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A APPENDIX

A.1 PSEUDOCODE

Algorithm 1: The T-GNNExplainer algorithm.
Input : target model f , temporal graph G

k, target event ek, sparsity q, navigator h✓, rollout N .
Output: the best subset N ⇤ satisfying sparsity threshold q.

1 Initialize tree T = {G
k
};

2 for i = 1, · · · , N do
3 CurrNode = G

k;
4 PathNodes = [CurrNode];

/* move downwardly if the current node is not a leaf. */
5 while |CurrNode|/|G

k
| > q do

6 if CurrNode is expandable then
/* expand one child using the node expansion strategy

with the help of the navigator. */
7 Child = NodeExpansionStrategy(CurrNode);
8 CurrNode.children.append(Child);
9 T .append(Child);

/* select one child using the node selection strategy. */
10 CurrNode = NodeSelectionStrategy(CurrNode.children);
11 PathNodes.append(CurrNode);
12 end
13 LeafNode=CurrNode;
14 LeafNode.r = RewardFunction(LeafNode, ek);

/* update path nodes’ statistics using the reward. */
15 UpdateStatistics(PathNodes, LeafNode.r);
16 end
/* find the best node having the largest reward and satisfying

the sparsity criteria |Node|/|G
k
|  q. */

17 N
⇤ = FindBestTreeNode(T , q);

18 return N
⇤;

A.2 SYNTHETIC DATASET

Hawkes process: The multivariate Hawkes process (MHP) is the counting process where an arrival
of an event can affect the arrival rates of other events. In our synthetic datasets, we use a MHP to
capture mutual excitation/inhibition and generate a sequence of events with timestamps.

We assume that there are D event types where the type of an event (node nu, node nv , timestamp t)
is decided by its nodes nu and nv . The intensity function of the i-th type of events at time t is

�i(t) = µi +
DX

j=1

Z t

0
'ij(t� s)dNj(s) (6)

where 'ij(x) = Aij✓e
�✓x.

The first term µi indicates the endogenous intensity of event type i, while the second term 'ij

represents the exogenous influence from other events. In particular, Nj(s) counts the number of
occurred event type j within [0, s], and one arrival of event type j at time s will affect the intensity
of event type i at time t by the amount 'ij(t � s) for t > s. Aij is the influence matrix and ✓ is a
time decay factor. Obviously, we could pre-define the parameters µi, Aij and ✓ to decide a MHP.

We show our parameter setting in Fig. 2, where we have 4 types of events E0�E3. For two synthetic
datasets, we set µ0 = µ1 = 0.5 and µ2 = µ3 = 0. In Synthetic v1, we set A20 = 1, A21 = �1, and
A32 = 1. Other Aij are 0. Therefore, E0 and E2 work together to let E3 happen, while E1 inhibits
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E3. In Synthetic v2, we set A33 = �2 on the basis of Synthetic v1. The occurrence of E3 inhibits
itself.

We utilize tick.hawkes.SimuHawkesExpKernels in the tick library to generate a sequence of events.
We set time decay ✓ to 10, control the total simulation time as 10000, and then generate ⇠ 10000
events with timestamps for each synthetic dataset. The node features are created randomly, and the
event feature is obtained by adding its ending node features.

Dataset statistics: As we focus on the prediction of E3, we illustrate the statistics of E0, E1, E2,
and E3 before E3 happens. Specifically, we compare occurrence rates of all event types before an
E3 timestamp to those before a random timestamp. The x axis in Fig. 7 and Fig. 8 indicates selected
intervals from 0.1 to 3.0. While the y axis indicates the happening rate of a specific event type in
that interval before an E3 or a random timestamp.

Take the Fig. 7(a) as an example, assuming the interval is 0.3, an E0 event will happen with prob-
ability ⇠ 82% in the previous 0.3 time interval before an E3 event, while the probability before a
random timestamp is merely ⇠ 16%. The other sub-figures in Fig. 7 and Fig. 8 illustrate happening
rates of other event types.

We can find that the happening rates of E0 and E2 are high before E3 timestamps, especially when
the time interval is small. It is the same as our setting, where E0 and E2 act as positive stimulus to
E3. Moreover, the happening rate of E1 before E3 is even smaller than that before random times-
tamps, indicating that E1 will suppress the happening of E3. Comparing Fig. 7(d) with Fig. 8(d),
we could also conclude that in the Synthetic v2, E3 itself will suppress E3 because the happening
rate of E3 before E3 in Fig. 8(d) is clearly smaller than that in Fig. 7(d).

In both Fig. 7 and Fig. 8, the distributions of previous events’ happening rates are different for E3

timestamps and random ones. Hence these signals are captured and utilized by target models to
predict whether an E3 will happen given previous events.

(a) E0 (b) E1 (c) E2 (d) E3

Figure 7: Statistics of the Synthetic v1.

(a) E0 (b) E1 (c) E2 (d) E3

Figure 8: Statistics of the Synthetic v2.

A.3 DETAILS OF TARGET MODELS

We list all the hyper-parameters of target models in Table 3. Note that N degree indicates the number
of neighbour temporal events used for information aggregation in the message passing.

Besides, we also present average precision (AP) of well-trained target models on all datasets in
Table 4. The results are averaged over three runs.
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Table 3: Hyper-parameters of both models for all datasets
TGAT TGN

Real-world Synthetic Real-world Synthetic

Hidden dimension 172 4 172 4
Aggregation layers 2 2 2 2

Attention heads 2 2 2 2
N degree 10 10 10 10

Memory dimension - - 172 4
Time dimension 172 4 172 4

Node feature dimension 172(zeros) 4 172(zeros) 4
Edge feature dimension 172 4 172 4

Training epoch 10 100 10 100
Learning rate 1e-4 1e-4 1e-4 1e-4

Table 4: Models’ average precision (AP) for the inductive event prediction on all datasets.
Wikipedia Reddit Simulate v1 Simulate v2

TGAT 0.9791(0.0000) 0.9750(0.0000) 0.9632(0.0005) 0.9641(0.0000)
TGN 0.9851(0.0000) 0.9664(0.0000) 0.9535(0.0000) 0.9687(0.0000)

A.4 EFFICIENCY COMPARISON WITH OTHER BASELINES.

In this section, we compare the running time of all the methods for searching for a solution satisfying
a fidelity threshold. The fidelity threshold is identical to that in Sec. 5.4.

The results w.r.t TGAT and TGN are listed in Table 5 and Table 6 respectively. Both tables indicate
that T-GNNExplainer with navigator is much faster than T-GNNExplainer without navigator. The
running time of T-GNNExplainer with navigator is acceptable in most cases. All the non-search
based baselines achieve high efficiency because they conduct a one-pass inference or simply average
internal weights. Even though T-GNNExplainer is slower than non-search based baselines, the
AUFSC is 86% higher than the leading baseline averaged on all the datasets and models. Moreover,
some baselines require retraining on new datasets, e.g., PG, which could be time-consuming once
the datasets are large. Hence, considering the explanation quality and intrinsic characteristic of
searching, the efficiency of T-GNNExplainer is reasonable and acceptable.

Table 5: Running time comparison of different methods on all the datasets for explaining an instance
with TGAT. † indicates withholding the navigator.

Methods/Time (s) Wikipedia Reddit Synthetic v1 Synthetic v2

non-search based
ATTN 0.05 0.17 0.05 0.05

PBONE 0.31 0.39 0.23 0.25
PG 0.03 0.22 0.03 0.03

search based T-GNNExplainer† 68.14 158.2 89.74 178.2
T-GNNExplainer 20.38 28.2 14.49 12.5

Table 6: Running time comparison of different methods on all the datasets for explaining an instance
with TGN. † indicates withholding the navigator.

Methods/Time (s) Wikipedia Reddit Synthetic v1 Synthetic v2

non-search based
ATTN 0.04 0.16 0.03 0.03

PBONE 0.17 0.31 0.14 0.17
PG 0.03 0.14 0.10 0.09

search based T-GNNExplainer† 20.50 40.26 31.95 56.10
T-GNNExplainer 14.74 8.66 18.00 22.14

Moreover, we can deduce the complexity of our method. Since MCTS is an anytime algorithm,
i.e., it can stop at any time based on the rollout limitation, the complexity is O(NDC). N is the
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number of rollouts, D is the expansion depth of each rollout determined by the sparsity threshold,
and C is a constant including inference time of the navigator, storing time of tree nodes, and other
constant-time operations.

We plot runtime-fidelity curves of T-GNNExplainer for TGAT in Fig. 9 to better illustrate the trade-
off between efficiency and solutions’ quality. Fig. 9 reveals that the best fidelity of found solutions
increases steeply at the beginning of searching and the marginal gain decreases with the increase
of rollouts in all cases. It means that the method could find a reasonable solution without many
rollouts. Hence, in practice, we could use a relatively small number (e.g., [100, 200]) to balance the
efficiency and expected solution quality.

(a) TGAT, Wikipedia (b) TGAT, Reddit (c) TGAT, Simulate v1 (d) TGAT, Simulate v2

Figure 9: Runtime-fidelity tradeoff of TGAT on all the datasets.

A.5 ROLLOUT-REWARD COMPARISON WITH OR WITHOUT THE NAVIGATOR

In this section, we investigate the effect of the navigator using reward-rollout curves for both target
models on all datasets. The reward-rollout curve reflects the best solution’s quality difference within
a specific rollout limitation. Results in Fig. 10 show that with navigator outperforms without naviga-
tor in most cases, except for the TGAT&Reddit scenario, in which the target model and the navigator
may not be trained well because of model capacity and the noisy characteristic of the Reddit dataset.
The performance gap between with navigator and without navigator becomes more significant on
synthetic datasets. Since target models achieve better prediction performance, the navigator can be
trained more satisfactorily to capture events’ importance as well.

(a) TGAT, Wikipedia (b) TGAT, Reddit (c) TGAT, Simulate v1 (d) TGAT, Simulate v2

(e) TGN, Wikipedia (f) TGN, Reddit (g) TGN, Simulate v1 (h) TGN, Simulate v2

Figure 10: Reward-rollout comparison w/wo the navigator.
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A.6 FIDELITY-SPARSITY COMPARISON WITH OR WITHOUT THE NAVIGATOR

In this section, we plot fidelity-sparsity curves to compare with navigator and without navigator
from a different perspective. The fidelity-sparsity comparison reveals the best solution’s quality
difference under a specific sparsity threshold after the search terminates. In Fig. 11, we find that
the fidelity gaps are generally consistent with those in Fig. 10, i.e., with navigator could achieve a
higher fidelity than without navigator under a given sparsity threshold in most cases. We conclude
Fig. 11 and Fig. 10 that the navigator could not only accelerate the search process, but also boost the
quality of solutions under the limitation of rollouts and sparsity.

(a) TGAT, Wikipedia (b) TGAT, Reddit (c) TGAT, Simulate v1 (d) TGAT, Simulate v2

(e) TGN, Wikipedia (f) TGN, Reddit (g) TGN, Simulate v1 (h) TGN, Simulate v2

Figure 11: Fidelity-sparsity comparison w/wo the navigator.

A.7 HYPERPARAMETER ANALYSIS

In this section, we investigate the effect of the hyperparameter � in Eq. 4. � balances the exploitation
and exploration in the search process, hence it influences searched solutions’ quality as well. We
conduct the experiment with both target models on the Wikipedia dataset, and � is set to 1, 5, 10,
and 100, respectively. The results are shown in Fig. 12. We find that a smaller � is slightly better
than a larger one in both scenarios, indicating that more exploitation is preferred in T-GNNExplainer
because of the existence of the navigator. However, the absolute difference is insignificant compared
with the fidelity scale. In practice, we can set the � in the range [1, 10] for better performance.

(a) TGAT, Wikipedia (b) TGN, Wikipedia

Figure 12: Hyperparameter analysis of � for TGAT and TGN on Wikipedia.
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A.8 COMPARISON WITH A SELF-INTERPRETABLE BASELINE

In this section, we compare T-GNNExplainer with a self-interpretable model named Transformer
Hawkes Process (THP) Zuo et al. (2020), to investigate the proposed post-hoc explainer’s expla-
nation quality with a non-post-hoc one. The THP is based on the point process framework which
utilizes a conditional intensity function to model previous events’ influence on future ones. The
THP adopts a transformer to learn a neural conditional intensity function ⇤✓(i, j, �t), where ✓ is the
parameter set, i and j indicate event types, and �t represents a time interval. ⇤✓(i, j, �t) models the
stimulus intensity of a past event with type i with time interval �t to the happening of event type j

at the current timestamp. Since THP considers all event types’ correlations, it cannot scale to real-
world temporal graphs with tens of thousands of edges (i.e., types). We train and compare with THP
on two synthetic datasets. The THP is trained to predict the next event’s type and happening time.
After training, we can compute each past event’s ⇤✓(·, ·, ·) as a score for interpretation. We denote
the intrinsic interpretation method of THP as THPExplainer. Moreover, we regard the THP as a tar-
get model to be explained and use the prediction logits for the target event type E3 to compute reward
and run T-GNNExplainer. We compare the fidelity-sparsity curves of T-GNNExplainer and THP-
Explainer in Fig. 13, and compute Best Fid and AUFSC in Table 7. We find that T-GNNExplainer
outperforms THPExplainer on all sparsity thresholds and the improvement is more significant for
a smaller sparsity. From both Table 1 and Fig. 13, we could conclude that a search-based method
could generally find solutions superior to conditional intensity scores or attentions. These scores are
also sensitive to the model’s performance. The performance may influence explanation quality as
well. For example, THP has about 70% accuracy on simulated datasets because it models both time
intervals and event types, which is challenging. TGAT/TGN achieves about 90% accuracy since
they only model a binary task. More importantly, these scores may not completely and accurately
reflect the decision logic of a complicated neural model. Clarifying the relationship between atten-
tion mechanism or conditional intensity scores and model-level interpretation may deserve further
investigation.

Table 7: Best fidelity (") and AUFSC (") achieved by T-GNNExplainer and THPExplainer on syn-
thetic datasets.

Synthetic v1 Synthetic v2
Best Fid AUFSC Best Fid AUFSC

THPExplainer 0.127 -0.485 0.207 -2.046
T-GNNExplainer 0.206 -0.006 0.573 0.021

(a) Simulate v1 (b) Simulate v2

Figure 13: Fidelity-sparsity comparison between T-GNNExplainer and THPExplainer on two syn-
thetic datasets.
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