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1 RELATED WORKS

Unlike the well-defined matrix rank, there is currently no universally accepted definition for tensor
rank. In this part, we will briefly introduce three common definitions of tensor rank based on different
decomposition techniques: Canonical Polyadic (CP) Decomposition Hitchcock (1927; 1928), Tucker
Decomposition Tucker (1963), and methods based on t-SVD Lu et al. (2019b; 2018); Qin et al.
(2022); Wang et al. (2023); Zhang et al. (2022); Zhou et al. (2017).

It is worth noting that from an equivalent definition of matrix rank, a rank r matrix can be written
as the sum of r rank-one matrix. Inspired by that, Kolda and Bader Kolda & Bader (2009b) have
proposed CP rank, i.e., rankcp(·), defined on tensor rank-one decomposition (CP Decomposition):

rankcp(X ) = min{R|X =

R∑
r=1

gr,r,··· ,ru
(1)
r ◦u(2)

r ◦· · ·◦u(h)
r ,u(j)

r ∈ RIj for j = 1, 2, · · · , h} (1)

for tensor X ∈ RI1×I2×···×Ih . We can see from (1) that the definition of matrix rank is a special case
of CP rank. But solving (1) is time-consuming even for small tensor when h ≥ 3.

As the computation of CP rank is NP-hard and greatly restricts its application in tensor recovery,
various Tucker Decomposition-based methods for defining tensor rank have been proposed and
extensively studied than CP rank Kolda & Bader (2009b). Given A ∈ RI1×I2×···×Ih , the Tucker
Decomposition of A is written as A = G×1U1×2U2×3 · · ·×hUh, where G ∈ RR1×R2×···Rh , and
Uk ∈ RIk×Rk for k = 1, 2, · · · , h. Given rank(A(k)) for all k, we can obtain the decomposition
by the higher-order singular value decomposition (HOSVD) De Lathauwer et al. (2000), where
rank(A(k)) = Rk for k = 1, 2, · · · , h. Therefore, the Tucker rank of tensor A is defined as

ranktc(A) = (rank(A(1)), rank(A(2)), · · · , rank(A(h)),

which is also known as multilinear rank and n-rank. Based on the Tucker rank, Gandy et al. given
a new rank of the tensor data defined as

∑h
n=1 rank(A(n)) Gandy et al. (2011). Furthermore,

considering the difference of the low rankness along different dimensions of tensor data, Liu et al.
(2013) give a weighted sum of the ranks of the unfolding matrices

∑h
n=1 αnrank(A(n)), where the

weights αn(n = 1, 2, · · · , h) satisfy
∑h

n=1 αn = 1 and play an important role in the newly defined
rank. However, the best choice for the weights is hard to know if without any prior. Thus, a new
tensor rank based on the maximum rank of a set of unfolding matrics is proposed to promote the
low-rankness of unfolding matrics of the recovered tensor Zhang et al. (2014a).

Recently, there has been a growing interest in tensor rank by using t-SVD Zhang et al. (2014b); Lu
et al. (2019a;b). This approach defines rank based on the Singular Value Decomposition (SVD) of
frontal slices of the tensor resulting from invertible transforms applied along a specific dimension
(known as t-SVD). This approach is widely employed in tensor recovery, as they can better utilize the
smoothness priors in tensor data due to the use of transforms such as DFT. For example, Zhang et al.
(2014b) introduced a tensor tubal rank based on the Discrete Fourier Transform (DFT) for three-order
tensors. It counts the number of non-zero tensor tubes in the singular value tensor obtained by
performing frontal-slices-wise SVD of the transformed tensor. Similarly, Lu et al. (2019a) defined
tensor average rank for three-order tensors based on DFT, which averages the ranks of frontal slices of
the transformed tensor and provided theoretical guarantees for exact recovery using the convex hull of
tensor average rank. As noted in Lu et al. (2019a), the low tensor average rank assumption for tensor
data can be more easily satisfied in the real world than the low-rank assumption employed in the



Algorithm 2: Tensor Decomposition Based on Slices-Wise Low-Rank Prior (TDSL)

Input: A ∈ RIk1
×Ik2

×···×Ikh , {Ûkn
}sn=3, and r, where 1 ≤ ki ̸= kj(if i ̸= j) ≤ h

Output: Z1, {Ukn
}hn=s+1.

1. Ā = A×k3 Ûk3 · · · ×ks Ûks

while not converged do
2. Calculate the slices-wise SVD for Ā×ks+1

U
(t)
ks+1

· · · ×kh
U

(t)
kh

by computing SVD of its all
slices along the (k1, k2)-th mode: for all 1 ≤ ik3

≤ Ik3
, ..., 1 ≤ ikh

≤ Ikh
, we have

[Ā×ks+1 U
(t)
ks+1

· · · ×kh
U

(t)
kh
]:,:,ik3

,··· ,ikh
= [Ū ]:,:,ik3

,··· ,ikh
[S̄]:,:,ik3

,··· ,ikh
[V̄ ]T:,:,ik3

,··· ,ikh
.

3. Calculate Z(t+1)
1 by [Z1]

(t+1)
:,:,ik3

,··· ,ikh
= [Ū ]:,1:r,ik3

,··· ,ikh
[S̄]1:r,1:r,ik3

,··· ,ikh
[V̄ ]T:,1:r,ik3

,··· ,ikh

4. Compute U
(t+1)
kn

for all s+ 1 ≤ n ≤ h by U
(t+1)
kn

= UV T , where U and V are obtained by
SVD for [Z1](kn)Y

T
(kn), i.e., [Z1](kn)Y

T
(kn) = USV T , and

Y = Ā×ks+1
U

(t+1)
ks+1

· · · ×kn−1
U

(t+1)
kn−1

×kn+1
U

(t)
kn+1

· · · ×kh
U

(t)
kh

.

3. Check the convergence conditions: ∥Z(t+1)
1 −Z(t)

1 ∥∞ < ε, ∥U (t+1)
kn

−U
(t)
kn
∥∞ < ε for all

s+ 1 < n ≤ h;
4. t = t+ 1.
end while

tensor tubal rank, CP rank, and tucker rank. Specifically, the tensor average rank of any three-order
tensor A satisfied the following inequation

ranka(A) ≤ max ranktc(A) ≤ rankcp(A), (2)

where ranktc(A) and rankcp(A) are the Tucker rank Kolda & Bader (2009a) and CP rank Kolda
& Bader (2009b) of A, respectively. Employing a similar idea to tensor average rank, a new rank
based on real invertible transforms has been given in Lu et al. (2019b), and defined as rankL(A) =
1
I3

∑I3
i3=1 rank([A×3 L]:,:,i3), where L is a fixed real invertible transform, such as Discrete Cosine

Matrix (DCM) and Random Orthogonal Matrix (ROM), that satisfies LTL = LLT = ℓL, and ℓL is
a constant. To handle the higher order tensor case, in Qin et al. (2022), the slice-wise low rankness of
L(A) is considered, where L(A) = X ×3 L3 ×4 · · · ×h Lh, LT (A) = X ×h L

T
h ×h−1 · · · ×3 L

T
3 ,

and LT (L(I)) = L(LT (I)) = ℓLI for given invertible transforms {Lk}hk=3. Considering the
difference of tensor low-rankness across different dimensions of the tensor, Zheng et al. (2020) give
WSTNN, which is defined as the weighted sum of the tensor average rank of all

(
h
2

)
mode-k1k2

unfolding tensor. However, it will become impractical as the tensor order h increases. Besides, the
weight parameter tuning can also be a challenge. These t-SVD-based methods utilize the smoothness
priors in tensor data better than the other methods due to the use of transforms such as DFT, but it
is also exactly why they are sensitive to non-smooth changes and slice permutations of tensor data.
Zheng et al. (2022) proposed a solution to address the slice permutation issue in DFT-based methods
by minimizing a Hamiltonian circle, though it is limited to DFT. Moreover, the methods based on
t-SVD introduce more variables and weight parameters compared to CP and Tucker rank methods.

2 TDSL (ALGORITHM 2)

3 THE PROOF OF PROPERTY 2

Proof. (i) We can conclude that both the tensor U1 norm and tensor U∞ norm are convex due to the
convexity properties of the l1-norm and ∞-norm, respectively.

(ii)

sup
∥B∥U,∞≤1

⟨A,B⟩ = sup
∥B×1Û1×2···×hÛh∥∞≤1

⟨A,B⟩

= sup
∥B×1Û1×2···×hÛh∥∞≤1

〈
A×1 Û1 ×2 · · · ×h Ûh,B ×1 Û1 ×2 · · · ×h Ûh

〉
.
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Let B̂ = B ×1 Û1 ×2 · · · ×h Ûh be any tensor. Then we have

sup
∥B̂∥∞≤1

〈
A×1 Û1 ×2 · · · ×h Ûh, B̂

〉
= ∥A×1 Û1 ×2 · · · ×h Ûh∥1 = ∥A∥U,1. (3)

(iii) The proof is completed in the following two steps, utilizing the properties of conjugate functions
presented in Fazel Sarjoui (2002); Hiriarturruty & Lemaréchal (1993), i.e., the conjugate of the
conjugate, ϕ∗∗

0 , is the convex envelope of a given function ϕ0 : C → R. For given function ϕ0, the
conjugate ϕ∗

0 of the function ϕ0 is defined as ϕ∗
0(y) = sup{⟨y, x⟩ − ϕ0(x)|x ∈ C}.

STEP1. COMPUTING THE CONJUGATE OF SPARSITY-BASED TENSOR U0 , ϕ∗ .
ϕ∗(B) = supA∈S ⟨B,A⟩ − ∥A∥U,0 =sup∥A∥U,∞≤1 ⟨B,A⟩ − ∥A×1 Û1 ×2 · · · ×h Ûh∥0

(Let Â = A×1 Û1 ×2 · · · ×h Ûh be any tensor.)

=sup∥Â∥∞≤1

〈
B ×1 Û1 ×2 · · · ×h Ûh, Â

〉
− ∥Â∥0

=

{
0, ∥B∥U,∞ ≤ 1;

∥(B ×1 Û1 ×2 · · · ×h Ûh, 1)+∥1, otherwise.

STEP2. COMPUTING THE CONJUGATE OF ϕ∗ , ϕ∗∗ . Defining

f(A0) =

{
0, ∥A0∥∞ ≤ 1;

∥(A0, 1)+∥1, otherwise,
we have
ϕ∗∗(C) = supB ⟨C,B⟩ − ϕ∗(B) =supB

〈
C ×1 Û1 ×2 · · · ×h Ûh,B ×1 Û1 ×2 · · · ×h Ûh

〉
− ϕ∗(B)

(Let B̂ = B ×1 Û1 ×2 · · · ×h Ûh be any tensor.)

=supB̂

〈
C ×1 Û1 ×2 · · · ×h Ûh, B̂

〉
− f(B̂) = ∥C∥U,1

over the set S.

4 THE PROOF OF THEOREM 1

Without loss of generality, let us consider
min

Z,UT
k Uk=I(k=s+1,··· ,h)

∥Z∥U,1 s.t. ΨI(M) = Z ×s+1 U
T
s+1 · · · ×h UT

h + E, (4)

where U(Z) = Z ×1 U1 · · · ×s U s.

La(Z, {Uk}hk=s+1,E,Y , {Y k}hk=s+1,W)

=∥Z∥U,1 +
〈
ΨI(M)−Z ×h UT

h ×2 · · · ×s+1 U
T
s+1 − E,Y

〉
+

h∑
k=s+1

〈
UT

kUk − I,Y k

〉
+ ⟨ΨI(E),W⟩

(5)

From (5), i.e., the Lagrangian function of (4), we can get the following KKT conditions by the first
order optimality conditions for (4):

ΨI(M)−X − E = 0;

Y ×s+1 U s+1 ×s+2 · · · ×h Uh ∈ ∂∥Z∥U,1;

UT
kUk = I for k = s+ 1, s+ 2, · · ·h

−F (k)(C(k))
T +Uk(Y k + Y T

k ) = 0;

ΨI(E) = 0;

−ΨIc(Y) = 0;

−ΨI(Y) +W = 0,

(6)

where C = Y ×s+1 U s+1 · · · ×k−1 Uk−1 and F = Z ×h (Uh)
T · · · ×k+1 (Uk+1)

T .
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Proof. (i) By ΨI(M) − X (t+1) − E(t+1) = (µ(t))(−1)(Y(t+1) − Y(t)) and the boundedness of
Y(t), we have lim

t−→∞
ΨI(M)−X (t+1) − E(t+1) = 0.

(ii) From the the optimality of Z(t+1), {U (t+1)
k }hk=s+1, and E(t+1), we have

L(Z(t+1), {U (t+1)
k }hk=s+1,E

(t+1),Y(t), µ(t))

≤L(Z(t+1), {U (t+1)
k }hk=s+1,E

(t+1),Y(t), µ(t)) +
η(t)

2
∥Z(t+1) −Z(t)∥2F

+
η(t)

2

h∑
k=s+1

∥U (t+1)
k −U

(t)
k ∥2F +

η(t)

2
∥E(t+1) − E(t)∥2F

≤L(Z(t), {U (t+1)
k }hk=s+1,E

(t+1),Y(t), µ(t)) +
η(t)

2

h∑
k=s+1

∥U (t+1)
k −U

(t)
k ∥2F

+
η(t)

2
∥E(t+1) − E(t)∥2F

≤L(Z(t), {U (t)
k }hk=s+1,E

(t+1),Y(t), µ(t)) +
η(t)

2
∥E(t+1) − E(t)∥2F

≤L(Z(t), {U (t)
k }hk=s+1,E

(t),Y(t), µ(t))

=L(Z(t), {U (t)
k }hk=s+1,E

(t),Y(t−1), µ(t−1)) +
1

2
(µ(t−1))−2(µ(t−1) + µ(t))∥Y(t) −Y(t−1)∥2F .

(7)

Therefore, we have

∥Z(t+1)∥U,1 ≤ L(Z(t+1), {U (t+1)
k }hk=s+1,E

(t+1),Y(t), µ(t)) + ∥Y(t)∥2F /(µ(t))2

≤ L(Z(t), {U (t)
k }hk=s+1,E

(t),Y(t), µ(t)) + ∥Y(t)∥2F /(µ(t))2

≤ L(Z(1), {U (1)
k }hk=s+1,E

(1),Y(0), µ(0))

+
1

2

t∑
n=1

(µ(n−1))−2(µ(n−1) + µ(n))∥Y(n) −Y(n−1)∥2F + ∥Y(t)∥2F /(µ(t))2

≤ L(Z(1), {U (1)
k }hk=s+1,E

(1),Y(0), µ(0)) +

t∑
n=1

(µ(n−1))−2µ(n)∥Y(n) −Y(n−1)∥2F

+ ∥Y(t)∥2F /(µ(t))2. (8)

From (8),
∑∞

t=1(µ
(t))−2µ(t+1) < +∞, and the boundedness of Y(t), we can know that Z(t) is

bounded. Besides, since ∥U (t)
k ∥F =

√
Ik holds for any positive integer t, U (t)

k and X (t) are bounded.
Therefore, E(t) is bounded from lim

t−→∞
ΨI(M)−X (t+1) − E(t+1) = 0.

(iii) From (7), we have

n∑
t=1

η(t)

2
(∥Z(t+1) −Z(t)∥2F +

h∑
k=s+1

∥U (t)
k −U

(t+1)
k ∥2F + ∥E(t+1) − E(t)∥2F )

−
n∑

t=1

1

2
(µ(t−1))−2(µ(t−1) + µ(t))∥Y(t) −Y(t−1)∥2F

≤L(Z(1), {U (1)
k }hk=s+1,E

(1),Y(0), µ(0))− L(Z(n+1), {U (n+1)
k }hk=s+1,E

(n+1),Y(n), µ(n))

≤L(Z(1), {U (1)
k }hk=s+1,E

(1),Y(0), µ(0)) + ∥Y(n)∥2F /(µ(n))2 (9)

4



Since Y(n) is bounded, there exists M0 and M1 such that
n∑

t=1

η(t)

2
(∥Z(t+1) −Z(t)∥2F +

h∑
k=s+1

∥U (t+1)
k −U

(t)
k ∥2F + ∥E(t+1) − E(t)∥2F )

≤ M0 +

n∑
t=1

1

2
(µ(t−1))−2(µ(t−1) + µ(t))M1 ≤ M0 +

n∑
t=1

(µ(t−1))−2µ(t)M1. (10)

As n approaches infinity, we have
∞∑
t=1

η(t)

2
(∥Z(t+1) −Z(t)∥2F +

h∑
k=s+1

∥U (t+1)
k −U

(t)
k ∥2F + ∥E(t+1) − E(t)∥2F )

≤M0 +

∞∑
t=1

(µ(t−1))−2µ(t)M1 < ∞. (11)

(iv) From (iii) we can see that there exists M2 such that

max(∥Z(t+1) −Z(t)∥2F , ∥E
(t+1) − E(t)∥2F , {∥U

(t+1)
k −U

(t)
k ∥2F }hk=s+1) ≤ (η(t))(−1)M2

2 ,

therefore

∥X (t+1) −X (t)∥F
=∥Z(t+1) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T −Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T

+Z(t) ×h (U
(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T −Z(t) ×h (U

(t)
h )T · · · ×s+1 (U

(t)
s+1)

T ∥F
≤∥Z(t+1) −Z(t)∥F + ∥Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T −Z(t) ×h (U

(t)
h )T · · · ×s+1 (U

(t)
s+1)

T ∥F
=∥Z(t+1) −Z(t)∥F + ∥Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T −Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t)
s+1)

T

+Z(t) ×h (U
(t+1)
h )T · · · ×s+1 (U

(t)
s+1)

T −Z(t) ×h (U
(t)
h )T · · · ×s+1 (U

(t)
s+1)

T ∥F
≤∥Z(t+1) −Z(t)∥F + ∥Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T −Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t)
s+1)

T ∥F
+ ∥Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t)
s+1)

T −Z(t) ×h (U
(t)
h )T · · · ×s+1 (U

(t)
s+1)

T ∥F
≤∥Z(t+1) −Z(t)∥F + ∥U (t+1)

s+1 −U
(t)
s+1∥F ∥Z

(t)∥F + ∥Z(t) ×h (U
(t+1)
h )T · · · ×s+2 (U

(t+1)
s+2 )T

−Z(t) ×h (U
(t)
h )T · · · ×s+2 (U

(t)
s+2)

T ∥F

≤∥Z(t+1) −Z(t)∥F +

h∑
k=s+1

(∥U (t+1)
k −U

(t)
k ∥F )∥Z(t)∥F

≤(η(t))(−1/2)(1 + h∥Z(t)∥F )M2. (12)

From the boundedness of Z(t), there exists M3 such that ∥X (t+1) −X (t)∥2F ≤ (η(t))(−1)M3.

Let D(t+1) = ΨI(M)−X (t+1)−E(t+1). From the above discussion, we know that there exists M4

such that ∥D(t+1) −D(t)∥F ≤ ∥X (t+1) −X (t)∥F + ∥E(t+1) − E(t)∥F ≤ (η(t))(−1/2)M4. Thus,
we have

∥D(t)∥F ≤ (η(t))(−1/2)M4 + ∥D(t+1)∥F ≤ M4

m∑
n=0

(η(t+n))(−1/2) + ∥D(t+1+m)∥F

for any m > 0 and (µ(n))(−1)∥Y(n+1) −Y(n)∥F = ∥D(n+1)∥F ≤ M4

∑+∞
t=n+1(η

(t))(−1/2) when
m −→ ∞.

From lim
n−→∞

µ(n)
∞∑
t=n

(η(t))−1/2 = 0, we have lim
n−→∞

∥Y(n+1) −Y(n)∥F = 0.

(v) From the boundedness of {[Z(t), {U (t)
k }hk=s+1,X

(t),E(t)]}, there exist a subse-

quence {[Z(ti), {U (ti)
k }hk=s+1,E

(ti),Y(ti)]} and [Z∗, {U∗
k}hk=s+1,E

∗,Y∗] such that

5



lim
i→+∞

[Z(ti), {U (ti)
k }hk=s+1,E

(ti),Y(ti)] = [Z∗, {U∗
k}hk=s+1,E

∗,Y∗]. From the optimality

of Z(ti+1) and the convexity of the tensor U1 norm, there exists H(ti+1) ∈ ∂∥Z(ti+1)∥U,1 such that

H(ti+1) + µ(ti)(Z(ti+1) −P(ti) ×s+1 U
(ti)
s+1 ×s+2 · · · ×h U

(ti)
h ) + η(ti)(Z(ti+1) −Z(ti)) = 0

and
H∗ −Y∗ ×s+1 U

∗
s+1 ×s+2 · · · ×h U∗

h = 0,

where lim
i→+∞

H(ti+1) = H∗, and P̂
(ti)

= Ψ(M) − E(ti) +
1

µ(ti)
Y(ti). By the upper semi-

continuous property of the subdifferential Clarke (1983), Y∗ ×s+1 U
∗
s+1 ×s+2 · · · ×h U∗

h = H∗ ∈
∂∥Z∗∥U,1.

From the optimality of U (ti+1)
k , we have (U (ti+1)

k )TU
(ti+1)
k = I , and there exists Y (ti+1)

k such that
0 = µ(ti)(U

(ti+1)
k B(k) −A(k))BT

(k) + η(ti)(U
(ti+1)
k −U

(ti)
k ) +U

(ti+1)
k (Y

(ti+1)
k + (Y

(ti+1)
k )T ),

where B = P̂
(ti)×s+1U

(ti+1)
s+1 · · ·×k−1U

(ti+1)
k−1 and A = Z(ti+1)×hU

(ti)T
h ×h−1 · · ·×k+1U

(ti)T
k+1 .

Thus, we have (U∗
k)

TU∗
k = I and there exists Y ∗

k such that 0 = (U∗
kC

∗
(k))B

∗T
(k)+U∗

k(Y
∗
k+(Y ∗

k)
T )

if i −→ ∞, where B∗ = Z∗ ×h (U∗
h)

T · · · ×k (U∗
k)

T and C∗ = Y∗ ×s+1 U
∗
s+1 · · · ×k−1 U

∗
k−1.

Therefore, 0 = −F∗
(k)(C

∗
(k))

T +U∗
k(−Y ∗

k+(−Y ∗
k)

T ) holds, where F∗ = Z∗×h (U
∗
h)

T · · ·×k+1

(U∗
k+1)

T .

Besides, from the optimality of E(ti+1), we have ΨI(E(ti+1)) = 0 and

ΨIc(µ
(ti)(E(ti+1) +X (ti+1) − 1

µ(ti)
Y(ti)) + η(ti)(E(ti+1) − E(ti))) = 0,

from which we deduce that both of ΨI(E∗) = 0 and 0 = lim
i−→∞

ΨIc(µ
(ti)(E(ti+1) − ΨI(M) +

X (ti+1) − 1

µ(ti)
Y(ti)) = −ΨIc(Y∗) hold. Furthermore, it is evident that there exists W∗ such that

0 = −ΨI(Y∗) +W∗.

5 PROOF OF LEMMA 1 AND THEOREM 2

Lemma 1. For A ∈ RI1×I2×···×Ih , the subgradient of ∥A∥1,U is given as ∂∥A∥1,U =

{U−1(sgn(U(A)) +F |ΨĤ(U(F)) = 0, ∥F∥U,∞ ≤ 1}, where Ĥ denotes the support of U(A).

Proof. We can get the conclusion by
〈
U−1(sgn(U(A))) +F ,A

〉
= ⟨sgn(U(A)),U(A)⟩ +

⟨U(F),U(A)⟩ = ∥A∥1,U and ∥U−1(sgn(U(A)) + F∥U,∞ = ∥sgn(U(A)) + U(F)∥∞ =
max(∥sgn(U(A))∥∞), ∥U(F)∥∞) ≤ 1 Watson (1992).

Lemma 2. If there exists a dual certificate G (that satisfy ΨI(G) = G, PS(G) = Û−1(sgn(Û(M)))
and ∥PS⊥(G)∥Û,∞ ≤ 1 ) and any H obeying ΨI(H) = 0, then

∥M+H∥Û,1 ≥ ∥M∥Û,1 + (1− ∥PS⊥(G)∥Û,∞)∥PS⊥(H)∥Û,1.

Proof. For any Z ∈ ∂∥M∥Û,1, we have ∥M + H∥Û,1 ≥ ∥M∥Û,1 + ⟨Z,H⟩. Since
G = Û−1(sgn(Û(M))) + PS⊥(G) and Z = Û−1(sgn(Û(M))) + PS⊥(Z), we obtain
∥M +H∥Û,1 ≥ ∥M∥Û,1 + ⟨G,H⟩ + ⟨PS⊥(Z − G),H⟩. Therefore we have ∥M +H∥Û,1 ≥
∥M∥Û,1 + ⟨PS⊥(Z − G),H⟩, where ⟨G,H⟩ = 0 due to ΨI(H) = 0.

Since ∥ · ∥Û,1 and ∥ · ∥Û,∞ are dual to each other, there exists ∥Z0∥Û,∞ ≤ 1 such that
⟨Z0, PS⊥(H)⟩ = ∥PS⊥(H)∥Û,1. Hence, by selecting a Z such that PS⊥(Z) = PS⊥(Z0),
we get ⟨PS⊥(Z),H⟩ = ∥PS⊥(H)∥Û,1. Therefore, we have ⟨PS⊥(Z − G),H⟩ ≥ (1 −
∥PS⊥(G)∥Û,∞)∥PS⊥(H)∥Û,1 due to | ⟨PS⊥(G), PS⊥(H)⟩ | ≤ ∥PS⊥(G))∥Û,∞∥PS⊥(H)∥Û,1, thus
completed the proof.
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min
X ,UT

kn
Ukn=I(n=s+1,··· ,h)

∥X ×ks+1 Uks+1 · · · ×kh
Ukh

∥U,1

s.t. ∥ΨI(M)−ΨI(X )∥F ≤ δ (13)

Theorem 2. If the dual certificate G = ΨIPS(PSΨIPS)
−1(Û−1(sgn(Û(M)))) satisfies

∥PS⊥(G)∥Û,∞ ≤ C1 < 1 and PSΨIPS ≽ C2pI , then we can obtain the following inequality:

∥M− X̂∥F ≤ 1

1− C1

√
1/C2 + p

p
I1I2δ + δ, (14)

where X̂ is obtained by (13) and p denotes the sampling rate.

Proof. Let H be H = X̂ − M for brevity. Considering that ∥H∥F = ∥ΨI(H)∥F +
∥ΨIc(H)∥F ≤ δ + ∥ΨIc(H)∥F , we focus solely on the second term ∥ΨIc(H)∥F in the following
discussion.

Utilizing the triangle inequality and Lemma 2, we obtain ∥M+H∥Û,1 ≥ ∥M+ΨIc(H)∥Û,1−
∥ΨI(H)∥Û,1 and ∥M+ΨIc(H)∥Û,1 ≥ ∥M∥Û,1+(1−∥PS⊥(G)∥Û,∞)∥PS⊥(ΨIc(H))∥Û,1. Conse-
quently, we have ∥M∥Û,1 ≥ ∥M+H∥Û,1 ≥ ∥M∥Û,1+(1−∥PSc(G)∥Û,∞)∥PS⊥(ΨIc(H))∥Û,1−
∥ΨI(H)∥Û,1 ≥ ∥M∥Û,1 + (1 − C1)∥PS⊥(ΨIc(H))∥Û,1 − ∥ΨI(H)∥Û,1, which leads to
∥PS⊥(ΨIc(H))∥F ≤ ∥PS⊥(ΨIc(H))∥Û,1 ≤ 1

1−C1
∥ΨI(H)∥Û,1 ≤

√
I1I2

1−C1
∥ΨI(H)∥F ≤

√
I1I2

1−C1
δ.

Additionally, due to PSΨIPS ≽ C2pI , we find ∥ΨI(PS(ΨIc(H)))∥2F =
⟨PSΨIPS(ΨIc(H)), PS(ΨIc(H))⟩ ≥ C2p∥PS(ΨIc(H))∥2F . Moreover, because
of ΨI(PS⊥(ΨIc(H))) + ΨI(PS(ΨIc(H))) = 0, we get C2p∥PS(ΨIc(H))∥2F ≤
∥ΨI(ΨS(ΨIc(H)))∥2F = ∥ΨI(PS⊥(ΨIc(H)))∥2F ≤ ∥PS⊥(ΨIc(H))∥2F .

Consequently, we have ∥ΨIc(H)∥2F = ∥PS⊥(ΨIc(H))∥2F + ∥PS(ΨIc(H))∥2F ≤ ( 1
C2p

+

1)∥PS⊥(ΨIc(H))∥2F ≤ ( 1
C2p

+ 1) I1I2
(1−C1)2

δ2, and thus completed the proof.

6 STABLE TC-SL

Similarly, we can establish stable TC-SL based on the given {Ûkn
}sn=3:

min
X ,UT

kn
Ukn=I(n=s+1,··· ,h)

∥X ×ks+1
Uks+1

· · · ×kh
Ukh

∥(k1,k2)
∗,U

s.t. ∥ΨI(M)−ΨI(X )∥F ≤ δ. (15)

Before proving the stable recovery property of (15), we need to introduce the definition of the
tensor product, which is a direct generalization from high order tensor product defined in Qin
et al. (2022).
Definition 3. (tensor product for given (k1, k2) and U ) For an h-order tensor A ∈ RIk1

×L×···×Ikh

and B ∈ RL×Ik2
×···×Ikh , the tensor product of A and B is defined as A ∗ B = U−1(U(A) ⊙f

U(B)), where [Ā⊙f B̄]:,:,ik3
,ik4

,··· ,ikh
= [Ā]:,:,ik3

,ik4
,··· ,ikh

[B̄]:,:,ik3
,ik4

,··· ,ikh
.

Let A = U ∗ S ∗ VT be t-SVD of A by using tensor product given in the Definition 3, where
VT is defined by [U(VT )]:,:,ik3

,ik4
,··· ,ikh

= [U(V)]T:,:,ik3
,ik4

,··· ,ikh
for all (ik3

, ik4
, · · · , ikh

). For
simplicity, we’ll consider the case of (k1, k2, · · · , kh) = (1, 2, · · · , h) and use ∥ · ∥∗,U and ∥ · ∥2,U
to denote ∥ · ∥(1,2)∗,U and ∥ · ∥(1,2)2,U , respectively.

Lemma 3. For tensor A ∈ RI1×I2×···×Ih with rank(1,2)(U(A)) = r, if its skinny t-SVD is
A = U ∗S ∗VT , then the subgradient of ∥A∥∗,U can be given as ∂∥A∥∗,U = {U ∗VT +W |UT ∗
W = 0,W ∗ V = 0, ∥W∥2,U ≤ 1}.
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Table 1: Comparing various methods on the five video segments at a sampling rate p = 0.3.
Video TNN-DCT TNN-DFT SNN KBR WSTNN HTNN-DCT TC-SL TC-U1

run 9th 25.77 25.73 22.53 27.48 30.54 28.35 30.63 32.79
run 39th 30.66 30.60 29.24 38.03 34.74 34.05 35.01 40.39
run 40th 28.83 28.80 26.13 33.1 32.59 31.73 33.35 36.06
run 42th 27.72 27.86 24.48 31.75 32.08 30.63 31.87 36.88
run 108th 31.64 31.55 29.83 34.13 34.13 33.72 35.57 36.96
Average 28.92 28.91 26.44 32.90 32.82 31.70 33.29 36.62

Proof. We can obtain the conclusion by
〈
U ∗ VT +W ,A

〉
=

〈
U ∗ VT ,U ∗ S ∗ VT

〉
+〈

W ,U ∗ S ∗ VT
〉
= ⟨I,S⟩ = ∥A∥∗,U and ∥U ∗ VT +W∥2,U ≤ 1 Watson (1992).

Suppose M = U0 ∗ S0 ∗ VT
0 is the skinny t-SVD of M. We define T = {U0 ∗ YT +

W ∗ VT
0 ,Y ,W ∈ RI1×r×I3×···×Ih}, PT is the projections onto T, and T⊥ is the orthogo-

nal complement of T. Considering (X̂ , {Ûk}hk=1) as the result obtained by (15), we define
Û(A) = A ×1 Û1 ×2 · · · ×h Ûh. By the property of subgradient ∂∥ · ∥∗,Û and the duality
between ∥W∥2,Û and ∥W∥∗,Û , we can get the following results.

Lemma 4. If there exists a dual certificate G (that satisfy ΨI(G) = G, PT(G) = U0 ∗ VT
0 and

∥PT⊥(G)∥2,Û ≤ 1 ), we have

∥M+H∥∗,Û ≥ ∥M∥∗,Û + (1− ∥PT⊥(G)∥2,Û )∥PT⊥(H)∥∗,Û

for any H obeying ΨI(H) = 0.

Theorem 3. If the dual certificate G = ΨIPT(PTΨIPT)
−1(U0 ∗ VT

0 ) satisfies ∥PT⊥(G)∥2,Û ≤
C1 < 1 and PTΨIPT ≽ C2pI , then we have

∥M− X̂∥F ≤ 1

1− C1

√
1/C2 + p

p
min(I1, I2)δ + δ, (16)

where X̂ is obtained by (15) and p is the sampling rate.

7 COLOR VIDEO INPAINTING

We randomly selected five color video segments with the most rapidly changing frames from category
‘run’ of the HMDB51, including run 9th, run 39th, run 40th, run 42th, and run 108th, and evaluated
all tensor completion methods on the selected video segments, where run xth is used to represent
the x-th video in the category ‘run’. We present the PSNR values of all methods on the five video
segments in Table 1. The results in the table show a significant improvement achieved by our
methods (TC-SL and TC-U1) for color video inpainting. The PSNR results obtained by TC-U1
outperform the third-best method (the second-best method is TC-SL) by more than 3.5 dB on average.
This substantial improvement showcased by TC-U1 in color video inpainting, as reflected in the
higher PSNR values, provides strong evidence for its effectiveness in high-order tensor completion,
particularly in scenarios involving non-smooth changes between tensor slices.
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