
A (Near) Tightness of stochastic oracle complexity bounds for the sharp case

In this section, we briefly discuss lower bound reductions which imply that our results for Lipschitz
sharp setups are unimprovable in terms of the dependence on ✏. To keep the discussion simple, we
only focus on the ✏ dependence here and unconstrained settings. The near-optimality of our bounds is
implied by the known lower bound for the optimality gap in L-smooth µ-strongly convex stochastic
optimization, which is of the order ⌦(�

2

µ✏ ) in the high noise �2 or low error ✏ regimes; see, for example,
the discussion in [19] (the omitted part of the lower bound comes from the deterministic complexity
of smooth strongly convex optimization and is less interesting in our context). The same lower bound
implies a lower bound of ⌦(�

2

✏2 ) for minimizing the gradient of a smooth strongly convex function
f . Suppose not (for the purpose of contradiction); i.e., suppose that there were an algorithm that
constructs a point x with E[krf(x)k2]  ✏̄

2 in o(�
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✏̄2 ) oracle queries to the stochastic gradient. By
µ-strong convexity of f, this would imply that we get E[f(x)�minu f(u)]  1

2µE[krf(x)k2]  ✏̄2
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with o(�
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✏̄2 ) oracle queries to the stochastic gradient. Setting ✏̄ =
p
✏µ, we get that this would imply

oracle complexity o(�
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µ✏ ), and we reach a contradiction on the lower bound for the optimality gap.

Hence, ⌦(�
2

✏2 ) lower bound applies to the minimization of the gradient of smooth strongly convex
functions in stochastic regimes. Observe that the gradients of smooth strongly convex functions
are Lipschitz and strongly monotone (thus also sharp), so a lower bound for this problem class
implies a lower bound for the class of sharp Lipschitz monotone inclusion problems. Thus, we can
conclude that our result from Section 5 for sharp Lipschitz monotone inclusion problems that gives
O

⇣
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⌘
stochastic oracle complexity is near-optimal in terms of

the dependence on � and ✏ (but suboptimal in terms of the dependence on the remaining problem
parameters, due to [7, 34]).

B Omitted proofs from Section 2

Lemma 2.1. Let F be a monotone operator accessed via stochastic queries bF , under Assumptions 1–
3. Then, the variance of eF defined by Eq. (2.1) satisfies the following recursive bound: for all k � 1,
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where Fk�1 = �({ eF (uj)}jk�1) is the natural filtration, as defined in Section 2. Note that both
uk�1 2 Fk�1 and uk 2 Fk�1 by the updating scheme considered in this paper, so we have
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(B.1)
Here we use Ez(k) to denote taking expectation with respect to the randomness of random seeds
z
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i.i.d.
⇠ Pz sampled at iteration k.
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where (i) and (ii) can be verified by expanding the square norm and using the assumption that all
z
(k)
i are i.i.d. and bF (x, z(k)i ) is unbiased. Since E[kX � EXk
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So we obtain
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Plugging Inequalities (B.2) and (B.3) into Eq. (B.1), we have
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Taking expectation with respect to all the randomness on both sides, and by the tower property of
conditional expectations, we now obtain
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which leads to the inequality in the lemma when S
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1 are deterministic, thus completing the proof.
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where we use that p1 = 1.

Assume that the result holds for all j < k; then by Lemma 2.1, we have that at iteration k
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Plugging in our choice of pk, S(k)
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where (i) is due to p2
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8 , and (ii) is because k(k+2)  (k+1)2. Hence, by induction,
we can conclude that the result holds for all k � 1.

C Omitted proofs from Section 3

C.1 Unconstrained settings

Our argument for bounding the total number of stochastic queries to F is based on the use of the
following potential function, which was previously used for the deterministic case of Halpern iteration
in [12, 13],
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where {Ak}k�1 and {Bk}k�1 are positive and non-decreasing sequences of real numbers, while the
step size �k is defined by �k := Bk

Ak+Bk
. We start the proof by first justifying that a bound on the

chosen potential function Ck leads to a bound on kF (uk)k in expectation. The proof is a simple
extension of [12, Lemma 4] and is provided for completeness.
Lemma C.1. Given k � 1, let Ck be defined as in Eq. (C.1) and let u⇤ be a solution to the monotone
inclusion problem corresponding to F . If E [Ck]  E [Ek] for some error term Ek, then
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where the expectation is taken with respect to all random queries to F .

Proof. By the definition of Ck, we have
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Since u⇤ is a solution to the monotone inclusion problem, as discussed in Section 2, it is also a weak
VI (or MVI) solution, and thus
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where we use Cauchy-Schwarz inequality for (i), while (ii) holds because ku0 � u⇤
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randomness.

Using Lemma C.1, our goal now is to show that we can provide a bound on E[Ck] by appropriately
choosing the algorithm parameters. In the deterministic setup, it is sufficient to choose Lk = O(L)
and �k = O( 1k ) to ensure that {AkCk}k�1 is monotonically non-increasing, which immediately
leads to Ck 

A1
Ak

C1. In the stochastic setup considered here, we follow the same motivation, but
need to deal with additional error terms caused by the stochastic access to F .

We assume throughout that L is known, and make the following assumption on the choice of {Ak}k�1,
{Bk}k�1, and {Lk}k�1, and provide a corresponding bound on the change of Ck in Lemma C.2.
Assumption 4. {Lk}k�1 is a sequence of positive reals such that Lk � L for all k 2 N. Sequences
{Ak}k�1 and {Bk}k�1 are positive and non-decreasing, satisfying the following for all k � 2:
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Lemma C.2. Let Ck be defined as in Eq. (C.1), where {Ak}k�1 and {Bk}k�1 satisfy Assumption 4.
Let Lk = 2L for all k � 1. Then, for any k � 2, we have
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Since the operator F is cocoercive with parameter 1
L , we have
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Multiplying Ak on both sides and plugging into Ck � Ck�1, we have
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Since by hypothesis Lk = 2L for all k � 1, we have
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where (i) is derived by rearranging and grouping terms. Using that 2 hp, qi � kpk
2
 kqk
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any p, q 2 Rd, we finally obtain
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thus completing the proof.

By Lemma C.2, if we choose Ak = O(k2) and Bk = O(k) satisfying Assumption 4, and take
sufficiently large size of samples queried to ensure that E
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k for k � 0, then
we can obtain O(1/k) expected convergence rate in the norm of the operator by induction. Observe
that we do not need an assumption that eF is an unbiased estimator of F for any point except for the
initial one; all that is needed is that the second moment of the estimation error, kF (uk)� eF (uk)k22,
is bounded.
Theorem 3.1. Given an arbitrary u0 2 Rd

, suppose that iterates uk evolve according to Halpern
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Proof. Observe first that the chosen sequence of numbers Ak, Bk satisfies Assumption 4, and thus
Lemma C.2 applies. Observe further that, by Jensen’s Inequality,
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Further, since the operator F is cocoercive with parameter 1
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where for (i) we use Young’s inequality. Plugging into Eq. (C.3), we obtain that
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Note that A1 = B1 = 2 and L1 = 2L, by Lemma C.1 we have
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2] on both sides and using that (by Jensen’s inequality) E[kF (u1)k] �

E[kF (u1)k
2]
� 1

2 and (by assumption) E[kF (u0)� eF (u0)k2] 
✏2

8 , we have

E[[kF (u1)k
2]  4L ku0 � u⇤

k
�
E[kF (u1)k

2]
� 1

2 +
✏
2

2
,

which is a quadratic inequality in (E[kF (u1)k
2])

1
2 . Bounding the solution to this quadratic inequality

by its larger root, we have

(E[kF (u1)k
2])

1
2  2L ku0 � u⇤

k+
1

2

q
16L2 ku0 � u⇤k

2 + 2✏2

 2L ku0 � u⇤
k+

1

2
(4L ku0 � u⇤

k+
p
2✏)

 4L ku0 � u⇤
k+ ✏

 ⇤0 + ⇤1✏.

This completes the proof for the base case. Moreover, we can get a bound for E[C1] as follows

E[C1] 
1

L
E
h1
2
kF (u1)k

2 + 2
���F (u0)� eF (u0)

���
2 i

(i)


1

2L

⇣
24L2

ku0 � u⇤
k
2 +

3

2
✏
2
⌘
+

2

L

✏
2

8

= 12L ku0 � u⇤
k
2 +

✏
2

L
,

where (i) can be verified by the bound we get above for E[kF (u1)k
2] and by applying Young’s

inequality and that, by assumption, E[kF (u0)� eF (u0)k2] 
✏2

8 .

For the inductive hypothesis, assume that the result holds for all 1  i  k� 1, and consider iteration
k. By Lemma C.2, we have for 8i � 2

Ci � Ci�1 
Ai

2L

���F (ui�1)� eF (ui�1)
���
2
+

Ai �Ai�1

2L

D
F (ui�1), F (ui�1)� eF (ui�1)

E

(i)


5i(i+ 1)

2L

���F (ui�1)� eF (ui�1)
���
2
+

i

8L(i+ 1)
kF (ui�1)k

2
,

where we use Young’s inequality and Ai = i(i+ 1) for (i). Taking expectation with respect to all
randomness on both sides and telescoping from i = 2 to k, we obtain

E[Ck]  E
h
C1 +

kX

i=2

⇣5i(i+ 1)

2L

��F (ui�1)� eF (ui�1)
��2 + i

8L(i+ 1)
kF (ui�1)k

2
⌘i

 E
h kX

i=2

⇣5i(i+ 1)

2L

���F (ui�1)� eF (ui�1)
���
2
+

i

8L(i+ 1)
kF (ui�1)k

2
⌘i

+ 12L ku0 � u⇤
k
2 +

✏
2

L
.

(C.4)
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Using that, by assumption, for k � 1, E[kF (uk)� eF (uk)k2] 
✏2

k , we further have

E
h kX

i=2

5i(i+ 1)

2L

��F (ui�1)� eF (ui�1)
��2
i


kX

i=2

5i(i+ 1)

2L

✏
2

i� 1

(i)


kX

i=2

5(i+ 1)✏2

L

=
5(k + 4)(k � 1)✏2

2L
,

(C.5)

where (i) is because i
i�1  2 for all i � 2. By induction, we have

E
h kX

i=2

i

8L(i+ 1)
kF (ui�1)k

2
i (i)


kX

i=2

1

8L

⇣ 2⇤2
0

(i� 1)2
+ 2⇤2

1✏
2
⌘

(ii)


1

4L

⇣
⇤2
0
⇡
2

6
+ (k � 1)⇤2

1✏
2
⌘

=
1

L

⇣⇤2
0⇡

2

24
+

(k � 1)⇤2
1✏

2

4

⌘
,

(C.6)

where (i) follows from induction and i
i+1  1, and (ii) is due to

Pk
i=2

1
(i�1)2 

P1
i=1

1
i2 = ⇡2

6 .
Combining Eqs. (C.4)–(C.6), we get

E[Ck]  12L ku0 � u⇤
k
2 +

✏
2

L
+

5(k + 4)(k � 1)✏2

2L
+

1

L

⇣⇤2
0⇡

2

24
+

(k � 1)⇤2
1✏

2

4

⌘
.

Applying Lemma C.1 to the bound on Ck from the last inequality, we have

E
⇥
kF (uk)k

2 ⇤


BkLk

Ak
ku0 � u⇤

kE[kF (uk)k]

+
Lk

Ak

⇣
12L ku0 � u⇤

k
2 +

✏
2

L
+

5(k + 4)(k � 1)✏2

2L
+

⇤2
0⇡

2

24L
+

(k � 1)⇤2
1✏

2

4L

⌘

=
2L

k
ku0 � u⇤

kE[kF (uk)k]

+
1

k(k + 1)

⇣
24L2

ku0 � u⇤
k
2 + 2✏2 + 5(k + 4)(k � 1)✏2 +

⇤2
0⇡

2

12
+

(k � 1)⇤2
1✏

2

2

⌘

(i)


2L

k
ku0 � u⇤

kE[kF (uk)k] +
⇣24L2

ku0 � u⇤
k
2

k2
+
⇣
8 +

⇤2
1

2(k + 1)

⌘
✏
2 +

⇤2
0⇡

2

12k2

⌘
,

where (i) is due to 1
k(k+1) 

1
k2 , 5(k+1)(k�1)

k(k+1)  6 and k�1
k(k+1) 

1
k+1 . Since E[kF (uk)k] 

(E[kF (uk)k
2])

1
2 by Jensen’s inequality, we have

E
⇥
kF (uk)k

2 ⇤


2L

k
ku0 � u⇤

k

⇣
E
⇥
kF (uk)k

2 ⇤⌘ 1
2
+
⇣24L2

ku0 � u⇤
k
2

k2
+
⇣
8 +

⇤2
1

2(k + 1)

⌘
✏
2 +

⇤2
0⇡

2

12k2

⌘
,
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which is a quadratic inequality with respect to (E[kF (uk)k
2])

1
2 . Similarly as for k = 1, bounding its

solution by its larger root, we obtain
⇣
E
⇥
kF (uk)k

2 ⇤⌘ 1
2


L

k
ku0 � u⇤

k+
1

2

s
4L2

k2
ku0 � u⇤k

2 + 4
⇣24L2 ku0 � u⇤k

2

k2
+
⇣
8 +

⇤2
1

2(k + 1)

⌘
✏2 +

⇤2
0⇡

2

12k2

⌘

(i)


2L

k
ku0 � u⇤

k+
⇣5L ku0 � u⇤

k

k
+

s

8 +
⇤2
1

2(k + 1)
✏+

⇤0⇡

2
p
3k

⌘

=
7L ku0 � u⇤

k+ ⇤0⇡
2
p
3

k
+

s

8 +
⇤2
1

2(k + 1)
✏

(ii)


⇤0

k
+ ⇤1✏,

where (i) is due to the fact that
pPn

i=1 X
2
i 

Pn
i=1 |Xi|, and (ii) is because of our choice of

⇤0,⇤1. Hence, the result also holds for the case k. Then by induction we know that the result holds
for all k � 1.

Finally, when k �
2⇤0
✏ , we have ⇤0

k  ✏/2. Also, since we have ⇤1 = 4
q

2
3 < 3.5, we obtain

E[kF (uk)k] 
⇣1
2
+ 4

r
2

3

⌘
✏  4✏.

Hence, the total number of iterations needed to attain 4✏ norm of the operator is

N =
l2⇤0

✏

m
= O

⇣
L ku� u⇤

k

✏

⌘
,

thus completing the proof.

Then we provide the deferred proof for Corollary 3.2 on the oracle complexity using a simple
mini-batch estimator.
Corollary 3.2. Under the assumptions of Theorem 3.1, if eF (uk) =

1
Sk

PSk

i=1
bF (uk, z

(k)
i ), where

bF (uk, z
(k)
i ) satisfies Assumption 1 and z

(k)
i

i.i.d.
⇠ Pz , then setting Sk = �2(k+1)

✏2 for all k � 0

guarantees that E[kF (uk)k]  4✏ after at most O
��2L2ku0�u⇤k2

✏4

�
queries to bF .

Proof. The averaged operator from the theorem statement is unbiased, by Assumption 1. Further, as
by Assumption 1, kF (uk)� bF (uk, z

(k)
i )k2  �

2
, it immediately follows that kF (uk)� eF (uk)k2 

�2

Sk
= ✏2

k+1 . Applying Theorem 3.1, the total number of iterations N of Halpern iteration until
E[kF (uN )k]  4✏ is N = O(Lku0�u⇤k

✏ ). To complete the proof, it remains to bound the total
number of oracle queries bF to F, which is simply

PN
k=0 Sk = O

�
N2�2

✏2

�
= O

��2L2ku0�u⇤k2

✏4

�
.

Lemma 3.3. Given an arbitrary initial point u0 2 Rd
, let {uk}k�1 be the sequence of points

produced by Algorithm 1. Assume further that �k = 1
k+1 , Lk = 2L for all k � 0. Then,

kuk � uk�1k
2


(
1

4L2 k
eF (u0)k2 if k = 1,

2k2

L2(k+1)2 k
eF (uk�1)k2 +

Pk�2
i=0

2(i+1)2

k(k+1)2L2 k
eF (ui)k2 if k � 2.

(3.3)

Moreover, if for 1  i  k � 1, all of the following conditions hold (same as in Theo-
rem 3.1): (i) E[kF (ui)k] 

⇤0
i + ⇤1✏, where ⇤0 = 76L ku0 � u⇤

k and ⇤1 = 4
q

2
3 , (ii)

E
⇥��F (ui)� eF (ui)

��2⇤  ✏2

i , and (iii) ✏  ⇤0
k , then E[kuk � uk�1k

2] = O

⇣
ku0�u⇤k2

k2

⌘
.
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Proof. For k = 1, u1 = 1
2u0 +

1
2

�
u0 �

1
L
eF (u0)

�
, which leads to ku1 � u0k

2 =
��� 1

2L
eF (u0)

��2 =
1

4L2

�� eF (u0)
��2. For k � 2, recursively applying Eq. (3.1), we have uk � uk�1 = �k(u0 � uk�1)�

1��k
L
eF (uk�1) = �k(1� �k�1)(u0 � uk�2) +

�k(1��k�1)
L

eF (uk�2)�
1��k
L
eF (uk�1), leading to

uk � uk�1 = �
1� �k

L

eF (uk�1) +
k�2X

i=0

�k

L

⇣ k�1Y

j=i+1

(1� �j)
⌘
eF (ui).

Recalling that �k = 1
k+1 , we have kuk � uk�1k

2 =
���� k

L(k+1)
eF (uk�1) +

Pk�2
i=0

i+1
k(k+1)L

eF (ui)
���
2
,

which gives us Inequality (3.3) by applying a generalized variant of Young’s inequality���
PK

i=1 Xi

���
2

PK

i=1 K kXik
2 twice (first to the sum of � k

L(k+1)
eF (uk�1) and the summation

term, then to the summation term, while noticing that k�1
k  1).

For the second claim, by the lemma assumptions and the analysis in the proof for Theorem 3.1,
we have E[kF (ui)k2] = O(L

2ku0�u⇤k2

i2 ) for i  k � 1  O
�
1
✏

�
, thus E[k eF (ui)k2] 

2E[kF (ui)k]2 + 2E[kF (ui)� eF (ui)k2] = O(L
2ku0�u⇤k2

i2 ). Plugging this bound into Inequal-
ity (3.3), we get E[kuk � uk�1k

2] = O(ku0�u⇤k2

k2 ).

C.2 Constrained setting with a cocoercive operator

To extend the results to possibly constrained settings, similar to [12], we make use of the operator
mapping defined by

G⌘(u) = ⌘

⇣
u�⇧U

�
u�

1

⌘
F (u)

�⌘
, (C.7)

where U ✓ Rd is the closed convex constraint set and ⇧U (u) is the projection operator. Operator G⌘

is a valid proxy for approximating (MI); see [12] for further details.

The extension of our results to constrained stochastic settings is not immediate; the reason is that
the stochastic query assumptions (Assumptions 1 and 2) are made for the operator F , not G⌘.

Nevertheless, as we show in this subsection, it is not hard to match the stochastic oracle complexity
of the unconstrained setups by proving an additional auxiliary result that bounds the variance of an
operator mapping corresponding to eF (Lemma C.4).

We begin by recalling that whenever F is 1
L -cocoercive and ⌘ � L, the operator mapping G⌘ is

3
4⌘ -cocoercive (see, e.g., [12, Proposition 7] and [4, Lemma 10.11]).

Proposition C.3. Let F be 1
L -cocoercive and let G⌘ be defined as in Eq. (C.7), where ⌘ � L. Then

G⌘ is 3
4⌘ -cocoercive.

To state the variant of stochastic Halpern iteration for constrained settings, we also define the operator
mapping corresponding to the stochastic estimate eF by

eG⌘(u) = ⌘

⇣
u�⇧U

�
u�

1

⌘

eF (u)
�⌘

. (C.8)

In the following lemma, we bound the error between the stochastic operator mapping and true operator
mapping by the variance of stochastic queries.

Lemma C.4. Let G⌘(·) and eG⌘(·) be defined as in Eq. (C.7) and Eq. (C.8), respectively. Then, for
any u 2 U and any ⌘ > 0, we have

kG⌘(u)� eG⌘(u)k
2
 kF (u)� eF (u)k2. (C.9)

Proof. By the definition of gradient mapping, we have
���G⌘(u)� eG⌘(u)

���
2
= ⌘

2
���⇧U

⇣
u�

1

⌘
F (u)

⌘
�⇧U

⇣
u�

1

⌘

eF (u)
⌘���

2
.
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Since the projection operator is non-expansive, we obtain
���G⌘(u)� eG⌘(u)

���
2
 ⌘

2
���
⇣
u�

1

⌘
F (u)

⌘
�

⇣
u�

1

⌘

eF (u)
⌘���

2
=
���F (u)� eF (u)

���
2
,

thus completing the proof.

Similar to the unconstrained setup, we define the following stochastic Halpern iteration for the
constrained setup:

uk+1 = �k+1u0 + (1� �k+1)
�
uk � eGLk(uk)/Lk+1

�
, (C.10)

where Lk � L, 8k � 0. By the cocoercivity of the operator mapping and the error bound in
Lemma C.4, we can immediately obtain the results for the iteration complexity and stochastic oracle
complexity as in the unconstrained case, by applying Theorem 3.1 and Corollary 3.4 to GL and eGL.
This is summarized in the following Theorem C.6 and Corollary C.7. To prove these, we make use of
the potential function as in the unconstrained settings

Ck =
Ak

2Lk
kGLk(uk)k

2 +Bk hGLk(uk),uk � u0i , (C.11)

and first bound the change of Ck in the following Lemma C.5. For short, we denote GL as G below.
Lemma C.5. Let Ck be defined as in Eq. (C.11), where Ak and Bk satisfy Assumption 4. Assume
that L is already known and we set Lk = L for any k � 1. Then for any k � 2, we have

Ck � Ck�1 
Ak

L

���G(uk�1)� eG(uk�1)
���
2
+

Ak �Ak�1

2L

D
G(uk�1), G(uk�1)� eG(uk�1)

E
.

Proof. By the definition of Ck, we have

Ck � Ck�1 =
Ak

2Lk
kGLk(uk)k

2 +Bk hGLk(uk),uk � u0i

�
Ak�1

2Lk�1

��GLk�1(uk�1)
��2 �Bk�1

⌦
GLk�1(uk�1),uk�1 � u0

↵
.

Since GLk is cocoercive with parameter 3
4Lk

when Lk � L, we have

hGLk(uk)�GLk(uk�1),uk � uk�1i

�
3

4Lk
kGLk(uk)�GLk(uk�1)k

2

=
1

2Lk

⇣
kGLk(uk)k

2
� 2 hGLk(uk), GLk(uk�1)i+ kGLk(uk�1)k

2
⌘

+
1

4Lk
kGLk(uk)�GLk(uk�1)k

2
.

Multiplying Ak on both sides and rearranging the terms, we obtain
Ak

2Lk
kGLk(uk)k

2


⌧
GLk(uk), Ak(uk � uk�1) +

Ak

Lk
GLk(uk�1)

�

� hGLk(uk�1), Ak(uk � uk�1)i

�
Ak

2Lk
kGLk(uk�1)k

2
�

Ak

4Lk
kGLk(uk)�GLk(uk�1)k

2
.

Plugging this into Ck � Ck�1, we have

Ck � Ck�1 

⌧
GLk(uk), Ak(uk � uk�1) +

Ak

Lk
GLk(uk�1) +Bk(uk � u0)

�

� hGLk(uk�1), Ak(uk � uk�1)i+
⌦
GLk�1(uk�1), Bk�1(uk�1 � u0)

↵

�

⇣
Ak

2Lk
kGLk(uk�1)k

2 +
Ak�1

2Lk�1

��GLk�1(uk�1)
��2
⌘

�
Ak

4Lk
kGLk(uk)�GLk(uk�1)k

2
.
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Since �k = Bk
Ak+Bk

, we have

uk =
Bk

Ak +Bk
u0 +

Ak

Ak +Bk

⇣
uk�1 �

eGLk�1(uk�1)/Lk

⌘
,

which leads to Ak(uk � uk�1) + Ak
Lk

GLk(uk�1) + Bk(uk � u0) = Ak
Lk

⇣
GLk�1(uk�1) �

eGLk�1(uk�1)
⌘

.

Further, as Bk�1

Ak
= Bk

Ak+Bk
by https://www.overleaf.com/project/5fe36b9ad2991b26777b720dAssumption

4, we have

hGLk(uk�1), Ak(uk � uk�1) +Bk�1(uk�1 � u0)i

= Ak

⌧
GLk(uk�1),uk � uk�1 +

Bk�1

Ak
(uk�1 � u0)

�

= Ak

⌧
GLk(uk�1),uk �

Ak

Ak +Bk
uk�1 �

Bk

Ak +Bk
u0

�

= Ak

⌧
GLk(uk�1),�

Ak

Ak +Bk

eGLk�1(uk�1)/Lk

�
.

Moreover, by Assumption 4, we have 1
Lk

(1� 2Bk
Ak+Bk

) = Ak�1

AkLk�1
, so we obtain

hGLk(uk�1), Ak(uk � uk�1) +Bk�1(uk�1 � u0)i

= Ak

⌧
GLk(uk�1),�

Ak

Ak +Bk

eGLk�1(uk�1)/Lk

�

= �
1

2

⌧
GLk(uk�1),

⇣
Ak

Lk
+

Ak�1

Lk�1

⌘
eGLk�1(uk�1)

�
.

Having Lk = L and denoting GL = G for short, we have

Ck � Ck�1 

⌧
G(uk),

Ak

L

⇣
G(uk�1)� eG(uk�1)

⌘�
+

⌧
G(uk�1),

Ak +Ak�1

2L
eG(uk�1)

�

�
Ak +Ak�1

2L
kG(uk�1)k

2
�

Ak

4L
kG(uk)�G(uk�1)k

2

=
Ak

L

D
G(uk), G(uk�1)� eG(uk�1)

E
�

Ak

4L
kG(uk)�G(uk�1)k

2

�
Ak +Ak�1

2L

D
G(uk�1), G(uk�1)� eG(uk�1)

E

=
Ak

L

D
G(uk)�G(uk�1), G(uk�1)� eG(uk�1)

E
�

Ak

4L
kG(uk)�G(uk�1)k

2

+
Ak �Ak�1

2L

D
G(uk�1), G(uk�1)� eG(uk�1)

E
.

Since 2 hp, qi+ kpk
2
 kqk

2 for any p, q 2 Rd, we have

Ck � Ck�1 
Ak

L

���G(uk�1)� eG(uk�1)
���
2
+

Ak �Ak�1

2L

D
G(uk�1), G(uk�1)� eG(uk�1)

E
,

thus completing the proof.

Theorem C.6. Given an arbitrary u0 2 Rd
, suppose that iterates uk evolve according to Halpern

iteration for the constrained setup from Eq. (C.10) for k � 1, where Lk = L and �k = 1
k+1 . Given

✏ > 0, if we have that E[kF (u0)� eF (u0)k2] 
✏2

8 and E
⇥��F (uk)� eF (uk)

��2⇤  ✏2

k for all k � 1,
then for all k � 1,

E[kG(uk))k] 
⇤0

k
+ ⇤1✏, (C.12)

where ⇤0 = 20L ku0 � u⇤
k and ⇤1 =

p
13. As a result, stochastic Halpern iteration from Eq. (3.1)

returns a point uk such that E[kG(uk)k]  5✏ after at most N = d
2⇤0
✏ e = O

�Lku0�u⇤k
✏

�
iterations.
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Proof. First note that since U is convex and closed, and uk � eG(uk)/L = ⇧U

⇣
uk �

1
L
eF (uk)

⌘
,

then we have for 8k > 0.

uk+1 = �k+1u0 + (1� �k+1)
⇣
uk � eG(uk)/L

⌘

= �k+1u0 + (1� �k+1)⇧U

⇣
uk �

1

L

eF (uk)
⌘
2 U .

Then we come to prove the convergence. By Jensen’s Inequality, we have for k � 1

E[kG(uk))k] 
⇣
E[kG(uk)k

2]
⌘ 1

2
.

So it suffices to show that there exists ⇤0 and ⇤1 such that for all k � 1
⇣
E[kG(uk)k

2]
⌘ 1

2


⇤0

k
+ ⇤1✏.

We prove it by induction. First, we consider the basis case k = 1 in which u1 = u0 �
1
2L
eG(u0),

so we have C1 = 1
L kG(u1)k

2 + 2 hG(u1),u1 � u0i =
1
L

⇣
kG(u1)k

2
�

D
G(u1), eG(u0)

E⌘
. Also,

since the operator G is cocoercive with parameter 3
4L , thus cocoercive with 1

2L , we have

kG(u1)�G(u0)k
2
 2L hG(u1)�G(u0),u1 � u0i =

D
G(u1)�G(u0),� eG(u0)

E
.

Expanding and rearranging the terms, we have

kG(u1)k
2


D
G(u0), eG(u0)�G(u0)

E
+ 2 hG(u1), G(u0)i �

D
G(u1), eG(u0)

E
.

Subtracting
D
G(u1), eG(u0)

E
and taking expectation with respect to all randomness on both sides,

we have

E
h
kG(u1)k

2
�

D
G(u1), eG(u0)

E i

 E
h D

G(u0), eG(u0)�G(u0)
E
+ 2 hG(u1), G(u0)i � 2

D
G(u1), eG(u0)

E i

(i)
 E

h1
2
kG(u0)k

2 +
1

2
kG(u1)k

2 +
5

2

���G(u0)� eG(u0)
���
2 i

,

where for (i) we use Young’s Inequality. Since u⇤ is the solution of monotone inclusion, then we
have G(u⇤) = 0. So we have

kG(u0)k
2 = kG(u0)�G(u⇤)k2

(i)
 10L2

ku0 � u⇤
k
2
,

where (i) can be verified by Young’s Inequality and using the fact that the projection operator is
non-expansive. Also using the results in Lemma C.4, we obtain that

E[C1] 
1

L
E
⇥
5L2

ku0 � u⇤
k
2 +

1

2
kG(u1)k

2 +
5

2

���F (u0)� eF (u0)
���
2 ⇤

.

Proceeding similar to Lemma C.1, we have

E[kG(u1)k
2] 

2B1L1

A1
ku0 � u⇤

kE[kG(u1)k]

+
2L1

A1L
E
h
5L2

ku0 � u⇤
k
2 +

1

2
kG(u1)k

2 +
5

2

���F (u0)� eF (u0)
���
2 i

= 2L ku0 � u⇤
kE[kG(u1)k]

+ E
h
5L2

ku0 � u⇤
k
2 +

1

2
kG(u1)k

2 +
5

2

���F (u0)� eF (u0)
���
2 i

.

Subtracting E[ 12 kG(u1)k
2] on both sides and using the fact that E[kG(u1)k] 

�
E[kG(u1)k

2]
� 1

2

and E[
���F (u0)� eF (u0)

���
2
]  ✏2

8 , we have

E[[kG(u1)k
2]  4L ku0 � u⇤

k
�
E[kG(u1)k

2]
� 1

2 + 10L2
ku0 � u⇤

k
2 +

5✏2

8
,
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which is a quadratic function with respect to (E[kG(u1)k
2])

1
2 . So by its larger root we have

(E[kG(u1)k
2])

1
2  2L ku0 � u⇤

k+
1

2

r
56L2 ku0 � u⇤k

2 +
5

2
✏2

 2L ku0 � u⇤
k+

1

2
(2
p
14L ku0 � u⇤

k+

p
10

2
✏)

 6L ku0 � u⇤
k+ ✏  ⇤0 + ⇤1✏.

So the result holds for the basis case. Moreover, we can get a bound for E[C1] as follows

E[C1] 
1

L
E
h
5L2

ku0 � u⇤
k
2 +

1

2
kG(u1)k

2 +
5

2

���F (u0)� eF (u0)
���
2 i

(i)
 5L ku0 � u⇤

k
2 +

1

2L

⇣
50L2

ku0 � u⇤
k
2 +

5

4
✏
2
⌘
+

5

2L

✏
2

8

 30L ku0 � u⇤
k
2 +

✏
2

L
,

where (i) can be verified by using the bound we get above for E[kG(u1)k
2] and applying Young’s

Inequaltiy, and the fact that E[
���F (u0)� eF (u0)

���
2
]  ✏2

8 .

Assume that the result holds for all 1  i  k� 1, then we come to prove the case k. By Lemma C.5
we have for 8i � 2

Ci � Ci�1 
Ai

L

���G(ui�1)� eG(ui�1)
���
2
+

Ai �Ai�1

2L

D
G(ui�1), G(ui�1)� eG(ui�1)

E

(i)


3i(i+ 1)

L

���G(ui�1)� eG(ui�1)
���
2
+

i

8L(i+ 1)
kG(ui�1)k

2

(ii)


3i(i+ 1)

L

���F (ui�1)� eF (ui�1)
���
2
+

i

8L(i+ 1)
kG(ui�1)k

2
,

where we use Young’s Inequality and Ai = i(i+ 1) for (i), and (ii) is due to Lemma C.4. Taking
expectation with respect to all randomness on both sides and telescoping from i = 2 to k, we obtain

E[Ck]  E
h
C1 +

kX

i=2

⇣3i(i+ 1)

L

���F (ui�1)� eF (ui�1)
���
2
+

i

8L(i+ 1)
kG(ui�1)k

2
⌘i

 30L ku0 � u⇤
k
2 +

✏
2

L
+ E

h kX

i=2

i

8L(i+ 1)
kG(ui�1)k

2
i

+ E
h kX

i=2

3i(i+ 1)

L

���F (ui�1)� eF (ui�1)
���
2 i

.

By Corollary 2.2, we have

E
h kX

i=2

3i(i+ 1)

L

���F (ui�1)� eF (ui�1)
���
2 i



kX

i=2

3i(i+ 1)

L

✏
2

i� 1

(i)


kX

i=2

6(i+ 1)✏2

L
=

3(k + 4)(k � 1)✏2

L
,

where (i) is because i
i�1  2 for all i � 2. By induction, we have

E
h kX

i=2

i

8L(i+ 1)
kG(ui�1)k

2
i

(i)


kX

i=2

1

8L

⇣
2

⇤2
0

(i� 1)2
+ 2⇤2

1✏
2
⌘

(ii)


1

4L

⇣
⇤2
0
⇡
2

6
+ (k � 1)⇤2

1✏
2
⌘
=

1

L

⇣⇤2
0⇡

2

24
+

(k � 1)⇤2
1✏

2

4

⌘
,
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where (i) follows from induction and i
i+1  1, and (ii) is due to

Pk
i=2

1
(i�1)2 

P1
i=1

1
i2 = ⇡2

6 .
We now obtain

E[Ck]  30L ku0 � u⇤
k
2 +

✏
2

L
+

3(k + 4)(k � 1)✏2

L
+

1

L

⇣⇤2
0⇡

2

24
+

(k � 1)⇤2
1✏

2

4

⌘
.

By the same derivation of Lemma C.1, we have

E
⇥
kG(uk)k

2 ⇤


BkLk

Ak
ku0 � u⇤

kE[kG(uk)k]

+
Lk

Ak

⇣
30L ku0 � u⇤

k
2 +

✏
2

L
+

3(k + 4)(k � 1)✏2

L
+

⇤2
0⇡

2

24L
+

(k � 1)⇤2
1✏

2

4L

⌘

=
L

k
ku0 � u⇤

kE[kG(uk)k] +
30L2

ku0 � u⇤
k
2

k(k + 1)

+
1

k(k + 1)

⇣
✏
2 + 3(k + 4)(k � 1)✏2 +

⇤2
0⇡

2

24
+

(k � 1)⇤2
1✏

2

4

⌘

(i)


L

k
ku0 � u⇤

kE[kG(uk)k] +
⇣30L2

ku0 � u⇤
k
2

k2
+ (11 +

⇤2
1

4k
)✏2 +

⇤2
0⇡

2

24k2

⌘
,

where (i) is due to 1
k(k+1) 

1
k2 , 3(k+1)(k�1)

k(k+1)  10 and k�1
k(k+1) 

1
k . Since E[kG(uk)k] 

(E[kG(uk)k
2])

1
2 by Jensen’s Inequality, we have

E
⇥
kG(uk)k

2 ⇤


L

k
ku0 � u⇤

k

⇣
E
⇥
kG(uk)k

2 ⇤⌘ 1
2

+
⇣30L2

ku0 � u⇤
k
2

k2
+ (11 +

⇤2
1

4k
)✏2 +

⇤2
0⇡

2

24k2

⌘
,

which is a quadratic function with respect to (E[kG(uk)k
2])

1
2 . So by its larger root we obtain

⇣
E
⇥
kG(uk)k

2 ⇤⌘ 1
2


L

2k
ku0 � u⇤

k+
1

2

s
L2

k2
ku0 � u⇤k

2 + 4
⇣30L2 ku0 � u⇤k

2

k2
+ (11 +

⇤2
1

4k
)✏2 +

⇤2
0⇡

2

24k2

⌘

(i)


L

k
ku0 � u⇤

k+
⇣p30L ku0 � u⇤

k

k
+

r
11 +

⇤2
1

4k
✏+

⇤0⇡

2
p
6k

⌘

=
(1 +

p
30)L ku0 � u⇤

k+ ⇤0⇡
2
p
6

k
+

r
11 +

⇤2
1

4k
✏

(ii)


⇤0

k
+ ⇤1✏,

where (i) is due to the fact that
pPn

i=1 X
2
i 

Pn
i=1 |Xi|, and (ii) is because of our choice of

⇤0,⇤1. Hence, the result also holds for the case k. Then by induction we know that the result holds
for all k � 1.

Finally, when k �
2⇤0
✏ , we have ⇤0

k  ✏/2. Also, since we have ⇤1 =
p
13, we obtain

E[kG(uk)k] 
⇣1
2
+
p
13
⌘
✏  5✏.

Hence, the total number of iterations needed to attain 5✏ norm of the operator is

N =
l2⇤0

✏

m


2⇤0

✏
+ 1 =

�

✏
,

thus completing the proof.

Corollary C.7. Given an arbitrary u0 2 Rd
, suppose that iterates uk evolve according to Halpern

iteration from Eq. (C.10) for k � 1, where Lk = L, and �k = 1
k+1 . Assume further that the
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stochastic estimate eF (u) is defined according to Eq. (2.1), with its parameters set according to
Corollary 2.2. Then, given any ✏ > 0, stochastic Halpern iteration from Eq. (C.10) returns a point
uk such that E[kG(uk)k]  5✏ with at most O(�

2Lku0�u⇤k+L3ku0�u⇤k3

✏3 ) oracle queries to bF in
expectation.

Proof. Let mk be the number of stochastic queries made by the estimator from Eq. (2.1) at iteration
k. Conditional on Fk and using Corollary 2.2, since each stochastic gradient mapping eG(uk) only
involves one PAGE invariant stochastic estimate eF (uk), we have

E
⇥
mk+1|Fk�1

⇤
= pk

l 8�2

pk✏
2

m
+ 2(1� pk)

l8L2
kuk � uk�1k

2

p2k✏
2

m

(i)
 pk

⇣ 8�2

pk✏
2
+ 1
⌘
+ 2(1� pk)

⇣8L2
kuk � uk�1k

2

p2k✏
2

+ 1
⌘
,

where (i) is due to the fact that dxe  x+ 1 for any x 2 R. Taking expectation with respect to all
randomness on both sides, and rearranging the terms, we obtain

E[mk+1] 
8�2

✏2
+

16(1� pk)L2E
⇥
kuk � uk�1k

2 ⇤

p2k✏
2

+ 2.

By the same derivation as Lemma 3.3, we have

kuk � uk�1k
2


8
>><

>>:

1
4L2

��� eG(u0)
���
2

if k = 1,

2k2

L2(k+1)2

��� eG(uk�1)
���
2
+
Pk�2

i=0
2(i+1)2

k(k+1)2L2

��� eG(ui)
���
2

if k � 2.

(C.13)

By the corollary assumptions, we have E[kG(ui)k
2]  O(L

2ku0�u⇤k2

i2 ) for i  k�1 by Theorem C.6.
Then we obtain

E
h ��� eG(ui)

���
2 i

 2E
h
kG(ui)k

2
i
+ 2E

h ��� eG(ui)�G(ui)
���
2 i

(i)
 2E

h
kG(ui)k

2
i
+ 2E

h ��� eF (ui)� F (ui)
���
2 i

 O

⇣
L
2
ku0 � u⇤

k
2

i2

⌘
,

where (i) is due to Lemma C.4.

Plugging it into Inequality (C.13), we have E[kuk � uk�1k
2] = O(ku0�u⇤k2

k2 ), which leads to

E[mk+1] = O

⇣
�
2 + L

2
ku0 � u⇤

k
2

✏2

⌘

using pk = 2
k+1 = O(1/k).

Further, by Theorem C.6, the total number of iterations to attain 5✏ norm of the operator in expectation
is N = O(Lku0�u⇤k

✏ ) and m1 = S
(0)
1 = O(�

2

✏2 ), we conclude that the total number of stochastic
queries to F is

E[M ] = E
h NX

k=1

mk

i
= O

⇣
�
2
L ku0 � u⇤

k+ L
3
ku0 � u⇤

k
3

✏3

⌘
,

thus completing the proof.

D Omitted proofs from Section 4

We use the potential function, previously used by [51],
Vk := AkkF (uk)k

2 +Bk hF (uk),uk � u0i+ ckL
2
kuk � vk�1k

2
, (D.1)

prove Theorem 4.1. Here Ak, Bk and ck are positive parameters to be determined later. We start by
bounding the change of Vk under the following assumption on the parameters.
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Assumption 5. �k 2 [0, 1), ⌘k > 0, and Ak, Bk and ck are positive parameters satisfying Bk+1 =
Bk

1��k
, Ak = Bk⌘k

2�k
,

0 < ⌘k+1 =

�
1� �

2
k �M⌘

2
k

�
�k+1⌘k�

1�M⌘2k

��
1� �k

�
�k

, M⌘
2
k+�

2
k < 1, and ⌘k+1 

�k+1

�
1� �k

�

M�k⌘k
, (D.2)

where M = 3L2(2 + ✓) and ✓ > 0 is some parameter that can be determined later.

The following lemma gives a bound on the difference between the potential function values at two
consecutive iterations with the control of the parameters above.
Lemma D.1. Let Vk be defined as in Eq. (D.1), where the parameters satisfy Assumption 5. Then
the difference of potential function between two consecutive iterations can be bounded by

Vk+1 � Vk  � L
2

✓
✓Ak

M⌘2k

� ck+1

◆
kuk+1 � vkk

2
� L

2(ck �Ak)kuk � vk�1k
2

+
2Ak

M⌘2k

���F (vk)� eF (vk)
���
2
+Ak

���F (vk�1)� eF (vk�1)
���
2
.

(D.3)

Proof. By the iteration scheme in Eq. (4.1), we can deduce the following identities:
8
>>>><

>>>>:

uk+1 � uk = �k(u0 � uk)� ⌘k
eF (vk)

uk+1 � uk =
�k

1� �k
(u0 � uk+1)�

⌘k

1� �k

eF (vk)

uk+1 � vk = �⌘k

⇣
eF (vk)� eF (vk�1)

⌘
(D.4)

Further, by the definition of the potential function Vk, we can write

Vk � Vk+1 = Ak kF (uk)k
2
�Ak+1 kF (uk+1)k

2

| {z }
T[1]

+Bk hF (uk) ,uk � u0i �Bk+1 hF (uk+1) ,uk+1 � u0i| {z }
T[2]

+ ckL
2
kuk � vk�1k

2
� ck+1L

2
kuk+1 � vkk

2
.

(D.5)

To obtain the claimed bound, in the rest of the proof we focus on bounding T[1] and T[2].

To bound T[1], by the Lipschitz continuity of F , we have

kF (uk+1)� F (vk)k
2
 L

2
kuk+1 � vkk

2 = L
2
⌘
2
k

��� eF (vk)� eF (vk�1)
���
2
,

where in the last step we used the third identity from Eq. (D.4). Further, for any ✓ > 0
���F (uk+1)� eF (vk)

���
2
+ ✓L

2
kuk+1 � vkk

2

 2 kF (uk+1)� F (vk)k
2 + 2

���F (vk)� eF (vk)
���
2
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2
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2

⌘
2
kL

2(2 + ✓)
��� eF (vk)� eF (vk�1)

���
2
+ 2

���F (vk)� eF (vk)
���
2
,

(D.6)

where again in the last step we used the third identity from Eq. (D.4). Notice that
��� eF (vk)� eF (vk�1)

���
2

=
��� eF (vk)� F (uk) + F (uk)� F (vk�1) + F (vk�1)� eF (vk�1)

���
2

 3
��� eF (vk)� F (uk)

���
2
+ 3 kF (uk)� F (vk�1)k
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 3
⇣
kF (uk)k
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� 2

D
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E
+
��� eF (vk)

���
2 ⌘

+ 3L2
kuk � vk�1k

2

+ 3
���F (vk�1)� eF (vk�1)

���
2
.
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Let M := 3L2(2 + ✓). Expanding the term kF (uk+1)� eF (vk)k2 on the LHS in Inequality (D.6)
and combining with the inequality above, we have

kF (uk+1)k
2 +

��� eF (vk)
���
2
� 2

D
F (uk+1) , eF (vk)

E
+ ✓L
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D
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2
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���F (vk)� eF (vk)
���
2
.

Multiplying both sides by Ak

M⌘2
k

, rearranging this inequality and subtracting Ak+1 kF (uk+1)k
2 on

both sides, we obtain

T[1] = Ak kF (uk)k
2
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E

+
Ak✓L

2

M⌘2k

kuk+1 � vkk
2
�AkL

2
kuk � vk�1k

2

�
2Ak

M⌘2k

���F (vk)� eF (vk)
���
2
�Ak

���F (vk�1)� eF (vk�1)
���
2
.

(D.7)

To bound T[2], notice that F is monotone, so we have

hF (uk+1) ,uk+1 � uki � hF (uk) ,uk+1 � uki .

Using the first line in Eq. (D.4) for the RHS and the second line for the LHS, we can obtain
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D
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E
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D
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E
.

Multiplying both sides by Bk
�k

and using that Bk+1 = Bk
1��k

by Assumption 5, we have
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(D.8)

Combining Inequalities (D.7) and (D.8) and plugging the bounds into Eq. (D.5), we obtain
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By Assumption 5, we choose Ak = Bk⌘k

2�k
. Define:
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>>>>>>>>:
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Then, we obtain
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Suppose that S11
k � 0, S22

k � 0 and
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k S22
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k . Then, we can conclude
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To complete the proof, let us argue that the assumptions that S11
k � 0, S22

k � 0 and
p

S11
k S22

k = S
12
k

we made above are valid. First, notice that S11
k � 0 is equivalent to ⌘k+1 

�k+1(1��k)
M�k⌘k

, and S
22
k � 0

is equivalent to M⌘
2
k  1, which are both included in Assumption 5. Moreover, since Bk > 0,p
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· ⌘k, provided that M⌘
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2
k  1. Both

these inequalities hold by Assumption 5, thus completing the proof.

Motivated by Assumption 5 and Lemma D.1, we make the choice of �k and ⌘k as

�k :=
1

k + 2
and ⌘k+1 :=

�
1� �

2
k �M⌘

2
k

�
�k+1⌘k

(1�M⌘2k) (1� �k)�k
, (D.9)

where M = 3L2 (2 + ✓) and 0 < ⌘0 <
1p
2M

. The sequence {⌘k}k�1 given by Eq. (D.9) is actually
non-increasing and has a positive limit. We summarize this result in the following lemma for
completeness, and the proof can be found in [51].
Lemma D.2. Given M > 0, the sequence {⌘k} generated by Eq. (D.9) is non-increasing, i.e.
⌘k+1  ⌘k  ⌘0 <

p
3

2
p
M

. Moreover, if 0 < ⌘0 <
1p
2M

, we have that ⌘⇤ := limk!1 ⌘k exists and
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> 0. (D.10)
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We now prove the results for the iteration complexity and the corresponding oracle complexity for
Algorithm 2.
Theorem 4.1. Given an arbitrary initial point u0 2 Rd and target error ✏ > 0, assume that the
iterates uk evolve according to Algorithm 2 for k � 1. Then, for all k � 2,

E
h
kF (uk)k

2 + 2L2
kuk � vk�1k

2
i


⇤0

(k + 1)(k + 2)
+ ⇤1✏

2
, (4.2)

where ⇤0 =
4(L2⌘0⌘+1)ku0�u⇤k2

⌘2 and ⇤1 =
5(1+M⌘⌘0)

M⌘2 . In particular, E
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⌃ p
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⌥
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✏

�
iterations.

The total number of oracle queries to bF is O
��2Lku0�u⇤k+L3ku0�u⇤k3

✏3

�
in expectation.

Proof. We start with verifying that the conditions in Eq. (D.2) of Lemma D.1 are all satisfied. By
Eq. (D.9) and Lemma D.2, we know that {⌘k} is non-increasing and ⌘⇤ = limk!1 ⌘k > 0, so the
first condition in Eq. (D.2) is satisfied. Also, as 0 < ⌘k  ⌘0 

1p
2M

, we have M⌘
2
k  M⌘

2
0 

1
2 < 1� 1

(k+2)2 . So the second condition in Eq. (D.2) holds. Moreover, since ⌘k+1  ⌘k, the third

condition holds if ⌘2k 
�k+1(1��k)

M�k
= k+1

M(k+3) . Due to the fact that k+1
M(k+3) �

1
3M and ⌘k  ⌘0 for

all k � 1, we can have this condition hold if ⌘0 
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3M

. Hence all the conditions hold with our
parameter update and letting ⌘0 
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.

Let ck = Ak, then we obtain
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Here we choose the parameters such that ⌘k⌘k+1 
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which is satisfied if we let ⌘0 
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Combining the two conditions on ⌘0, and choosing ✓ = 1, we have
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,

which is required by Algorithm 2 and thus satisfied.

Hence, with 0 < ⌘0 
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p
3

, we have
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Consider Ck = Ak kF (uk)k
2 +Bk hF (uk),uk � u0i. Then:
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where (i) is due to u⇤ being the solution to the monotone inclusion problem so an (SVI) solution as
well, and we use monotonicity and Young’s Inequality for (ii). So we obtain
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Since Bk+1 = Bk
1��k

and �k = 1
k+2 , we have Bk = (k + 1)B0 for any B0 > 0. Then we obtain
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2 . By Inequality (D.11) and noticing v�1 = u0, we
have
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Unrolling this recursive bound down to V0, we obtain
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where we plug in the bound for Ai and ⌘i in (i). Taking expectation with respect to all randomness
on both sides and using the variance bound from Corollary 2.2, we obtain that
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where we use Lipschitz property and variance bounds by variance reduction for (i). For (ii), we use
the fact that i+1

i  2 and i+2
i�1  4 and sum over 2(i + 1), respectively. Moreover, (iii) is due to

(k�1)(k+4)
(k+1)(k+3)  1 and (k�2)(k+3)

(k+1)(k+2)  1 and by combining the last two terms.
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Claimed stochastic oracle complexity follows from Lemma D.3 below.

Lemma D.3. Let u0 2 Rd be an arbitrary initial point and assume that iterates uk evolve according
to Algorithm 2. Then, Algorithm 2 returns a point uN such that E

⇥
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⇤
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Proof. Let mk be the number of stochastic queries made by the variance reduction method at iteration
k for k � 1. Conditional on Fk�1, we have
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where (i) is due to the fact that dxe  x+ 1 for any x 2 R. Taking expectation with respect to all
randomness on both sides, and rearranging the terms, we obtain
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where (i) follows from N 
�
✏ with � =
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+ ✏, and 1� pk  1.

Then we come to bound E
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where (i) is based on the third line in Eq. (D.4). To estimate uk+1 � uk, we recursively use the first
line in Eq. (D.4), and obtain for k � 2,
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Then we obtain for k � 3
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Taking expectation with respect to all randomness on both sides, we have
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Note that for k � 1, we have
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where (i) is due to the Lipschitz property and the variance bound, and we use the result of Theorem

4.1 for (ii). Proceeding similarly, we have E
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2 , so we obtain for
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Since pk = 2
k+1 , we have for k � 4
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where (i) is due to k  N <
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For k = 3, we have
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Moreover, we have

(1� p2)E kv2 � v1k
2

p22

=
3

4
E kv2 � v1k

2


3

2
E
⇣

⌘0

6
+ ⌘1

⌘2 ��� eF (u0)
���
2
+
⇣3⌘1

4
+ ⌘2

⌘2 ��� eF (u1)
���
2
�


3

2
⌘
2
0


49

36

�
2⇤0 + 2⇤1✏

2 + ✏
2
/2
�
+

49

16

⇣⇤0

2
+ 2⇤1✏

2 + 4✏2
⌘�

 7⌘20⇤0 + 14 (⇤1 + 2) ✏2.

Note that p1 = 1, so we have
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where we assume without loss of generality that L ku0 � u⇤
k � 1, thus completing the proof.

E Omitted proofs from Section 5

Theorem 5.1. Given L-Lipschitz and µ-sharp F and the precision parameter ✏, Algorithm 3 outputs
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Proof. Let Gk�1 be the natural filtration of all the random variables used up to (and including) the
(k � 1)th outer loop. By Theorem 4.1, we have
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where (i) is because u⇤ is a solution to (SVI), and we use Cauchy-Schwarz inequality for (ii). Taking
expectation conditional on Gk�1 on both sides, we have

E
h
kF (uk)k

2
|Gk�1

i
� E

h
µ
2
kuk � u⇤

k
2
|Gk�1

i
,

which leads to

E
h
kuk � u⇤

k
2
|Gk�1

i


1

µ2

"
⇤(k)
0

(K + 1)(K + 2)
+ ⇤(k)

1 ✏
2
k

#
.

39



If we choose K �
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Taking expectation with respect to all the randomness on both sides, we obtain
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Recursively using Inequality (E.2) till k = 0, we have

E
⇥
kuk � u⇤

k
2 ⇤


1

4k
ku0 � u⇤

k
2 +

kX

i=1

✏
2

4i


1

4k
ku0 � u⇤

k
2 +

1X

i=1

✏
2

4i


1

4k
ku0 � u⇤

k
2 +

✏
2

3
.

Hence, after
l
log
⇣p

6ku0�u⇤k
2✏

⌘m
outer loops, the Algorithm 3 can output a point uk such that

E
⇥
kuk � u⇤

k
2 ⇤

 ✏
2, as well as E

⇥
kF (uk)k

2 ⇤
 L

2
✏
2. More specifically, the total number of

iterations such that the algorithm can return a point uk such that E kuk � u⇤
k
2
 ✏

2 will be

l
log
⇣p6 ku0 � u⇤

k

2✏

⌘ml4
q

L2⌘0⌘ + 1

µ⌘

m
= O

✓
L

µ
log

ku0 � u⇤
k

✏

◆
.

Next we come to bound the expected number of the stochastic oracle queries for each call to Algorithm
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, then proceeding as
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where Mk is the total number of queries at the k
th call. Notice that K =
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Combining last inequality with Inequality (E.3) and taking expectations on both sides, we obtain
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Hence, we finally arrive at
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which completes the proof.
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