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for Information Retrieval (Supplementary)675

Correction of Table 3 in the main body676

We found that the Table 3 in our manuscript contains a couple of typos (mixing MRR with NDCG)677

and have corrected with the below (updated entry is in red color). We will update the table in the final678

version of the paper.679

Table 3: Performance of various DE models on MSMARCO dev set for both re-ranking and retrieval tasks (full
corpus). The teacher model (110.1M parameter BERT-base models as both encoders) for re-ranking achieves
MRR@10 of 36.8 and that for retrieval get MRR@10 of 37.2. The table shows performance (in MRR@10) of
the symmetric DE student model (67.5M or 11.3M transformer as both encoders), and asymmetric DE student
model (67.5M or 11.3M transformer as query encoder and document embeddings inherited from the teacher).

Method
Re-ranking Retrieval

67.5M 11.3M 67.5M 11.3M

Train student directly 27.0 25.0 22.6 18.6
+ Distill from teacher 34.6 30.4 35.0 28.6
+ Inherit doc embeddings 35.2 32.1 35.7 30.3
+ Query embedding matching 36.2 35.1 37.1 35.4

+ Query generation 36.2 34.4 37.2 34.8

Train student using only
embedding matching and
inherit doc embeddings 36.5 33.5 36.6 31.4

+ Query generation 36.5 34.1 36.7 32.8
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(b) Score-based DE to DE distillation

Figure 2: Illustration of score-based distillation for IR (cf. Section 2.2). Fig. 2a describes distillation from a
teacher [CLS]-pooled CE model to a student DE model. Fig. 2b depicts distillation from a teacher DE model
to a student DE model. Here, both distillation setups employ symmetric DE configurations where query and
document encoders of the student model are of the same size.

Here, we state various (per-example) loss functions that most commonly define training objectives681

for IR models. Typically, one hot training with original label is performed using softmax-based682

cross-entropy loss functions:683
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Alternatively, it is also common to employ a one-vs-all loss function based on binary cross-entropy684

loss as follows:685
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Note that di = {di,j}j2[L] can be expanded to include various forms of negatives such as in-batch686

negatives [21] and sampled negatives [3].687

As for distillation (cf. Figure 2), one can define a distillation objective based on the softmax-based688

cross-entropy loss as:6689
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where sti,j := st(qi, di,j) and ssi,j := ss(qi, di,j) denote the teacher and student scores, respectively.690

On the other hand, the distillation objective with the binary cross-entropy takes the form:691
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Finally, distillation based on the meas square error (MSE) loss (aka. logit matching) employs the692

following loss function:693
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. (13)

B Dual pooling details694

In this work, we focus on two kinds of dual pooling strategies:695

• Special tokens-based dual pooling. Let poolCLS and poolSEP denote the pooling operations696

that return the embeddings of the [CLS] and [SEP] tokens, respectively. We define697

embtq (q,d) = poolCLS
�
Enct(õ)

�
,

embtd (q,d) = poolSEP
�
Enct(õ)

�
, (14)

where õ denotes the input token sequence to the Transformers-based encoder, which consists of {698

query, document, special } tokens.699

• Segment-based weighted-mean dual pooling. Let Enct(õ)|Q and Enct(õ)|D denote the final700

query token embeddings and document token embeddings produced by the encoder, respectively.701

We define the proxy query and document embeddings702

embtq (q,d) = meanwt

�
Enct(õ)|Q

�
,

embtd (q,d) = meanwt

�
Enct(õ)|D

�
, (15)

where meanwt(·) denotes the weighted mean operation. We employ the specific weighting scheme703

where each token receives a weight equal to the inverse of the square root of the token-sequence704

length.705

C Deferred details and proofs from Section 3706

In this section we present more precise statements and proofs of Theorem 3.1 and Proposition 3.2707

(stated informally in Section 3 of the main text) along with the necessary background. First, for the708

ease of exposition, we define new notation which will facilitate theoretical analysis in this section.709

Notation. Denote the query and document encoders as f : Q ! Rk and g : D ! Rk for the student,710

and F : Q ! Rk, G : D ! Rk for the teacher (in the dual-encoder setting). With q denoting a query711

and d denoting a document, f(q) and g(d) then denote query and document embeddings, respectively,712

generated by the student. We define F (q) and G(d) similarly for embeddings by the teacher.7713

6It is common to employ temperature scaling with softmax operation. We do not explicitly show the
temperature parameter for ease of exposition.

7Note that, as per the notations in the main text, we have (f, g) = (EncsQ,Enc
s
D) and (F,G) =

(EnctQ,Enc
t
D). Similarly, we have (embtq, emb

t
d) = (f(q), g(d)) and (embtq, emb

t
d) = (F (q), G(d)).
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Theorem C.1 (Formal statement of Theorem 3.1). Let F and G denote the function classes for714

the query and document encoders for the student model, respectively. Given n examples Sn =715

{(qi, di, yi)}i2[n] ⇢ Q ⇥ D ⇥ {0, 1}, let ss(q, d) := sf,g(qi, di) = f(qi)T g(di) be the scores716

assigned to the (qi, di) pair by a dual-encoder model with f 2 F and g 2 G as query and document717

encoders, respectively. Let ` and `d be the binary cross-entropy loss (cf. Eq. 10 with L = 1) and the718

distillation-specific loss based on it (cf. Eq. 12 with L = 1), respectively. In particular,719
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,

where � is the sigmoid function and st := sF,G denotes the teacher dual-encoder model with F and720

Q as its query and document encoders, respectively. Assume that721

1. All encoders f, g, F, and G have the same output dimension.722

2. 9 K 2 (0,1) such that supq2Q max {kf(q)k2, kF (q)k2}  K and723

supd2D max {kg(d)k2, kG(d)k2}  K.724

Then, we have725
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Proof. Note that726
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where (a) follows from Lemma C.3, (b) follows from the definition of En(F,G), and (c) follows727

from Proposition C.2.728
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C.1 Bounding the difference between student’s empirical distillation risk and teacher’s729

empirical risk730

Lemma C.2. Given n examples Sn = {(qi, di, yi)}i2[n] ⇢ Q ⇥ D ⇥ {0, 1}, let sf,g(qi, di) =731

f(qi)T g(di) be the scores assigned to the (qi, di) pair by a dual-encoder model with f and g as732

query and document encoders, respectively. Let ` and `d be the binary cross-entropy loss (cf. Eq. 10733

with L = 1) and the distillation-specific loss based on it (cf. Eq. 12 with L = 1), respectively. In734

particular,735
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,

where � is the sigmoid function and sF,G denotes the teacher dual-encoder model with F and Q as736

its query and document encoders, respectively. Assume that737

1. All encoders f, g, F, and G have the same output dimension k � 1.738

2. 9 K 2 (0,1) such that supq2Q max {kf(q)k2, kF (q)k2}  K and739

supd2D max {kg(d)k2, kG(d)k2}  K.740

Then, we have741
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Proof. We first note that the distillation loss can be rewritten as742
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where �(v) := log[1 + ev] is the softplus function. Similarly, the one-hot (label-dependent) loss can743

be rewritten as744
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as the empirical risk based on the distillation loss, and the empirical risk based on the label-dependent746

loss, respectively. With this notation, the quantity to upper bound can be rewritten as747
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We start by bounding ⇤1 as748
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where at (a) we use the fact that � is a Lipschitz continuous function with Lipschitz constant 1, and749

at (b) we use Cauchy-Schwarz inequality.750

Similarly for ⇤2, we proceed as751

⇤2 =
1

n

X

i2[n]

⇣
`d
�
sf,G(qi, di), s

F,G(qi, di)
�
� `d

�
sF,G(qi, di), s

F,G(qi, di)
�⌘

=
1

n

X

i2[n]

⇣ �
1� �(F (qi)

>G(di))
�
f(qi)

>G(di) + �(�f(qi)
>G(di))

�
�
1� �(F (qi)

>G(di))
�
F (qi)

>G(di)� �(�F (qi)
>G(di))

⌘

=
1

n

X

i2[n]

⇣
G(di)

>(f(qi)� F (qi))
�
1� �(F (qi)

>G(di))
�

+ �(�f(qi)
>G(di))� �(�F (qi)

>G(di))
⌘

 1

n

X

i2[n]

⇣
kG(di)kkf(qi)� F (qi)k+

��f(qi)>G(di)� F (qi)
>G(di)

��
⌘

 2K

n

X

i2[n]

kf(qi)� F (qi)k2. (23)

⇤3 can be bounded as752
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Combining Eq. 21, 22, 23, and 24 establishes the bound in Eq. 18.753

Lemma C.3. Given an example (q, d, y) 2 Q ⇥ D ⇥ {0, 1}, let sf,g(q, d) = f(q)T g(d) be the754

scores assigned to the (q, d) pair by a dual-encoder model with f and g as query and document755

encoders, respectively. Let ` and `d be the binary cross-entropy loss (cf. Eq. 10 with L = 1) and the756

distillation-specific loss based on it (cf. Eq. 12 with L = 1), respectively. In particular,757
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,

where � is the sigmoid function and sF,G denotes the teacher dual-encoder model with F and Q as758

its query and document encoders, respectively. Assume that759

1. All encoders f, g, F, and G have the same output dimension k � 1.760

2. 9 K 2 (0,1) such that supq2Q max {kf(q)k2, kF (q)k2}  K and761

supd2D max {kg(d)k2, kG(d)k2}  K.762

Then, we have763
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where expectation are defined by a joint distribution P(q, d, y) over Q⇥D⇥ {0, 1}764

Proof. Similar to the proof of Proposition C.2, we utilize the fact that765
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where �(v) := log[1 + ev] is the softplus function. Now,766
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⇥���(F (q)>G(d))� y

��⇤ , (27)

which completes the proof.767

C.2 Uniform deviation bound768

Let F denote the class of functions that map queries in Q to their embeddings in Rk via the query769

encoder. Define G analogously for the doc encoder, which consists of functions that map documents in770

D to their embeddings in Rk. To simplify exposition, we assume that each training example consists771

of a single relevant or irrelevant document for each query, i.e., L = 1 in Section 2. Let772

FG = {(q, d) 7! f(q)>g(d) | f 2 F, g 2 G}

Given Sn = {(qi, di, yi) : i 2 [n]}, let N(✏,H) denote the ✏-covering number of a function class H773

with respect to L2(Pn) norm, where khk2L2(Pn)
:= khk2n := 1

n

Pn
i=1 kh(qi, di)k22. Depending on the774

context, the functions in H may map to R or Rd.775
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Proposition C.4. Let st be scorer of a teacher model and `d be a distillation loss function which is776

L`d-Lipschitz in its first argument. Let the embedding functions in F and G output vectors with `2777

norms at most K. Define the uniform deviation778

En(F,G) = sup
f2F,g2G

����
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n

X
i2[n]

`d
�
f(qi)

>g(di), s
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qi,di

�
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f(q)>g(d), stq,d

����� .

For any g⇤ 2 G, we have779

ESnEn(F,G)  ESn

48KL`dp
n

Z 1

0

p
logN(u,F) + logN(u,G) du,

ESnEn(F, {g⇤})  ESn

48KL`dp
n

Z 1

0

p
logN(u,F) du.

Proof of Proposition C.4. We first symmetrize excess risk to get Rademacher complexity, then bound780

the Rademacher complexity with Dudley’s entropy integral.781

For a training set Sn, the empirical Rademacher complexity of a class of functions H that maps782

Q⇥D to R is defined by783

Radn(H) = E� sup
h2H

1

n

nX

i=1

"ih(qi, di),

where {"i} denote i.i.d. Rademacher random variables taking the value in {+1,�1} with equal784

probability. By symmetrization [4] and the fact that `d is L`d -Lipschitz in its first argument, we get785

ESnEn(F,G)  2L`dESnRadn(FG).

Then, Dudley’s entropy integral [see, e.g., 25] gives786

Radn(FG) 
12p
n

Z 1

0

p
logN(u,FG) du.

From Lemma C.5 with KQ = KD = K, for any u > 0,787

N(u,FG)  N
⇣ u

2K
,F

⌘
N

⇣ u

2K
,G

⌘
.

Putting these together,788

ESnEn(F,G) 
24L`dp

n

Z 1

0

p
logN(u/2K,F) + logN(u/2K,G) du. (28)

Following the same steps with G replaced by {g⇤}, we get789

ESnEn(F, {g⇤}) 
24L`dp

n

Z 1

0

p
logN(u/2K,F) du (29)

By changing variable in Eq. 28 and Eq. 29, we get the stated bounds.790

For f : Q ! Rk, g : D ! Rk, define fg : Q⇥D ! R by fg(q, d) = f(q)>g(d).791

Lemma C.5. Let f1, . . . , fN be an ✏-cover of F and g1, . . . , gM be an ✏-cover of G in L2(Pn) norm.792

Let supf2F supq2Q kf(q)k2  KQ and supg2G supd2D kg(d)k2  KD. Then,793

{figj | i 2 [N ], j 2 [M ]}
is a (KQ +KD)✏-cover of FG.794

Proof of Lemma C.5. For arbitrary f 2 F, g 2 G, there exist f̃ 2 {f1, . . . , fN}, g̃ 2 {g1, . . . , gM}795

such that kf � f̃kn  ✏, kg � g̃kn  ✏. It is sufficient to show that kfg � f̃ g̃kn  (KQ +KD)✏.796

Decomposing using triangle inequality,797

kfg � f̃ g̃kn = kfg � fg̃ + fg̃ � f̃ g̃kn
 kfg � fg̃kn + kfg̃ � f̃ g̃kn. (30)
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To bound the first term, using Cauchy-Schwartz inequality, we can write798

1

n

nX

i=1

⇣
f(qi)

>g(di)� f̃(qi)
>g̃(di)

⌘2
 sup

q2Q
kf(q)k22 ·

1

n

nX

i=1

k(g � g̃)(di)k22.

Therefore799

kfg � fg̃kn  KQkg � g̃kn  KQ✏.
Similarly800

kfg̃ � f̃ g̃kn  KDkf � f̃kn  KD✏
Plugging these in Eq. 30, we get801

kfg � f̃ g̃kn  (KQ +KD)✏.

This completes the proof.802

D Evaluation metric details803

For NQ, we evaluate models with full strict recall metric, meaning that the model is required to find a804

golden passage from the whole set of candidates (21M). Specifically, for k � 1, recall@k or R@k805

denotes the percentage of questions for which the associated golden passage is among the k passages806

that receive the highest relevance scores by the model. In addition, we also present results for relaxed807

recall metric considered by Karpukhin et al. [20], where R@k denotes the percentage of questions808

where the corresponding answer string is present in at least one of the k passages with the highest809

model (relevance) scores.810

For both MSMARCO retrieval and re-ranking tasks, we follow the standard evaluation metrics Mean811

Reciprocal Rank(MRR)@10 and normalized Discounted Cumulative Gain (nDCG)@10. For retrieval812

tasks, these metrics are computed with respect to the whole set of candidates passages (8.8M). On813

the other hand, for re-ranking task, the metrics are computed with respect to BM25 generated 1000814

candidate passages –the originally provided– for each query. Please note that some papers use more815

powerful models (e.g., DE models) to generate the top 1000 candidate passages, which is not a816

standard re-ranking evaluation and should not be compared directly. We report 100 ⇥ MRR@10 and817

100 ⇥ nDCG@10, as per the convention followed in the prior works.818

E Query generation details819

We introduced query generation to encourage geometric matching in local regions, which can aid820

in transferring more knowledge in confusing neighborhoods. As expected, this further improves the821

distillation effectiveness on top of the embedding matching in most cases. To focus on the local822

regions, we generate queries from the observed examples by adding local perturbation in the data823

manifold (embedding space). Specifically, we employ an off-the-shelf encoder-decoder model –824

BART-base [27]. First, we embed an observed query in the corresponding dataset. Second, we add a825

small perturbation to the query embedding. Finally, we decode the perturbed embedding to generate826

a new query in the input space. Formally, the generated query x0 given an original query x takes the827

form x0 = Dec(Enc(x) + ✏), where Enc() and Dec() correspond to the encoder and the decoder828

from the off-the-shelf model, respectively, and ✏ is an isotropic Gaussian noise. Furthermore, we also829

randomly mask the original query tokens with a small probability. We generate two new queries from830

an observed query and use them as additional data points during our distillation procedure.831

As a comparison, we tried adding the same size of random sampled queries instead of the ones832

generated via the method described above. That did not show any benefit, which justifies the use of833

our query/question generation method.834

F Experimental details and additional results835

F.1 Additional training details836

Optimization. For all of our experiments, we use ADAM weight decay optimizer with a short warm837

up period and a linear decay schedule. We use the initial learning rate of 10�5 and 2.8⇥ 10�5 for838

experiments on NQ and MSMARCO, respectively. We chose batch sizes to be 128.839
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F.2 Additional results on NQ840

See Table 6 for the performance of various DE models on NQ, as measured by the relaxed recall841

metric.842

Table 6: Relaxed recall performance of various student DE models on NQ dev set, including symmetric DE
student model (67.5M or 11.3M transformer for both encoders), and asymmetric DE student model (67.5M or
11.3M transformer as query encoder and document embeddings inherited from the teacher). All distilled students
used the same teacher (110M parameter BERT-base models as both encoders), with the performance (in terms
of relaxed recall) of Recall@5 = 87.2, Recall@20 = 94.7, Recall@100 = 98.1. Note: the proposed method can
achieve 100% of teacher’s performance even with 2/3rd size of the query encoder, and 92-97% with even 1/10th

size.

Method
Recall@5 Recall@20 Recall@100

67.5M 11.3M 67.5M 11.3M 67.5M 11.3M

Train student directly 62.5 49.7 82.5 73.0 93.7 88.2
+ Distill from teacher 82.7 66.1 92.9 84.0 97.3 93.1
+ Inherit document embeddings 84.7 73.0 93.7 85.4 97.6 93.3
+ Query embedding matching 87.2 77.6 95.0 88.0 97.9 94.3
+ Query generation 87.8 80.3 94.8 89.9 98.0 95.6

Train student only using embedding
matching and inherit doc embeddings 86.4 69.1 94.2 81.6 97.7 89.9

+ Query generation 86.7 72.9 94.4 84.9 97.8 92.2

F.3 Additional results on MSMARCO843

F.3.1 DE to DE distillation844

See Table 7 for DE to DE distillation results on MSMARCO retrieval and re-ranking task, as measured845

by the nDCG@10 metric (see Section 5.2 for the results on MRR@10 metric).846

Table 7: Performance of various DE models on MSMARCO dev set for both re-ranking (original top1000) and
retrieval tasks (full corpus). The teacher model (110.1M parameter BERT-base models as both encoders) for
reranking achieves nDCG@10 of 42.7 and that for retrieval get nDCG@10 44.2. The table shows performance
(in nDCG@10) of the symmetric DE student model (67.5M or 11.3M transformer as both encoders), and
asymmetric DE student model (67.5M or 11.3M transformer as query encoder and document embeddings
inherited from the teacher).

Method
Re-ranking Retrieval

67.5M 11.3M 67.5M 11.3M

Train student directly 32.2 29.7 27.2 22.5
+ Distill from teacher 40.2 35.8 41.3 34.1
+ Inherit doc embeddings 41.0 37.7 42.2 36.2
+ Query embedding matching 42.0 40.8 43.8 41.9

+ Query generation 42.0 40.1 43.8 41.2

Train student using only
embedding matching and
inherit doc embeddings 42.3 39.3 43.3 37.6

+ Query generation 42.3 39.9 43.4 39.2

F.3.2 CE to DE distillation847

See Table 8 for CE to DE distillation results on MSMARCO re-ranking task, as measured by the848

nDCG@10 metric (see Section 5.3 for the results on MRR@10 metric).849

CE to DE distillation with stronger teacher model. Recall that the CE to DE distillation exploration850

in Section 5.3 employs a dual-pooled RoBERTa-base model as the teacher. We now utilize a much851

stronger CE teacher model to further showcase the effectiveness of EmbedDistill for CE to DE852

distillation on MSMARCO re-ranking task. In particular, we convert SimLM [CLS]-pooled CE model8853

to a dual-pooled CE model via standard score-based distillation (cf. Section 2.2). We subsequently854

utilize the resulting dual-pooled version of the SimLM CE model as a teacher to perform CE to DE855

8https://github.com/microsoft/unilm/tree/master/simlm
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Table 8: Performance of CE to DE distillation on MSMARCO re-ranking task, as measured by the nDCG@10
metric. As for the teacher CE models, we consider two kinds of CE models based on two different pooling
mechanism.

Method nDCG@10

[CLS]-pooled teacher 43.0
Dual-pooled teacher 42.8

Standard distillation from [CLS]-teacher 38.8
+Joint matching 38.0

Standard distillation from Dual-pooling teacher 39.2
+Query matching 39.4

distillation via embedding alignment. Similar to DE to DE distillation (cf. Section 5.2), we aim to856

identify the utility of various components of EmbedDistill in our exploration. See Table 9 for the857

results.858

Interestingly, we also explore distilling dual-pooled CE model to an asymmetric DE model. In859

this setting, DE model simply inherits the document embeddings from the CE model. Crucially,860

the inheritance of the document embedding from the dual-pooled CE model can be done offline861

as we feed an empty query along with the document (separated by the [SEP] token) to obtain the862

document embedding from the dual-pooled CE model. Thus, the excellent performance of distillation863

to an asymmetric DE model (which inherits document embeddings from the dual-pooled CE model)864

not only showcases the power of embedding alignment via EmbedDistill but it also highlights the865

effectiveness of dual-pooling method employed at the teacher.866

Table 9: Performance of various DE models obtained via CE to DE distillation on MSMARCO dev set for
re-ranking (original top1000). The teacher model is a dual-pooled version of the SimLM model which achieves
MRR@10 of 40.0 nDCG@10 of 45.8. The table shows performance of the symmetric DE student model (67.5M
as both encoders), and asymmetric DE student model (67.5M transformer as query encoder and document
embeddings inherited from the dual-pooled teacher). Note that the document embeddings used during inheritance
are generated in a query-independent manner from the CE teacher model (with an empty query).

Method MRR@10 nDCG@10

Train student directly 27.0 32.2
+ Distill from teacher 33.2 38.7
+ Inherit doc embeddings 35.4 41.0
+ Query embedding matching 36.1 41.7
+ Query generation 36.3 42.0

Train student using only
embedding matching and
inherit doc embeddings 36.9 42.6

+ Query generation 36.8 42.5

Standard distillation
from [CLS]-teacher 32.8 38.4

F.4 Additional results on BEIR benchmark867

See Table 10 (NDCG@10) and Table 11 (Recall@100) for BEIR benchmark results. All numbers868

are from BEIR benchmark paper [57]. As common practice, non-public benchmark sets9, {BioASQ,869

Signal-1M(RT), TREC-NEWS, Robust04}, are removed from the table. Following the original BEIR870

paper [57] (Table 9 and Appendix G from the original paper), we utilized Capped Recall@100 for871

TREC-COVID dataset.872

9https://github.com/beir-cellar/beir
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Table 10: In-domain and zero-shot retrieval performance on BEIR benchmark [57], as measured by nDCG@10.
All the baseline number in the table are taken from [57]. We exclude (in-domain) MSMARCO from average
computation as common practice.

Model (!) Lexical Sparse Dense

Dataset (#) BM25 DeepCT SPARTA docT5query DPR ANCE TAS-B GenQ
SentenceBERT

(our teacher)
EmbedDistill

(ours)

MS MARCO 22.8 29.6‡ 35.1‡ 33.8‡ 17.7 38.8‡ 40.8‡ 40.8‡ 47.1‡ 46.6‡

TREC-COVID 65.6 40.6 53.8 71.3 33.2 65.4 48.1 61.9 75.4 72.3
NFCorpus 32.5 28.3 30.1 32.8 18.9 23.7 31.9 31.9 31.0 30.7
NQ 32.9 18.8 39.8 39.9 47.4‡ 44.6 46.3 35.8 51.5 50.8
HotpotQA 60.3 50.3 49.2 58.0 39.1 45.6 58.4 53.4 58.0 56.0
FiQA-2018 23.6 19.1 19.8 29.1 11.2 29.5 30.0 30.8 31.8 29.5
ArguAna 31.5 30.9 27.9 34.9 17.5 41.5 42.9 49.3 38.5 34.9
Touché-2020 36.7 15.6 17.5 34.7 13.1 24.0 16.2 18.2 22.9 24.7
CQADupStack 29.9 26.8 25.7 32.5 15.3 29.6 31.4 34.7 33.5 30.6
Quora 78.9 69.1 63.0 80.2 24.8 85.2 83.5 83.0 84.2 81.4
DBPedia 31.3 17.7 31.4 33.1 26.3 28.1 38.4 32.8 37.7 35.9
SCIDOCS 15.8 12.4 12.6 16.2 07.7 12.2 14.9 14.3 14.8 14.4
FEVER 75.3 35.3 59.6 71.4 56.2 66.9 70.0 66.9 76.7 76.9
Climate-FEVER 21.3 06.6 08.2 20.1 14.8 19.8 22.8 17.5 23.5 22.5
SciFact 66.5 63.0 58.2 67.5 31.8 50.7 64.3 64.4 59.8 55.5

AVG (w/o MSMARCO) 43.0 31.0 35.5 44.4 25.5 40.5 42.8 42.5 45.7 44.0

Table 11: In-domain and zero-shot retrieval performance on BEIR benchmark [57], as measured by Recall@100.
All the baseline number in the table are taken from [57]. ‡ indicates in-domain retrieval performance. ⇤
indicates capped recall following original benchmark setup. We exclude (in-domain) MSMARCO from average
computation as common practice.

Model (!) Lexical Sparse Dense

Dataset (#) BM25 DeepCT SPARTA docT5query DPR ANCE TAS-B GenQ
SentenceBERT

(our teacher)
EmbedDistill

(ours)

MS MARCO 65.8 75.2‡ 79.3‡ 81.9‡ 55.2 85.2‡ 88.4‡ 88.4‡ 91.7‡ 90.6‡

TREC-COVID 49.8⇤ 34.7⇤ 40.9⇤ 54.1⇤ 21.2⇤ 45.7⇤ 38.7⇤ 45.6⇤ 54.1⇤ 48.8⇤
NFCorpus 25.0 23.5 24.3 25.3 20.8 23.2 28.0 28.0 27.7 26.7
NQ 76.0 63.6 78.7 83.2 88.0‡ 83.6 90.3 86.2 91.1 89.9
HotpotQA 74.0 73.1 65.1 70.9 59.1 57.8 72.8 67.3 69.7 68.3
FiQA-2018 53.9 48.9 44.6 59.8 34.2 58.1 59.3 61.8 62.0 60.1
ArguAna 94.2 93.2 89.3 97.2 75.1 93.7 94.2 97.8 89.2 87.8
Touché-2020 53.8 40.6 38.1 55.7 30.1 45.8 43.1 45.1 45.3 45.5
CQADupStack 60.6 54.5 52.1 63.8 40.3 57.9 62.2 65.4 63.9 61.3
Quora 97.3 95.4 89.6 98.2 47.0 98.7 98.6 98.8 98.5 98.1
DBPedia 39.8 37.2 41.1 36.5 34.9 31.9 49.9 43.1 46.0 42.6
SCIDOCS 35.6 31.4 29.7 36.0 21.9 26.9 33.5 33.2 32.5 31.5
FEVER 93.1 73.5 84.3 91.6 84.0 90.0 93.7 92.8 93.9 93.8
Climate-FEVER 43.6 23.2 22.7 42.7 39.0 44.5 53.4 45.0 49.3 47.6
SciFact 90.8 89.3 86.3 91.4 72.7 81.6 89.1 89.3 88.9 87.2

AVG (w/o MSMARCO) 63.4 55.9 56.2 64.7 47.7 60.0 64.8 64.2 65.1 63.5
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F.5 Additional results with single-stage trained teachers873

Hereby we evaluate EmbedDistill with a simple single-stage trained teachers instead of teachers874

trained in complex multi-stage frameworks, in order to test the generalizability of the method.875

Similar to Table 1, we conducted an experiment on top of single-stage trained teacher based on876

RoBERTa-base instead of AR2 [63] in the main text. We also changed the student to be based on877

DistilRoBERTa or RoBERTa-mini accordingly for simplicity to use same tokenizer.878

Table 12 demonstrates that EmbedDistill provides a significant boost of the performance on top of879

standard distillation techniques similar to what we observed in Table 1.880

Table 12: Full recall performance of various student DE models on NQ dev set, including symmetric DE student
model, and asymmetric DE student models. All students used the same in-house teacher (124M parameter
RoBERTa-base models as both encoders), with the full Recall@5 = 64.6, Recall@20 = 81.7, and Recall@100 =
91.5.

Method
6-Layer (82M) 4-Layer (16M)

R@5 R@20 R@100 R@5 R@20 R@100

Train student directly 41.9 64.5 82.0 39.5 59.9 76.3
+ Distill from teacher 48.3 67.2 80.9 44.9 61.1 74.8
+ Inherit doc embeddings 56.9 74.3 85.4 47.2 64.0 77.0
+ Query embedding matching 61.8 78.7 89.0 56.7 74.6 85.9
+ Query generation 61.7 79.4 89.6 57.1 75.2 86.7

Train student using only
embedding matching and
inherit doc embeddings 63.7 80.3 90.3 57.9 74.6 85.7

+ Query generation 64.1 80.5 90.4 58.9 76.0 86.6

Furthermore, we also consider a in-house trained teacher (RoBERTa-base) for MSMARCO re-ranking881

task. Table 13 demonstrates a similar pattern to Table 3, providing evidence of generalizability of882

EmbedDistill.883

Table 13: Reranking performance of various DE models on MSMARCO dev set. We utilize a RoBERTa-base in-
house trained teacher achieving MRR@10 of 33.1 and nDCG@10 of 38.8 is used. The table shows performance
of the symmetric DE student model and asymmetric DE student models.

Method
MRR@10 nDCG@10

82M 16M 82M 16M

Train student directly 29.7 26.3 35.2 31.4
+ Distill from teacher 31.6 28.4 37.2 33.5
+ Inherit doc embeddings 32.4 30.2 38.0 35.8
+ Query embedding matching 32.8 31.9 38.6 37.6
+ Query generation 33.0 32.0 38.8 37.7

Train student only using embedding
matching and inherit doc embeddings 32.7 31.8 38.5 37.5

+ Query generation 33.0 31.8 38.9 37.5

These result showcase that our method brings performance boost orthogonal to how teacher was884

trained, whether single-staged or multi-staged.885
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G Embedding analysis886

G.1 DE to DE distillation887

Traditional score matching-based distillation might not result in transfer of relative geometry from888

teacher to student. To assess this, we look at the discrepancy between the teacher and student query889

embeddings for all q, q0 pairs: kembtq � embtq0k � kembsq � embsq0k. Note that the analysis is based890

on NQ, and we focus on the teacher and student DE models based on BERT-base and DistilBERT,891

respectively. As evident from Fig. 3, embedding matching loss significantly reduces this discrepancy.892

G.2 CE to DE distillation893

We qualitatively look at embeddings from CE model in Fig. 4. The embedding embtq,d from [CLS]-894

pooled CE model does not capture semantic similarity between query and document as it is solely895

trained to classify whether the query-document pair is relevant or not. In contrast, the (proxy) query896

embeddings embtq (q,d) from our Dual-pooled CE model with reconstruction loss do not degenerate897

and its embeddings groups same query whether conditioned on positive or negative document together.898

Furthermore, other related queries are closer than unrelated queries. Such informative embedding899

space would aid distillation to a DE model via embedding matching.900

Figure 3: Histogram of teacher-student distance discrepancy in queries.

q1: macy credit card 
      phone number
q2: phone number to 
     experian credit bureau

q4: is phosphorus diatomic

q5: what is a cancer 
     doctor called 

q3: colloids chemistry 
     definition

q6: physiological disease 
     examples 

  All positive
            pairs

All negative
            pairs

[CLS]-pooled CE model

Dual pooled 
CE model

Pairwise distance matrix
Dual pooled [CLS]-pooled

Figure 4: Illustration of geometry expressed by [CLS]-pooled CE and our Dual-pooled CE model on 6 queries
from MSMARCO and 12 passages based on pairwise distance matrix across these 72 pairs. [CLS]-pooled CE
embeddings degenerates as all positive and negative query-document pairs almost collapse to two points and fail
to capture semantic information. In contrast, our Dual-pooled CE model leads to much richer representation that
can express semantic information.
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