of hyperboxes:
µ([a1, b1], [a2, b2], . . . [an, bn]) = Πn

i=1(bi − ai).
Proposition 1. Lipschitz Binary classification. For any binary classifier c : X → Y with closed
pre-images (c−1({y}) is a closed set) there exists a 1-Lipschitz function f : Rn → R such that
sign(f(x)) = c(x) on X and such that ‖∇xf‖ = 1 almost everywhere (w.r.t Lebesgue measure).

The proof of Proposition 1 is constructive, we need to introduce the Signed Distance Function,
already popularized in shape processing [25].
Definition 6
Signed Distance Function associated to decision boundary. Let c : X → {−1,+1} be any
classifier with closed pre-images. Let Ā = {x ∈ Rn|c(x) = +1} and B̄ = {x ∈ Rn|c(x) = −1} =
X \ Ā. Let d(x, y) = ‖x− y‖ and d(x, S) = miny∈S d(x, y) be the distance to a closed set S. Let
∂ = {x ∈ Rn|d(x, Ā) = d(x, B̄)}. We define f : Rn → R as follow:

f(x) =

{
d(x, ∂) if d(x, B̄) ≥ d(x, Ā)

−d(x, ∂) if d(x, B̄) < d(x, Ā).
(14)

We denote by SDF(c) the function f .

The signed distance function f previously defined verifies all the properties, as a special case of
Eikonal equation. We give the full proof here for completeness.

Proof. We start by proving that f is 1-Lipschitz. The reasoning applies more broadly to arbitrary
Banach space (topological normed vector space), not only (Rn, ‖ · ‖2).

First, consider the case d(x, B̄) ≥ d(x, Ā) and d(y, B̄) ≥ d(y, Ā). Then we have |f(x)− f(y)| =
|d(x, ∂)− d(y, ∂)|. Assume without loss of generality that d(x, ∂) ≥ d(y, ∂). Let z ∈ ∂ be such that
d(y, ∂) = d(y, z) (it is guaranteed to exist since ∂ is a closed set). Then by definition of d(x, ∂) we
have d(x, z) ≥ d(x, ∂). So:

|f(x)− f(y)| = |d(x, ∂)− d(y, ∂)| ≤ d(x, z)− d(y, z) ≤ d(x, y). (15)

The cases d(x, B̄) < d(x, Ā) and d(y, B̄) < d(y, Ā) are identical. Now consider the case d(x, B̄) <
d(x, Ā) and d(y, B̄) ≥ d(y, Ā). Then we have |f(x)− f(y)| = d(x, ∂) + d(y, ∂). We will proceed

18

by contradiction. Such complicated reasoning is superfluous for (Rn, ‖ · ‖2), but has the appealing
property to generalize to any Banach space. Assume that d(x, ∂) + d(y, ∂) > d(x, y). Let R > 0 be
such that R < d(x, ∂) and R+ d(y, ∂) > d(x, y). Let:

z = x+
R

d(x, y)
(x− y).

Then we have d(x, z) = ‖ R
d(x,y) (x− y)‖ = R

d(x,y)d(x, y) = R < d(x, ∂). So by definition of ∂ we
have d(z, B̄) < d(z, Ā). But we also have:

d(y, z) = ‖(x− y) +
R

d(x, y)
(x− y)‖ = |1− R

d(x, y)
| × ‖x− y‖

= |d(x, y)−R| < |d(y, ∂)| using the hypothesis on R.
. (16)

So we have d(z, B̄) ≥ d(z, Ā) which is a contradiction. Consequently, we must have d(x, ∂) +
d(y, ∂) ≤ d(x, y). The function f is indeed 1-Lipschitz.

Now, we will prove that ‖∇xf‖ = 1 everywhere it is defined. Let x be such that y ∈
arg miny∈∂ d(x, y) is unique. Consider h = ε (y−x)

‖y−x‖ with 1 ≥ ε > 0 a small positive real. We
have d(x, x+ h) = ε, it follows by triangular inequality that d(x+ h, ∂) = d(x, ∂)− ε. We see that:

lim
ε→+∞

f(x+ h)− f(x)

‖h‖
= −1.

The vector u = −∇xf is the (unique) vector for which 〈u, f(x+h)−f(x)
‖h‖ 〉 is minimal. Knowing that

f is 1-Lipschitz yields that ‖∇xf‖ = 1. For points x for which arg miny∈∂ d(x, y) is not unique,
the gradient is not defined because different directions minimize 〈u, f(x+h)−f(x)

‖h‖ 〉 which contradicts
the uniqueness of gradient vector. The number of points for which y ∈ arg miny∈∂ d(x, y) is not
unique must have null measure, since Lipschitz functions are almost everywhere differentiable (by
Rademacher’s Theorem).

Finally, note that signf(x) = c(x) on Ā and B̄. Indeed, in this case either d(x, B̄) < d(x, Ā) either
d(x, B̄) > d(x, Ā) and the result is straightforward.

A.2 Multiclass case

The label set is now Y = {1, 2, . . . ,K}. In practice we use one-hot encoded vectors to compute the
loss, by taking the arg maxk over a vector of RK .
Proposition 8 (Lipschitz Multiclass classification). For any multiclass classifier c : X → Y with
closed pre-images there exists a 1-Lipschitz function f : Rn → RK such that arg maxk fk(x) = c(x)
on X and such that ‖Jxf‖ = 1 almost everywhere (w.r.t Lebesgue measure).

For the case K > 2 we must slightly change the definition to prove Proposition 8.
Definition 7 (Multiclass Signed Distance Function)
Let c : X → {1, 2, . . .K} be any classifier with closed pre-images. Let Āk = c−1({k}). Let
∂ = {x ∈ Rn|∃k 6= l, d(x, Āk) = d(x, Āl) = arg minm d(x, Ām)}. We define f : Rn → Rk as
follow:

fk(x) =

{
d(x, ∂) if d(x, Āk) < d(x, Āl) for all l 6= k,

0 otherwise.
(17)

In overall the proof remains the same.

Proof. We start by proving that f is 1-Lipschitz.

We need to prove that ‖f(x)−f(y)‖p ≤ ‖x−y‖ for any p-norm on RK with p ≥ 1. First, consider the
case fk(x) = fk(y) 6= 0. Then ‖f(x)− f(y)‖p = |fk(x)− fk(y)| = |d(x, ∂)− d(y, ∂)| ≤ ‖x− y‖
using the proof of Proposition 1. Now, consider the case fk(x) > 0, fl(y) > 0 and k 6= l. Then:

‖f(x)− f(y)‖p = p

√
fpk (x) + fpl (y) ≤ |fk(x)|+ |f l(y)| = d(x, ∂) + d(y, ∂). (18)

19

Using the same technique as in the previous proof, if we assume d(x, ∂) + d(y, ∂) > d(x, y) then
we can construct z verifying both fk(z) < fl(z) and fl(z) < fk(z) which is a contradiction.
Consequently d(x, ∂) + d(y, ∂) ≤ d(x, y).

Each row of Jxf is either full of zeros, or the gradient of some fk on which the reasoning of the case
K = 2 applies (like in the previous proof). In this case, the spectral norm Jxf is equal to the norm of
the gradient of the non zero row. We conclude similarly that ‖Jxf‖ = 1 everywhere it is defined.

Finally, note that arg maxk fk(x) is equal to c(x) everywhere c is defined, which concludes the
proof.

With this proposition in mind, we can deduce Corollary 3.

Corollary 3 (LipNet1 is as powerful as AllNet for classification). For any neural network f : Rn →
R there exists 1-Lipschitz neural network f̃ : Rn → R such that sign(f(x)) = sign(f̃(x)).

Proof. The proof sketched in Introduction is sufficient to show that LipNet1 networks and uncon-
strained ones have the same decision frontiers. We could have also taken a more convoluted path:
take the classifier c associated to an AllNet network, consider the restriction to a subset X of the
input space making the pre-images separated. Then we can apply Proposition 1 to get a 1-Lipschitz
function with the same classification power, and finally approximate those functions (in the sense of
uniform convergence) with LipNet1 network.

Corollary 1. Separable classes implies zero error. If P and Q are ε-separated, then there exists a
network f ∈ LipNet1 such that error E(sign ◦ f) := E(x,y)∼PXY [1{sign(f(x)) 6= y}] = 0.

Proof. If classes are separable the optimal Bayes classifier b achieves zero error. Moreover, the
topological closure b−1({y}), y ∈ Y yields a set of closed sets that are all disjoints (since ε > 0) and
on which Proposition 8 can be applied, yielding a LipNet1 neural network with the wanted properties.

Bonus: non separable case. We can also handle the case of non separable classes by imitating
the optimal Baye classifier c. We take X a subset of the input space on which the pre-images of
c are closed. The application of Proposition 1 for optimal Bayes classifier gives us a 1-Lipschitz
function f with same decision frontier as c. Finally, we can use the universal approximation theorem
of Anil and all. in [11] to conclude there exists LipNet1 network that can approximate arbitrary well
the function f , and hence approximate arbitrarily well the classifier c on X . Outside X , the error is
not controlled but depends of the volume of the set (supp PX)/X whose Lebesgue measure can be
made arbitrary small (by taking X big enough). As PX admits a pdf w.r.t Lebesgue measure, then
PX((supp PX)/X) can be made arbitrary small, and consequently the risk as well.

Example 1a. We plot the level set of the network f trained from the discretized ground truth (in
400× 400 pixels) of the Signed distance function. The distance to the frontier ∂ is easily computed
since the frontier ∂ is a finite collection of segments (fourth iteration of Von Koch snowflake fractal).
We train a 128) 128) 128) 128) 128 LipNet1 network. The network is trained with Mean Square
Error (MSE) and the criterion used to stop training is the Mean Absolute Error (MAE).

A.3 Proofs of Section 3.2

Proposition 2. BCE minimization for 1-Lipschitz functions. Let X ⊂ Rn be a compact and
τ > 0. Then the infimum in Equation 2 is a minimum, denoted fτ ∈ Lip1(X ,R):

fτ ∈ arg inf
f∈Lip1(X ,R)

E(x,y)∼PXY [Lbceτ (f(x), y)]. (2)

Moreover, the LipNet1 networks will not suffer of vanishing gradient of the loss (see Appendix F).

The proof of Proposition 2 is an application of Arzelà–Ascoli theorem.

Proof. Let E(f) = E(x,y)∼PXY [L(f(x), y)]. Consider a sequence of functions f t in LipL(X ,R)
such that lim

t→∞
E(ft) = inff∈LipL(X ,R) E(f) = E∗.

20

Consider the sequence ut = ‖ft‖∞. We want to prove that (ut)t∈N is bounded. Proceed by
contradiction and observe that if lim sup

t→∞
ut = +∞ then lim sup

t→∞
E(ft) = +∞. Indeed, for ‖ft‖∞ ≥

2Ldiam X we can guarantee that signft is constant over X and in this case one of the two classes y
is misclassified, knowing that lim

f(x)→∞
L(−yf(x), y) = O(f(x)) → +∞ yields the desired result.

But if lim sup
t→∞

E(ft) = +∞, then E(ft) cannot not converges to E∗. Consequently, ut must be upper

bounded by some M .

Hence the sequence ft is uniformly bounded. Moreover each function ft is L-Lipschitz so the
sequence ft is uniformly equicontinuous. By applying Arzelà–Ascoli theorem we deduce that it
exists a subsequence fφ(t) (where φ : N→ N is strictly increasing) that converges uniformly to some
f∗, and f∗ ∈ LipL(X ,R). As E(f∗) = E∗, the infimum is indeed a minimum.

The upper bound on Lip(f) is turned into a lower bound on ‖∇θL(fθ∗L (x), y)‖ (no element-wise
vanishing gradient), but its average ‖∇θE(x,y)∼PXY [L((fθ∗L (x), y)]‖ = 0 is null (see Appendix F).

B Proofs of Section 4

We recall below the definition of the Signed Distance Function (SDF) associated to a classifier.
Definition 6
Signed Distance Function associated to decision boundary. Let c : X → {−1,+1} be any
classifier with closed pre-images. Let Ā = {x ∈ Rn|c(x) = +1} and B̄ = {x ∈ Rn|c(x) = −1} =
X \ Ā. Let d(x, y) = ‖x− y‖ and d(x, S) = miny∈S d(x, y) be the distance to a closed set S. Let
∂ = {x ∈ Rn|d(x, Ā) = d(x, B̄)}. We define f : Rn → R as follow:

f(x) =

{
d(x, ∂) if d(x, B̄) ≥ d(x, Ā)

−d(x, ∂) if d(x, B̄) < d(x, Ā).
(14)

We denote by SDF(c) the function f .

In proof of Corollary 2 we use the Bayes classifier b : X → Y associated to the classification task
between P and Q.
Corollary 2. For the SDF(b), the bound of Property 1 is tight: ε = |f(x)|. In particular δ =
−f(x)∇xf(x) is guaranteed to be an adversarial attack. The risk is the smallest possible. There is
no classifier with the same risk and better certificates. Said otherwise the SDF(b) is the solution to:

max
f∈Lip1(Rn,R)

min
x∈X

min
δ∈Rn

sign(f(x+δ)) 6=sign(f(x))

‖δ‖,

under the constraint f ∈ arg min
g∈Lip1(Rn,R)

E(sign ◦ g).
(3)

Proof. Those properties hold by construction. The risk R(sign(f)) is minimal since f is build
with the optimal Bayes classifier. Note that, in general, for any classifier c : X → Y the bound of
Property 1 is tight by construction for SDF(c). Indeed f(x) is the distance to the frontier, and the
direction is given by∇xf(x).

For the proof of Proposition 2 we recall below the definition of Wasserstein-1 distance, as found
in [30] (Definition 6.1).
Definition 8 (Wasserstein-1 distance)
Let d : Rn ×Rn → R be a metric. For any two measures P and Q on Rn the Wasserstein-1 distance
is defined by the following formula:

W1(P,Q) := inf
π∈Π(P,Q)

∫
Rn
d(x, y)dπ(x, y)

where Π(P,Q) denote the set of measures on Rn × Rn whose marginals are P and Q respectively.
Equivalently we can write:

W1(P,Q) := inf
Law(X)=P
Law(Y)=Q

E[d(X,Y)].

21

In our case we are working with neural networks that are Lipschitz with respect to l2 distance, so we
have d(x, y) := ‖x− y‖2.
Property 2. Wasserstein classifiers (i.e WGAN discriminators) are optimally robust. The mini-
mum of LW (f(x), y) over P and Q is the Wasserstein-1 distance [30] between P and Q according
to the Kantorovich-Rubinstein duality:

max
f∈Lip1(X ,R)

R(P,+1)(f) +R(Q,−1)(f) = min
f∈Lip1(Rn,R)

EPXY [LW (f(x), y)] =W1(P,Q). (5)

Proof. The result is straightforward by writing the dual formulation (following Kantorovich-
Rubinstein) of WassersteinW1 metric.

By Remark 6.3 of [30] the Wasserstein-1 distance is the Kantorovich-Rubinstein distance:

W1(P,Q) = sup
f∈Lip1(X ,R)

Ex∼P [f(x)] + Ez∼Q[f(z)]

We see that:

W1(P,Q) = sup
f∈Lip1(X ,R)

Ex∼P [f(x)]− Ez∼Q[f(z)]

= inf
f∈Lip1(X ,R)

Ex∼P [−f(x)] + Ez∼Q[−(−f(z))]

= inf
f∈Lip1(X ,R)

E(x,y)∼PXY [LW (f(x), y)].

(19)

By Kirszbraun’s theorem the optimum of Equation 19 can be extended into a 1-Lipschitz function
over Rn. This function can, in turn, be approximated by a LipNet1 network over the domain of
interest.

Proposition 3. WGAN discriminators are weak classifiers. For every 1
2 ≥ ε > 0 there exist

distributions P and Q with disjoint supports in R such that for any optimum f of equation 5, the
error of classifier sign ◦ f is superior to 1

2 − ε.

Proof. We will build P and Q as a finite collection of Diracs. Let P = 1
n

∑n
i=1 δ4(i−1) and

Q = 1
n

∑n
i=1 δ4i−1 for some n ∈ N, where δx denotes the Dirac distribution in x ∈ R. A example

is depicted in Figure 6 for n = 20. In dimension one, the optimal transportation plan is easy to
compute: each atom of mass from P at position i is matched with the corresponding one in Q to its
immediate right. Consequently we must have f(4i− 1) = f(4(i− 1)) + 3. The function f is not
uniquely defined on segments [4i− 1, 4i] but it does not matter: since f is 1-Lipschitz we must have
|f(4i−1)−f(4i)| ≤ 1. Consequently in every case for i < j we must have f(4(i−1)) < f(4(j−1))
and f(4i− 1) < f(4j − 1). Said otherwise, f is strictly increasing on supp P and supp Q.

The solutions of the problems are invariant by translations: if f is the solution, then f − T with
T ∈ R is also a solution. Let’s take a look at classifier c(x) = sign(f(x)− T). If T is chosen such
that f(4(i − 1)) − T < 0 and f(4i − 1) − T > 0 for some 1 ≤ i ≤ n then (n − 1) + 2 = n + 1
points are correctly classified on a total of 2n points. It corresponds to an error of n−1

2n = 1
2 −

1
2n .

Take n = d 1
2εe to conclude.

C Proofs of Section 5

C.1 Consistency of Lipschitz estimators

Proposition 4. Train Loss is a proxy of Test Loss. Let PXY a probability measure on X × Y
where X ⊂ Rn is a bounded set. Let (xi, yi)1≤i≤p be a sample of p iid random variables with law
PXY . Let L be a Lipschitz loss function over R× Y . We define:

Ep(f) :=
1

p

p∑
i=1

L(f(xi), yi) and E∞(f) := E(x,y)∼PXY [L(f(x), y)]. (7)

22

Figure 6: Pathological distributions P and Q of 20 points each, on which the accuracy of the
Wasserstein minimizer cannot be better than 52.5%.

Then the empirical loss Ep(f) converges to the test loss E∞(f) (taking the limit p→∞):

min
f∈LipL(X ,R)

Ep(f)
a.s−−→ min

f∈LipL(X ,R)
E∞(f). (8)

Proof of Theorem 4 is an application of Glivenko-Cantelli theorem.

Proof. We proved in Proposition 2 that the minimum of equation 2 is attained, so we replace inf
by min for the Lipschitz loss function L. We restrict ourselves to a subset of LipL(X ,R) on which
‖f‖∞ ≤ 2Ldiam X because the minimum lies in this subspace. We have:

|min
f
Ep(f)−min

f
E∞(f)| ≤ max

f
|Ep(f)− E∞(f)|.

Let gy(x) = L(f(x), y). Note that g is also Lipschitz and bounded on X . The entropy with
bracket (see [79], Chapter 2.1) of the class of functions G = {gy = L ◦ f |f ∈ LipL(X ,R), y ∈
Y,X bounded and ‖f‖∞ ≤ 2Ldiam X} is finite (see [79], Chapter 3.2). Consequently G is
Glivenko-Cantelli. Finally maxf |Ep(f)− E∞(f)| a.s−−→ 0 which concludes the proof.

Results of Table 1. Loss Lhkrm,λ still belong to Glivenko-Cantelli classes as sum of functions LW and
LHm from Glivenko-Cantelli classes (on same distribution PX).

C.2 Proofs of Section 5.2

Proposition 5. Optimizing BCE over AllNet leads to divergence. Let ft be a sequence of neural
networks, that minimizes the BCE over a non-trivial training set (at least two different examples with
different labels) of size p, i.e assume that:

lim
t→∞

1

p

p∑
i=1

Lτ (ft(xi), yi) = 0. (9)

Let Lt be the Lipschitz constant of ft. Then limt→∞ Lt = +∞. There is at least one weight matrix
W such that limt→∞ ‖Wt‖ = +∞. Furthermore, the predicted probabilities are saturated:

lim
t→∞

σ(ft(xi)) ∈ {0, 1}. (10)

The proof of Proposition 5 only requires to take a look at the logits of two examples having different
labels.

Proof. Let t ∈ N. For the pair i, j, as yi 6= yj , by positivity of L we must have:

0 ≤ L(ft(xi),+1) + L(ft(xj),−1) ≤ E(ft, X). (20)

23

As the right hand side has limit zero, we have:

lim
t→∞

L(ft(xi),+1) = lim
t→∞

L(ft(xj),−1) = 0

=⇒ lim
t→∞

−ft(xi) = lim
t→∞

ft(xj) = −∞.
(21)

Consequently limt→∞ |ft(xi)−ft(xj)| = +∞. By definition Lt ≥ |ft(xi)−ft(xj)|‖xi−xj‖ so limt→∞ Lt =

+∞.

We can always find a network reaching arbitrary small loss on the train set, and arbitrary high loss on
the test set. Hence, minimization of train loss does not guarantee generalization.
Proposition 9 (AllNet networks can always overfit). Assume that distributions P and Q admit a pdf.
Let n ∈ N, M > 0 and ε > 0. Let (xi, yi)1≤i≤p be a sample of p iid random variables with law
PXY with xi 6= xj for all i 6= j. Then there exists f∗ ∈ AllNet such that:

f∗ ∈ {f ∈ AllNet |Ep(f) =
1

n

n∑
i=1

LT (f(xi), yi) ≤ ε}

and
E∞(f∗) = E(x,y)∼PXY [LT (f∗(x), y)] ≥M.

Proof. The proof follows the strategy of Proposition 5. Let d = min1≤i,j≤n
i6=j

‖xi − xj‖ the minimum

distance between dataset points. We extend the dataset with a new point (xn+1, y = 1)) chosen such
that ‖xj−xn+1‖ ≥ δ

2 for all 1 ≤ j ≤ n. Then we transform this collections of n+1 Diracs functions∑n+1
i=1

1
n+1δxi into a a distribution P that admits a pdf by replacing each Dirac with the uniform

distribution over the ball of radius r = d
6 which yields P =

∑n+1
i=1

1
n+1U(B(xi, r)). All the balls are

disjoint so it exists f ∈ AllNet such that signf(xi) = yi for all 1 ≤ i ≤ n and signf(xn+1) = −1.
Now let |f(xi)| → ∞ to guarantee that Ep(f)→ 0 and E∞(f)→∞.

Fortunately, as soon as the deep learning practitioner restricts itself to a subset of architectures
of bounded size, the Proposition 9 is no longer relevant. However, this theorem suggests that if
one wants to benefit from useful generalization guarantees, one must keep the architecture of the
network fixed once for all while increasing the training set size. This contradicts the trend in deep
learning community to use bigger and bigger models when more data becomes available (Resnet-152,
GPT3). In the light of this observation, the existence of adversarial attacks should be an expected
phenomenon.

Lipschitz networks, on the other side, benefit from Proposition 4: minimization of train loss implies
minimization of test loss. Conversely, if the test loss is high and the sample size huge, it means that
the train loss is high too.

C.3 VC dimension for Lipschitz classifiers with margin

We recall below the definition of the Vapnik-Chervonenkis dimension [34] of a class of hypothesis,
that build upon shattered sets.
Definition 9 (Set shattered by an hypothesis class)
Let Y = {−1,+1}. Let H be a class of hypothesis - that is, a set of functions X → Y . The set of
points (xi)1≤i≤N ∈ XN is said to be shattered byH if for every sequence of labels (yi)1≤i≤N ∈ YN ,
there exists an hypothesis h ∈ H such that for every 1 ≤ i ≤ N we have h(xi) = yi.
Definition 10 (Vapnik-Chervonenkis dimension)
The VC dimension of H, denoted V Cdim(H), is the greatest integer N ∈ N such that it exists a
sequence of points (xi)1≤i≤N ∈ XN shattered byH.

Roughly speaking, the VC dimension ofH is the size of the biggest set of points such thatH agrees
with any label assignment on this set of points. It measures the capacity of a set of classifiersH to
separate some sets of points. The interest of VC dimension introduced in Definition 10 is its link
with Probably Approximately Correct (PAC) learning [10].

24

Definition 11 (Agnostic Probably Approximately Correct (PAC) learnability)
An hypothesis classH of functions X → Y is PAC learnable if there exists a functionmH : (0, 1)2 →
N and a learning algorithm D 7→ hm such that for every (e, β) ∈ (0, 1)2, for any distribution PXY
on X × Y , for any dataset D = ((x1, y1), (x2, y2), . . . , (xm, ym))

iid∼ PXY of size m ≥ mH(e, β),
we have:

P(EPXY (hm) ≤ min
h∈H

EPXY (h) + e) ≥ 1− β

We denote by EPXY (h) := E(x,y)∼PXY [1{h(x) 6= y}] the empirical risk: the expectation of error
function over PXY .

Roughly speaking, for an agnostic PAC learnable class, the probability to pick the best hypothesis
h∗ ∈ H up to error e > 0 happens with probability at least 1− β > 0 over datasets of size at least
mH(e, β) sampled from distribution PXY . This definition captures the hypothesis classes that are
“small enough” such that a reasonably high number of samples allows you to pick the best hypothesis
by high probability.

The implication “finite VC dimension” =⇒ “agnostic PAC learnable” is a classical result from
[80]. This motivates to compute the VC dimension of Lipschitz classifiers: it yields PAC learnability
results.
Proposition 6. 1-Lipschitz Functions with margin are PAC learnable. Assume P and Q have
bounded support X . Let m > 0 the margin. Let Cm(X) = {cmf : X → {−1,⊥,+1}, f ∈
Lip1(X ,R)} be the hypothesis class defined as follow.

cmf (x) =


+1 if f(x) ≥ m,
−1 if f(x) ≤ −m,
⊥ otherwise, meaning “f doesn’t feel confident”.

(11)

Let B be the unit ball. Then the VC dimension of Cm is finite:

(
1

m
)n
vol(X)

vol(B)
≤ V Cdim(Cm(X)) ≤ (

3

m
)n
vol(X)

vol(B)
. (12)

Proof. This approach with margins m yields objects known in the literature as m-fat shattering
sets [71].

The VC dimension of Cm(X) is the maximum size of a set shattered by Cm(X). As the functions f
are 1-Lipschitz, if cmf (x) = −cmf (y) then f(x) ≥ m, f(y) ≤ m and ‖x− y‖ ≥ 2m. Consequently,
a finite set X ⊂ Xn is shattered by Cm(X) if and only if for all x, y ∈ X we have B(x,m) ∩
B(y,m) = ∅ where B(x,m) is the open ball of center x and radius m.

The maximum number of disjoint balls of radiusm that fit inside X is known as the packing number
of X with radius m. X is bounded, hence its packing number is finite.

The bounds on the packing number are a direct application of [81] (Lemma 1).

C.4 VC dimension for GroupSort networks

With GroupSort2 activation functions (as in the work of [36]) we get the following rough upper
bound:
Proposition 7. VC dimension of LipNet1 neural networks. Let fθ : Rn → R a LipNet1 neural
network with parameters θ ∈ Θ, with GroupSort2 activation functions, and a total of W neurons.
LetH = {signfθ|θ ∈ Θ} the hypothesis class spanned by this architecture. Then we have:

V Cdim(H) = O
(
(n+ 1)2W

)
. (13)

From Proposition 7 we can derive generalization bounds using PAC theory. Note that most results on
VC dimension of neural network use the hypothesis that the activation function is applied element-
wise (such as in [35]) and get asymptotically tighter lower bounds for ReLU case. Such hypothesis
does not apply anymore here, however we believe that this preliminary result can be strengthened. Our
result is actually a bit more general and applies more broadly to activation functions that piece-wise
linear and partition the input space into convex sets.

25

The proof of Proposition 7 uses the number of affine pieces generated by GroupSort2 activation
function, and the VC dimension of piecewise affine classifiers with convex regions.

Proof. First, we need the following lemma.

Lemma 1 (Piecewise affine function). LetH a class of classifiers that are piecewise affine, such that
the pieces form a convex partition of Rn with B pieces (each piece of the partition is a convex set).
Then we have:

V Cdim(H) = O
(
(n+ 1)B2

)
.

The proof of Lemma 1 is detailed below.

Let G(N) be the growth function [82] of H. According to Sauer’s lemma [82] if it grows polyno-
mially with the number of points, then the degree of the polynomial is an upper bound on the VC
dimension. We will show that is indeed the case by computing a crude upper bound of the degree.
Assume that we are given N points, and N big enough such that Sauer’s lemma can be applied.

Assume that we can choose freely the convex partition, and then only the affine classifier inside each
piece. In general for neural networks that might not be the case (the boundary between partitions
depends of the affine functions inside it, since neural networks are continuous); however, we are only
interested in an upper bound so we can consider this generalization.

Each piece of the partition is a polytope [83]. Each polytope is characterized by a set of exactly
B − 1 affine inequalities since each polytope is the intersection of B − 1 halfspaces [83]. The
whole partition is characterized by B(B−1)

2 affine inequalities. We divide by two because of the
symmetry. Hence there exists an injective map from the set of convex partitions with B pieces into
(Rn+1)

B(B−1)
2 . It is not a bijective map in general, since different systems might describe the same

partition, and some degenerate systems do not correspond to partitions at all.

We split the problem and consider each one of the B(B−1)
2 inequalities independently. According to

Sauer’s lemma, there isO(Nn+1) ways to place the first hyperplane characterizing the first halfspace.
Idem for the second hyperplane, and so on. Hence, there is at mostO((Nn+1)

B(B−1)
2) ways to assign

the N points to the B convex bodies.

Each convex body (among the B of them) contains atmost N points, on which (still according to
Sauer’s lemma) there is at most O(Nn+1) way to assign them labels +1 or −1, since the classifier is
piecewise affine.

Consequently, we have G(N) = O((Nn+1)
B(B−1)

2 (Nn+1)B) = O((Nn+1)
B(B+1)

2) =

O((Nn+1)B
2

). Sauer’s lemma allows us to conclude:

V Cdim(H) = O
(
(n+ 1)B2

)
.

Proof of the result. Now, we need to prove that f is piecewise affine and the number of such pieces
is not greater than

∏k
i=1 2

wi
2 =

√
2W , where wi is the number of neurons in layer i. We proceed by

induction on the depth of the neural network. For depth K = 0 we have an affine function Rn → R
which contains only one affine piece by definition (the whole domain), so the result is true.

Now assume that a neural network Rw1 → R of depth K with widths w2w3 . . . wk has Sk affine
pieces. The enumeration starting at w2 is not a mistake: we pursue the induction for a neural network
Rn → R of depth K+ 1 and widths w1w2 . . . wk. The composition of affine function is affine, hence
applying an affine transformation Rn → Rw1 preserves the number of pieces. The analysis falls back
to the number of distinct affine pieces created by GroupSort2 activation function. If such activation
function creates S pieces then we have the immediate bound SK+1 ≤ SSk.

Let (Jf)(x) ∈ Rw1×w1 be the Jacobian of the GroupSort2 operation evaluated in x. The cardinal
|{(Jf)(x), x ∈ Rw1}| is the number of distinct affine pieces. For GroupSort2 we have combinations
of wi2 MinMax gates. Each MinMax gate is defined on R2 and contains two pieces: one on which
the gate behaves like identity and the other one on which the gate behaves like a transposition.
Consequently we have Sk+1 ≤ 2

wk
2 Sk and unrolling the recurrence yields the desired result.

Finally, we just need to apply the Lemma 1 with B =
√

2W .

26

C.5 Generalization bounds literature survey

In [70] a link is established between Lipschitz classifiers and linear large-margin classifiers. Gen-
eralization bounds for large class of Lipschitz classifiers are provided by the work of [71] using
Vapnik–Chervonenkis theory. Other generalization bounds related to spectral normalization can
be found in [72]. Links between adversarial robustness, large margins classifiers and optimization
bias are studied in [75, 73, 74]. The importance of the loss in adversarial robustness is studied
in [76]. In [16], the control of Lipschitz constant and margins is used to guarantee robustness against
attacks. A link between classification and optimal transport is established in [8] by considering a
hinge regularized version of the Kantorovich-Rubinstein dual objective.

D Deel.Lip networks

The theorem 3 of [11] bound the ‖ · ‖2)∞ [12] and ‖ · ‖∞ norms of weight matrices to obtain
universal approximation in Lip1(X ,R) . In practice, they reported that bounding spectral norm
‖ · ‖2 and enforcing orthogonality of rows/columns of weight matrices yielded the best empirical
results, because it turned the network into a Gradient Norm Preserving network. Unfortunately, this
last construction still lacks universal approximation results. Nonetheless, neither [11] nor ourselves
encountered (so far) a function that couldn’t be approximated by those GNP networks.

All the experiments done in the paper use the Deel-Lip3 library [8], following ideas of [11]. The
networks use 1) orthogonal matrices and 2) GroupSort2 activation. Orthogonalization is enforced
using Spectral normalization [14] and Björck algorithm [15]. We have for all i:

GroupSort2(x)2i,2i+1 = [min (x2i, x2i+1),max (x2i, x2i+1)].

The networks parameterized by this library are GNP and belong to LipNet1 by construction.

The implementation of Lipschitz neural networks benefits from a rich literature. We outline below
the most significant results and contributions of literature, that motivated us to use Deel-Lip library.

LipNet1 networks parametrization. The Lipschitz constant of affine layers can be constrained
with a Gradient penalty [37] (WGAN) or spectral regularization [38], without formal guarantee,
only a very crude upper bound. Weight clipping [6] (WGAN), Frobenius normalization [39] and
spectral normalization [14] lead to a tighter upper bound. However, naively stacking such layers
leads to vanishing gradients. Most activation functions are Lipschitz, the popular including ReLU,
sigmoid, tanh, softplus; layers such as Attention are not Lipschitz [40]. Lipschitz recurrent units have
been proposed in [41, 42]. Residual connections are Lipschitz but prone to vanishing gradients (see
Appendix F).

Gradient Norm Preserving networks. In [37], authors show that the potential f of the
Kantorovich-Rubinstein dual transport problem verifies ‖∇xf(x)‖ = 1 almost everywhere on
the support of the distributions PXY .LipNet1 networks fulfilling ‖∇xf(x)‖ = 1 almost everywhere
wrt any intermediate activation x are said to be Gradient Norm Preserving (GNP), and elegantly
avoids the vanishing gradients phenomenon [3, 45]. This is typically achieved in affine layers with
orthogonal matrices, which justify the “orthogonal neural network” terminology [46, 47]. [11] es-
tablish that GNP networks with ReLU are exactly affine functions. They proposed Sorting activation
functions to circumvent this expressiveness issue. In particular GroupSort2 revealed to be an efficient
alternative [36] to ReLU, and can be seen as a particular case of Householder reflections [49, 50].
Other authors tried to fix ReLU itself [43].

Orthogonal kernels are of special interest in the context of normalizing flows [58], ensemble
methods [59], reinforcement learning [60] or graph neural networks [61]. The optimization over
the orthogonal group (known as Stiefel manifold) has been extensively studied in [62], while [63,
64, 64, 65, 66] focus on neural networks retractions like Cayley transform or exponential map;
more recently [67] proposed a landing algorithm, [68] proposed an algorithm inspired by quantum

3https://github.com/deel-ai/deel-lip distributed under MIT License (MIT).

27

https://github.com/deel-ai/deel-lip

computing, and [69] proposed an approach based on graph matching. Orthogonal convolutions are
still an active research area: the constraint is enforced by using appropriate regularization [51, 52],
by expressing convolutions in Fourrier space [53, 54], or by optimizing over the set of orthogonal
convolutions directly [3, 55, 56].

In order to build CNN we used the convolution layers already provided in Deel-Lip. One limitation of
these layers is that it uses the Reshaped Kernel Orthogonalization (RKO) [3] method which, although
it ensures Lipschitz bounds, does not guarantee exact orthogonality.

We also attempted to use Skew Orthogonal Convolutions (SOC, as described in algorithm 1 of [56]).
However, when we performed a sanity-check with the power iteration method, we obtained convolu-
tions with Lipschitz constant greater than 1.

As the method used to build 1-Lipschitz networks does not affect the conclusions of our paper, we
decided to stick with Lipschitz constant provably smaller than one. We did not observe improvements
by using Householder activation functions, so we used GroupSort2 activation functions instead
(which are computationally cheaper).

E Multiclass Hinge Kantorovich Rubinstein

The loss HKR proposed by [8] was originally designed for binary classification. There are several
ways to adapt it to the multi-class K > 2 setting.

The most obvious one would be a one-versus-all scheme. However, in multiclass classification
the prediction is given by arg max fk and not by sign ◦ f , so f−1({0}) is not longer the frontier.
Consequently, this approach fails to yield meaningful certificates.

Instead the construction of HKR loss should once again rely on Multiclass Mean Certificate Robust-
ness (see Definition 12). Indeed, the robustness radius δ for class k verifies:

‖δ‖ ≥ ‖f(x+ δ)− f(x)‖ ≥ 1

2

(
fk(x)−max

i 6=k
fi(x)

)
.

The 1
2 comes from the fact that each fi is 1-Lipschitz, so their difference is 2-Lipschitz at most. This

definition is coherent with the one of multiclass hinge loss found in most frameworks. We compare
the logits of the true class with the ones of the closest other class to weight the certificate positively
or negatively according to the true label.
Definition 12 (Multiclass Mean Certifiable Robustness (MMCR))
For any function f : X → R ∈ LipNet1 we define its weighted multiclass mean certifiable robustness
R(P,y)(f) on class P with label k as:

R(P,y)(f) := Ex∼P [fk(x)−max
i6=k

fi(x)]. (22)

Note that fk(x)− arg maxi 6=k fi(x) is either positive or negative, according to the prediction.

Then we define the Multiclass HKR:
Definition 13 (Multiclass HKR)
For class an example x of label k let:

Rk(x) := fk(x)− arg max
i6=k

fi(x).

We define the multiclass HKR as:

LMλ (f(x), k) := −Rk(x) + αmax (0,m−Rk(x)).

For K = 2 we recover the binary case on the function f̂ = f1− f2. Experiments showed that the one
versus all approach was outperformed by the multiclass HKR, in both robust accuracy and training
time.

All fk functions can be learned independently, however in practice they share the same Lipschitz
backbone and only differ in the last layer, as early experiments showed that it did not impact negatively
the results. Using the same arguments as Proposition 2 based on Arzelà-Ascoli theorem we show that
the minimum of LMλ is well defined and attained for each fk.

28

F Gradient Norm Preserving (GNP) networks

Vanishing and Exploding gradients have been a long-time issue in the training of neural networks.
The latter is usually avoided by regularizing the weights of the networks and using bounded losses,
while the former can be avoided using residual connections (such ideas can found on LSTM [84] or
ResNet [85]). On Gradient Norm Preserving (GNP) networks (orthogonal networks with GroupSort
activation such as the ones of Deel.lip library), we can guarantee the absence of exploding gradient:
Proposition 10 (No exploding gradients [3]). Assume that f = hM ◦ hM−1 ◦ . . . ◦ h2 ◦ h1 is a feed-
forward neural network and that each layer hi is 1-Lipschitz, where hi is either a 1-Lipschitz affine
transformation hi(x) = W ix + Bi either a 1-Lipschitz activation function. Let L : Rk × Y → R
the loss function. Let ỹ = f(x), Hi = hi ◦ hi−1 ◦ . . . ◦ h2 ◦ h1 and H0(x) = x. Then we have:

‖∇W iL(ỹ, y)‖ ≤ ‖∇ỹL(ỹ, y)‖‖Hi−1(x)‖ (23)
‖∇BiL(ỹ, y)‖ ≤ ‖∇ỹL(ỹ, y)‖. (24)

To prove Proposition 10 we just need to write the chain rule.

Proof. The gradient is computed using chain rule. Let θ be any parameter of layer hi. Let hj⊥ be a
dummy variable corresponding to the input of layer hj , which is also the output of layer hj−1. Then
we have:

∇θL(ỹ, y) = ∇ỹL(ỹ, y)M(Jθh
j(Hi−1(x))). (25)

with M =
(∏i+1

j=M Jhj⊥
hj(Hj−1(x))

)
. As the layers of the neural network are all 1-Lipschitz, we

have:
‖Jhj⊥h

j(Hj−1(x))‖ ≤ 1.

Hence we get the following inequality:

‖∇θL(ỹ, y)‖ ≤ ‖∇ỹL(ỹ, y)‖‖Jθhj(Hi−1(x))‖. (26)

Finally, for hi(Hi−1(x)) = W iHi−1(x) + Bi we replace θ by the appropriate parameter which
yields the desired result.

There is still a risk of vanishing gradient, which strongly depends of the loss L. For Lipschitz neural
networks, BCE LT does not suffer from vanishing gradient.
Proposition 11 (No vanishing BCE gradients). Let (xi, yi)1≤i≤p be a non trivial training set (i.e
with more than one class) such that xi ∈ X , X a bounded subset of Rn. Then there exists a constant
K > 0 such that, for every minimizer f∗L of BCE (known to exist thanks to Proposition 2) we have:

f∗L ∈ arg min
f∈LipL(X ,R)

E(x,y)∼PXY [LbceT (f(x), y)]. (27)

And such that for every 1 ≤ i ≤ p we have the following:

| ∂
∂ỹ
LbceT (ỹ = f∗L(xi), yi)| ≥ K. (28)

Note that K only depends of the training set, not f∗L.

Proof. Note that it exists K ′ > 0 such that |f∗L(xi)| ≤ K ′ for all xi and all minimizers f∗L, just like
in the proof of Proposition 2, because otherwise we could exhibit a sequence of minimizers (f∗L)t not
uniformly bounded, which is a contradiction.

Consequently | ∂∂ỹL
bce
T (ỹ = f(xi), yi)| ≥ 1

1+exp (|f(xi)|) ≥
1

1+exp (K′) = K.

It means that a non-null gradient will remain for each training example taken independently, but their
mean over the train set after convergence will be the null vector. Consequently, we must expect high
variance in gradients and oscillations when we get closer to the minimum.

We used VGG-like architectures instead of Resnet because GNP property makes residuals connections
less useful overall (no need for shortcuts when gradient is preserved), and because those residual
connections can actually be harmful:

29

Remark (Residual connections). If f verifies ‖∇xf(x)‖ = 1 almost everywhere, and if g verifies
‖∇xg(x)‖ = 1 almost everywhere, then ‖∇x(1

2f(x) + 1
2g(x))‖ < 1 in general, unless ∇xf(x) =

∇xg(x). Taking f(x) = x we end up with residual connections, for which ensuring ‖∇x(1
2f(x) +

1
2g(x))‖ = 1 almost everywhere is not possible unless f = g.

Remark essentially shows that the set of GNP layers is not stable by sum or other common operations.
This makes their practical implementation and the demonstration of universal approximation theorems
trickier.

G Wasserstein discriminator does not depend of the Lipschitz constant

The dual problem can be reformulated by swapping the objective and the constraint:

arg min
Pf−Qf≥εW(P,Q)

Lip(f) = ε arg min
Pf−Qf≥W(P,Q)

Lip(f)

= ε arg max
Lip(f)=1

Pf −Qf

= arg max
Lip(f)=ε

Pf −Qf.

(29)

ε can be seen as re-scaling (change of units in physicist vocabulary). This makes more clear the
fact that changing the Lipschitz constant is just changing the units used to measure distance. The
invariance by dilation mentioned in Section 4 must be understood in this sense: any constant L can
be chosen for the computation of W1 as long as this constant is chosen in advance and bounded
throughout the optimization process.

H BCE through the lens of OT

In the following, we try to draw links between BCE minimization and optimal transport. Since
the objective function is optimized with gradient descent, the gradients of the loss is the object of
interest. We re-introduce fθ as a function parameterized by θ, mapping the input to the logits. Let
gpθ (x) = σ(fθ(x)) and gqθ(x) = 1− σ(fθ(x)). gpθ (x) (resp. gqθ(x)) are the predicted probabilities of
class +1 (resp. -1).

Now define Zpθ = Ex∼P [gqθ(x)] and Zqθ = Ex∼Q[gpθ (x)]. Zpθ can be seen as the weighted rate of
false negatives. That is, the average mass of probability given to class −1 by fθ when examples are
sampled from class +1. Similarly, Zqθ can be seen as the rate of false positives. Let:

dPθ(x) =
1

Zpθ
gqθ(x) dP (x) and dQθ(x) =

1

Zqθ
gpθ (x) dQ(x). (30)

Consequently, Pθ (resp. Qθ) is a valid probability distribution on Rn corresponding to the probability
of an example x to be incorrectly classified in class −1 (resp. +1). With these notations, the full
expression of the gradient takes a simple form. Behold the minus sign: it is a gradient descent and
not a gradient ascent.

−∇θ (Ex∼P [L(fθ(x),+1)] + Ex∼Q[L(fθ(x),−1)]) = ZpθEx∼Pθ [∇θfθ(x)]−ZqθEx∼Qθ [∇θfθ(x)]
(31)

We apply a bias term T ∈ R to classify with fθ − T instead. For a well-chosen T we can enforce
Zpθ = Zqθ , and such T can be found using the bisection method. The optimization is performed over
the set of 1-Lipschitz functions. We end up with:

Zpθ (Ex∼Pθ [∇θfθ(x)]− Ex∼Qθ [∇θfθ(x)]). (32)

This is the gradient for the computation of Wasserstein metric W between Pθ and Qθ, using
Rubinstein-Kantorovich dual formulation. Hence, binary cross-entropy minimization is similar
to the computation of a transportation plan between errors distributions Pθ and Qθ. Note that Pθ and
Qθ depend of the current classifier fθ − T , so the problem is not stationary.

Finally, observe that Lbceτ (f(x), y) = log 2− yτf(x)
2 +O(τ2f2(x)) so when τ → 0 we get:

min
f∈Lip1(X ,R)

4

τ

(
E(x,y)∼PXY [Lbceτ (f(x), y)]− log 2

)
= −W1(P,Q).

30

parameter value
data augmentation none

input scale [0, 1]
batch size 1000

learning rate 0.001
optimizer Adam

cosine decay 0.01
architecture 1024-1024-100
activation GroupSort2

epochs 250

(a) Learning parameters on
CIFAR-100 with random labels.

loss CCE
τ = 256

HKR
α = 256
m = 36

255
accuracy 0.999 0.998

robust accuracy ε = 36 0.382 0.91
robust accuracy ε = 72 0.021 0.19
lipschitz upper bound 1.002 1.002

(b) Learning results for CIFAR-100 with random labels: validation
accuracy is not reported as its value is always 0.01 for clean accu-
racy and 0.00 for robust accuracy. The Lipschitz upper bound is
computed using the power iteration method on each layer.

Figure 7

In the limit of small temperatures, the Binary Cross-Entropy is essentially equivalent to Wasserstein.
In AllNet networks, as the training proceeds, the Lipschitz constant increases (equivalently increasing
τ) and the loss self-correct with Pθ and Qθ to improve accuracy.

I Fitting CIFAR100 with random labels

This experiment illustrates that constraining the Lipschitz of a network does not affect its expressive
power. To show this we train a constrained network on the CIFAR100 dataset where all labels have
been replaced with random labels, this task is now a widely recognized benchmark to evaluate the
expressiveness of an architecture [86].

The architecture of this network is as simple as possible: two orthogonal dense layers with 1024
neurons are followed by a dense layer which is normalized but not orthogonal. The GroupSort2
activation function is used and biases are enabled.

Hyper parameters for this experiment are listed in table 7a, and results are reported in table 7b.

At first glance it’s might seem surprising to see both high accuracy and high provable robustness
on a dataset with random labels. This is compliant with the idea expresses by the authors of [24]:
for a given accuracy one can increase the robustness radius around a sample x1 up to the value
‖x1−x2

2 ‖ where x2 is the closest sample with a different label. The decision frontier is close to the
decision frontier of the 1-nearest neighbor based on the trained set. This illustrates that constraining
the Lipschitz constant does not necessarily decrease accuracy and does not necessarily increase
robustness. Also, it shows that there is no trivial link between robustness and generalization.

J 1-Lipschitz estimators are consistent (experimental protocol of figure 4)

Lipschitz classifiers are consistent: as the size of the training set increases, the training loss becomes
a proxy for the test loss. However, we do not give convergence speed bounds: we do not know how
many samples are needed for a given task to observe the convergence between train and test losses.
Moreover, the losses are parametrized (e.g by τ, α,m) so we expect to have different convergence
rates, depending on those parameters. In order to observe this empirically on the CIFAR10 dataset,
the same architecture (described in fig 9a) was trained successively on 2%, 5%, 10%, 25%, 50% and
100% of the dataset. The sub-sampling was performed with a different seed each time, showing that,
for this range of τ training is still stable. Similarly, this procedure has been repeated with different
values for τ . Hyper-parameters used for learning are reported in fig 9b. Learning results are reported
in Figure 8. It also shows certifiable accuracy and empirical accuracy, that were not displayed in
the fig 4 from the main paper. We see that lower values for τ yield tighter robustness certificates
(certificate value is close to the distance found by L2-PGD).

31

τ % dataset accuracy certifiable
ε : 36

L2-PGD
ε : 36

certifiable
ε : 72

L2-PGD
ε : 72

certifiable
ε : 108

L2-PGD
ε : 108

8.0 1 0.6279 0.3075 0.525 0.0996 0.462 0.0204 0.388
4.0 1 0.6207 0.4289 0.568 0.2553 0.502 0.1308 0.443
2.0 1 0.5683 0.4456 0.535 0.3298 0.496 0.2313 0.457
1.0 1 0.5097 0.4331 0.482 0.3615 0.436 0.2926 0.404
0.5 1 0.4497 0.398 0.434 0.3478 0.4 0.3035 0.369
0.25 1 0.4064 0.3703 0.395 0.3346 0.373 0.2974 0.351
8.0 0.5 0.5959 0.2862 0.526 0.0973 0.443 0.0218 0.363
4.0 0.5 0.5884 0.3967 0.511 0.2275 0.44 0.1123 0.383
2.0 0.5 0.5569 0.4393 0.503 0.3298 0.463 0.2277 0.419
1.0 0.5 0.5012 0.4235 0.443 0.3525 0.403 0.2875 0.366
0.5 0.5 0.4486 0.3996 0.419 0.3517 0.397 0.3093 0.367
0.25 0.5 0.3928 0.3574 0.373 0.3224 0.352 0.2969 0.331
8.0 0.25 0.5553 0.2801 0.484 0.0987 0.402 0.0252 0.322
4.0 0.25 0.5696 0.3835 0.493 0.2208 0.437 0.112 0.382
2.0 0.25 0.5397 0.4156 0.482 0.299 0.431 0.2059 0.384
1.0 0.25 0.5013 0.4205 0.455 0.345 0.423 0.2779 0.389
0.5 0.25 0.4448 0.3919 0.418 0.3449 0.392 0.2983 0.372
0.25 0.25 0.3939 0.3593 0.359 0.3278 0.348 0.2944 0.327
8.0 0.1 0.4914 0.2617 0.396 0.1133 0.335 0.0396 0.271
4.0 0.1 0.5053 0.3397 0.449 0.2001 0.378 0.1024 0.322
2.0 0.1 0.503 0.3858 0.478 0.2793 0.426 0.1898 0.387
1.0 0.1 0.4783 0.3977 0.428 0.3188 0.391 0.2484 0.355
0.5 0.1 0.4385 0.3824 0.425 0.331 0.401 0.2799 0.383
0.25 0.1 0.3872 0.3517 0.379 0.3168 0.35 0.2874 0.328
8.0 0.05 0.445 0.266 0.406 0.1324 0.337 0.0585 0.264
4.0 0.05 0.4508 0.3052 0.439 0.187 0.374 0.1078 0.309
2.0 0.05 0.4562 0.3444 0.395 0.2478 0.342 0.1723 0.293
1.0 0.05 0.4392 0.3579 0.416 0.2898 0.377 0.2272 0.343
0.5 0.05 0.4176 0.3629 0.396 0.3106 0.365 0.2679 0.326
0.25 0.05 0.3741 0.3379 0.352 0.3028 0.323 0.2707 0.306
8.0 0.02 0.3778 0.2539 0.327 0.159 0.27 0.0922 0.227
4.0 0.02 0.3761 0.2738 0.298 0.1879 0.254 0.1236 0.207
2.0 0.02 0.3859 0.2965 0.325 0.2167 0.278 0.1549 0.236
1.0 0.02 0.385 0.3129 0.35 0.2522 0.312 0.1999 0.273
0.25 0.02 0.3378 0.3021 0.305 0.2684 0.288 0.2375 0.26
0.5 0.02 0.3631 0.3091 0.322 0.2605 0.302 0.2172 0.282

Figure 8: Network trained on different fractions of the CIFAR-10 dataset. For each value of τ and
each dataset fraction, clean accuracy, certifiable and empirical accuracies are reported. We report
accuracy under l2-PGD attack to perform a sanity check of the network’s certificates. Interestingly, a
lower temperature leads to a tighter bound for certifiable robustness (a lower gap between certifiable
robustness and empirical robustness).

network architecture
conv-3x3-32 (groupsort 2)
conv-3x3-32 (groupsort 2)
invertible downsampling

conv-3x3-64 (groupsort 2)
conv-3x3-64 (groupsort 2)
invertible downsampling

conv-3x3-128 (groupsort 2)
conv-3x3-128 (groupsort 2)

flatten
dense-128 (groupsort 2)

dense-101 (None)

(a) Network architecture used in the consistency exper-
iment. It has 1.6M trainable parameters.

parameter value
data augmentation None

input scale [0, 1]
batch size 1000

learning rate 1e-5
optimizer Adam

cosine decay None
epochs 300

(b) Training parameters used in the consistency experi-
ment. No data augmentation has been used, as it would
artificially increase the number of samples in the dataset
and biases the results.

Figure 9

32

(a)

(b)

Figure 10: Pareto front for other robustness metrics: depending on the metric chosen to evaluate
robustness, the shape of the Pareto front is changed. Upper chart shows use the average certificate
value (robustness that does not take into account the true label, only the average value of |f(x)|),
while the lower uses the MCR. The same models are used for these two graphs and Fig 3.

K Controlling the accuracy/robustness tradeoff (experimental protocol of
figure 3)

A small CNN architecture, described more precisely in Figure 11a was trained multiple times with
different losses and different loss parameters. Besides the learning rate, other parameters were
left unchanged, and are depicted in Figure 11b. The learning rate is chosen depending on the loss
parameters: when trained with CCE, changing τ implicitly changes the norm of the gradient, thus
when doubling τ one must divide the learning rate by a factor of two. The same phenomenon occurs
with the α parameter of HKR. We kept m = 20 fixed for HKR, and we tuned α.

For each run the final validation accuracy is reported on x-axis while the provable accuracy at ε = 36
is reported on y axis. The choice of the robustness metric was set to the robust accuracy at ε = 36
because of its wide use in the community. However, other robustness metrics also yield a Pareto
front: two examples are shown in Figures 10a and 10b. In those examples, we also test different
combinations of values for m in HKR.

Note that this Pareto front can also be influenced by other factors: training larger architectures could
improve both accuracy and robustness. Similarly, data augmentation has an impact on accuracy and
robustness, but studying the phenomenon is out of the scope of this paper.

Finally, it is important to note that, the comparison between two architectures (or two robustness
methods) cannot be done properly with a single training (and fixed hyper-parameters): comparing
their Pareto front is more relevant.

33

network architecture
conv-3x3-32 (groupsort 2)
conv-3x3-32 (groupsort 2)

L2 norm pooling 2D
conv-3x3-64 (groupsort 2)
conv-3x3-64 (groupsort 2)
conv-3x3-64 (groupsort 2)

L2 norm pooling 2D
conv-3x3-128 (groupsort 2)
conv-3x3-128 (groupsort 2)
conv-3x3-128 (groupsort 2)
global L2 norm pooling 2D

dense-128 (groupsort 2)
dense-101 (None)

(a) Network architecture used in the
Pareto front experiment. It has 0.4M
trainable parameters.

parameter value
data augmentation

• random flip left right

• random brightness: δ = 0.2

• random contrast: lower=0.75, upper=1.3

• random hue: δ = 0.1

• random saturation: lower=0.8 upper=1.2

• random crop: scale ∈ [0.8, 1.0]

input scale [0, 256]
batch size 512

learning rate [5× 10−2, 1× 10−2, 5× 10−3, 1× 10−3]
optimizer Adam

cosine decay 1e-2
epochs 300

(b) Training parameters used to build the Pareto front between
accuracy and robustness. As the loss parameters implicitly change
gradient norm, learning rate has been changed adequately, ranging
from 5e− 2 (low τ and low α) to 1e− 3 (high τ and high α).

Figure 11

L Hardware

Toy experiments depicted in Fig. 1b, Fig. 1a, Fig. 2 and example 1 were run on a personal workstation
with NVIDIA Geforce 1080 GTX and 8GB VRAM, 16 cores Xeon and 32GB RAM.

Large scales experiments depicted in Fig. 4, Fig.3 were run on Google Cloud with TPU v2-8. For
reference, the experiments with CNNs on CIFAR10 (appendix K), took 4.9s per epoch on average.

Tensorflow framework was used in every experiment but the one of Example 1, where Jax was used
instead (because order2 and float64 experiments are easier to write in this library).

M Divergence of the weights on AllNet networks

In this example, we illustrate that example1 behavior can be observed at larger scale on MNIST with
a ConvNet of AllNet . We used 3× 3 convolution filters of widths 32) 64 with MaxPool and ReLU,
followed by a flattening operation and densely connected layers of widths 256) 10.

Newton’s method cannot be used due to its memory requirements on ConvNet. We tested SGD with
learning rate η = 0.1 and momentum m = 0.9, and Adam with learning rate η = 1e− 3 and other
default parameters. Experiments were run both in float32 and float64 precision. We monitor the
maximum spectral norm of the weights of the network throughout training for each epoch t ∈ N:

Mt = max
i
‖W t

i ‖2.

We reportMt as function of epoch t in Figure 12. The validation accuracy is above 98% after the
first epoch, and fluctuates between 98.5% and 99.5% during the following epochs (in either cases).
Similarly the validation loss fluctuates between 1e− 1 and 1e− 3. We see that on this simple task the
spectral norm of weight matrices continues to grow indefinitely, even though the classifier is almost
perfect after one epoch. Interestingly, on this experiment the vanishing gradient phenomenon cannot
be observed after 25 epochs and the results are robust with respect to the precision of the floating
point arithmetic.

This is compliant with the observations made in the literature about the high Lipschitz constant of
AllNet networks [23]. We observe that Adam makes the problem worse, even if its learning rate is
smaller. This may explain why many practitioners reported that Adam was more susceptible to overfit
than SGD with a carefully tuned learning rate scheduling.

34

Figure 12: Maximum spectral norm of the weights of a simple ConvNet of AllNet trained with
different optimizers on MNIST dataset. The validation accuracy remains above 98.5% after the
second epoch but the network’s weights do not converge: the spectral norm seems to grow indefinitely.

N Stability of training of LipNet1

To check this, we trained different LipNet1 networks, either by tuning the value of temperature τ , or
by tuning the number of filters in convolutional layers. We used Fashion-Mnist dataset.

N.1 Moving along Pareto front by tuning temperature

Figure 13: Schedule for the τ parameter: τ is set to be constant for
200 epochs, followed by a linear increased/decreased by a factor
of 2 for 200 epochs.

In this experiment, we explore
the stability of training with re-
spect to the loss parameter (here
we use CCE with τ). To do
so we perform a scheduling on
τ : each network of the experi-
ment is trained with a fixed τ
for 200 epochs, then τ is in-
creased/decreased linearly by a
factor of 2 for 200 more epochs
(see 13. We train a total of
12 LipNet1 networks with the
same architecture: three blocks
of two convolutions, bias and
group sort are followed by a
Pooling layer (L2NormPooling)
finally followed by a flatten and
a Dense layer (architecture synthesized as c32-c32-P-c64-c64-P-c128-c128-D256). Each training is
performed with the same optimizer (Adam) and the same learning rate (0.001). Each dot in the graph
of Figure 16 corresponds to the metrics of a network after one epoch. The validation accuracy can be
found on x-axis and MCR metric on y-axis.

During the first epochs, the dots can be found inside the region delimited by the Pareto front: the
network has not converged yet, and both Mean Certifiable Robustness and validation accuracy are low.
After few epochs, the dots start to accumulate on the Pareto front. Then, the value of temperature τ is
tuned during the training, from initial τstart to τfinal. Each of the color corresponds to a different value
of Tau. We see that the temperature can be modified during training to move along the Pareto front.

We can get a closer look at the trajectory of two networks, which are reported in fig 15 to better
illustrate this phenomenon. Despite their starting point being different, they end up on a minimum
with the same MCR/accuracy tradeoff. It seems that the position on the Pareto front only depends on
the value of τfinal. Not only the functions are similar at a global scale, but it is also valid at a local
scale: while the two nets are only 77% accurate, they agree on 93% of the validation samples (ie.
they make the same error on the same sample).

35

Figure 14: Learning curves on Fashion-Mnist: 12 LipNet1 networks are trained using the schedule
depicted in fig 13 with respectively τinit ∈ [0.25, 0.5, 1, 2, 4, 8]. At each epoch accuracy (x axis) and
MCR (y axis) are reported.

model model1 model2
τi 1.0 4.0
τf 2.0 2.0

accuracy (train) 0.7838 0.7793
coincidence (train) 0.9421

accuracy (val) 0.7754 0.7724
coincidence (val) 0.9350

coincidence (random) 0.9937

Figure 15: two LipNet1 networks with different initial-
ization and learning curriculum learns similar function
as long as the τ is the same at the end. Although these
models only have 69% accuracy, their predictions match
on 92% of the test set samples.

Observe that all dots tend to accumulate on
the Pareto front, even though they are 12
different networks being trained. It sug-
gests that this method is stable with re-
spect to the input seed. Some of the net-
works trained with high τstart (for example
τstart = 8 and τfinal = 16) seem to “lag be-
hind”: empirically we observe that more
epochs are required to make the network
converge. Hence, the speed at which τ is
modified must be scaled appropriately to
ensure that the best Pareto front is recov-
ered.

This experiment also suggests that a cur-
riculum can be a satisfying approach to
tune τ : an expensive grid search over τ
could be replaced by a single training with a scheduler placed on τ .

N.2 Shifting Pareto front by tuning architecture

In this experiment we explore an important question: what happens when the architecture is changed?
To explore this we perform the same experiment as N, but with smaller and larger architectures: the

36

Figure 16: MCR/accuracy tradeoff on the validation set of Fashion-Mnist: 12 LipNet1 networks
are trained using the schedule depicted in fig 13 with respectively τinit ∈ [0.25, 0.5, 1, 2, 4, 8]. At
each epoch accuracy (x axis) and MCR (y axis) are reported. The Pareto front is still apparent: the
MCR/accuracy tradeoff only depends on τ and not on the initialization.

Figure 17: MCR/accuracy tradeoff on Fashion-Mnist for LipNet1 when architecture size
changes: At each epoch, validation accuracy and MCR are reported. The networks are trained
following a scheduling for τ as described in Figure 13. We see that larger networks are more
expressive, and the Pareto front is shifted toward higher accuracy and higher robustness.

architectures are denoted by the number of filters in their first convolutions (filter of other block
are adjusted accordingly by doubling the number of filter of the previous block). It shows how the
expressiveness of the architectures affects the Pareto front. We report the results in Figure 17.

The validation accuracy can be found on x-axis and the MCR on y-axis. Each dot corresponds to an
epoch/a network. Different colors correspond to different architecture widths.

As expected, larger networks are more expressive, and as a result, the Pareto front is shifted to-
ward higher accuracy and higher robustness. This observation holds for every scheduling τ . The
MCR/accuracy is also architecture dependent.

37

