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Abstract
To ensure robustness and generalization to real-world scenarios, test-time adap-
tation has been recently studied as an approach to adjust models to a new data
distribution during inference. Test-time batch normalization is a simple and popular
method that achieved compelling performance on domain shift benchmarks by
recalculating batch normalization statistics on test batches. However, in many
practical applications this technique is vulnerable to label distribution shifts. We
propose to tackle this challenge by only selectively adapting channels in a deep
network, minimizing drastic adaptation that is sensitive to label shifts. We find that
adapted models significantly improve the performance compared to the baseline
models and counteract unknown label shifts.

1 Introduction
A commonly cited limitation of deep learning models is the inability to generalize across different
domains [1]. Generalization can be simply defined as the ability of an algorithm to be applied to a
different, yet still related, target domain. Typically, in real-world deployment scenarios models might
encounter data with critical differences, hampering their performance. This decrease in performance
has been observed in multiple areas, including life-threatening contexts, such as autonomous driving
[2, 3] and medical diagnostics [4, 5].

A recently emerging technique to deal with distribution shift is test-time adaptation (TTA) [6, 7],
a type of unsupervised domain adaptation, where unlabeled test data is used to update the model
parameters at test-time, before predictions. It is often assumed that data arrives in batches, and
some studies have proposed a setting of test-time batch adaptation that take advantage of batch-level
information to adapt to the distribution shift [8, 9, 10].

Test-time batch normalization (TTN) [11, 12] replaces batch normalization statistics estimated as
running averages on the training set with the statistics of the test data batch. Despite being a simple
approach, it has been shown to improve robustness under covariate shift, handling particularly well
various cases of image corruptions. Based on that, other TTA approaches apply TTN as a critical
component in their foundation [10, 13]. Alas, most existing TTA methods consider the impact of
covariate shifts only, in many realistic scenarios the label distribution of data can shift from training
to testing.

In this work, we investigate the effect of label distribution shift on TTN and observe that it can lead to
catastrophic failures. Moreover, we notice the effects of adapting different layers in TTN. Motivated
by it, we propose a method to correct for the label distribution shift based on the adaptation of some
channels of the batch normalization layers. Our proposed method is applied for classification of
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Figure 1: We illustrate a mechanism for explaining the observed behaviour under label distribution
shift. We consider one class mean (green) which is shifted towards the data mean, as would be the
case in a highly imbalanced setting. Classes are not well separated in early layers and thus shifts in
any mean are relatively small and non-intrusive. In later layers classes are well separated and a large
shift of points from one mean towards the data mean is likely to cross a decision boundary. Data
points in other classes moving away from the data mean are less likely to cross a decision boundary.

two well-known benchmark natural images datasets (CIFAR-10 [14] and ImageNet-1K [15]). When
deployed in target data with different distribution, our proposed method is effective for imbalanced
adaptation.
2 Hybrid test-time batch normalization
The main idea behind TTA in general, and TTN in particular, is that while label information is
not available at test time, the unlabeled data can provide information to estimate impact of domain
shifts on neural networks. The typical setup is based on data being processed in batches, enabling
assessment of distribution shifts between source and target domains.

In order to implement TTA in these settings, TTN views a neural network f as split into blocks
separated by BatchNorm layers:

f = fK ◦BK−1 ◦ fK−1 ◦ · · · ◦B1 ◦ f1 ◦B0 ◦ f0, (1)

where f0, . . . , fK are blocks (i.e., sub-networks) of hidden layers and B0, . . . , BK−1 are batch
normalization operators, each BatchNorm layer modifies each neural activation by

B(h(x), µk, σk, β, γ) = β
h(x)− µk

σk
+ γ (2)

where β and γ are parameters learned during the training process, and µ and σ represent estimates of
the mean and standard deviation of neuron activation over data.

The main premise of the TTN approach is that changes in the distributions of activations of each
neuron between source and target batches would predominantly be caused by unwanted covariate
shifts, and therefore should be eliminated. However, this does not take into account other distribution
shifts that should affect the output distribution of the network. It is often the case that the distribution
of available labels during the training process will differ from one of unknown labels encountered
at test time. Most successful applications of TTN did not contain such label distribution shift, and
recent work has indicated possible sensitivity of TTN to such shifts [16].

In order to mitigate the risk of adverse effects by TTN, we consider an approach that aims to only
adapt channels or neurons which are sensitive primarily to covariate shift, excluding channels which
are highly sensitive to shifts in the label distribution. Specifically, consider a model with K layers, for
a layer k with source statistics µs

k, σ
s
k and target data statistics µt

k, σ
t
k, computed for each layer using

the input batch. We construct a new set of hybrid statistics, µhybrid
k = mk ⊙ µt

k + (1−mk)⊙ µs
k

and σhybrid
k = mk ⊙ σt

k + (1−mk)⊙ σs
k, where the binary mask mk will aim to not adapt neurons

or channels which are highly sensitive to label shifts.
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We base our selection of the mk on two principles, (a) channels in later layers in neural networks are
more specialized than earlier layers, which perform generic feature extraction [17, 18, 19] (b) channels
in layers which experience largest shifts will tend to be most sensitive to label shift. This intuition is
illustrated in Figure 1. We propose to combine these notions as follows: in each layer the top T% most
changed channels as measured by a metric (e.g. Wasserstein distance) will not be updated, limiting the
most severe changes. The number of channels to adapt is modulated by c(i) where i is the layer. Based
on the notion that later layers should change minimally, the T% of channels that are not updated will
increase with depth. For the rest of the work we will compute distribution shift using the Wasserstein
distance between two gaussians, W 2

2 ({µs, σs}, {µt, σt}) = ∥µs − µt∥2 + σs + σt − 2σsσt, and for
the increase of T% over layers we use a linear ramp c(i) = i

K . The proposed Hybrid-TTN algorithm
is described in the Appendix A.1.
3 Experiments and results
We use two popular benchmarks datasets in our evaluations: CIFAR-10-C and ImageNet-1K-C.

CIFAR-10 and CIFAR-10-C. We use the CIFAR-10 [20] dataset along with CIFAR-10-C [21]. CIFAR-
10 is a small natural image dataset with 50k training images and 10k validation images. CIFAR-10-C
contains corrupted versions of the CIFAR-10 Validation set at varying severities. We train our models
on the uncorrupted dataset.

ImageNet-1K and ImageNet-1K-C. We use the ImageNet-1K [22] dataset along with ImageNet-1K-C
[21]. ImageNet-1K is a large natural image dataset with 1.2 million training images and 50k validation
images. ImageNet-1K-C, similarly to CIFAR-10-C, contains corrupted versions of the ImageNet-1K
validation set at varying severities. Both CIFAR-10-C and ImageNet-1K-C are popular as a measure
of robustness to covariate shift.

Training and architecture details. On CIFAR-10 we train a Resnet-26 model as defined in [23].
We use an SGD optimizer with a batch size of 128. An initial learning rate set to 0.1 is used in
combination with a cosine annealing schedule [24] trained over 200 epochs. Weight decay set to 5e-4
is used along with momentum set to 0.9 [25]. Standard augmentation uses random crop of size 32
with 4 padding, and random horizontal flips. For ImageNet-1K we use a pre-trained Resnet18 model.

Adaptation details. We focus on the TTA setting where adaptation is done on a single batch without
affecting the deployed model. We use a batch size of 500 for the experiments (sampled over multiple
seeds). For the Hybrid-TTN, we use the Wasserstein distance as the metric for measuring the changes
in the adapted channels.
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Figure 2: On CIFAR-10 we adapt models only up to the layer shown on the x-axis, the y-axis showing
the accuracy on the target data. We consider target data with and without corruptions, and for each we
test with different label distributions. We consider label distributions with all (10) classes as well as
5,3, and 1 randomly selected and balanced classes. Note the x-axis starting value is the source model
performance and the ending value the TTN model performance. We observe that adapting some
layers can avoid the catastrophic collapse due to TTN observed on original data while maintaining
the benefits of TTN over the source model in covariate shift.

3.1 Shortcomings of TTN
We first illustrate the potential pitfalls of TTN. Using the CIFAR-10 dataset, we show the effect
of label distribution shift on TTN. Moreover, we perform experiments on layer-limited adaptation
both with and without noise. Our results are shown in in Figure 2. First, we observe that on
the non-corrupted train data the performance of class-imbalanced data degrades gradually at first
and increasingly faster towards the later layers. This suggests that later layers can cause a large
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degradation. Secondly, for corrupted data we observe that adapting up to earlier layers can allow
enough label distribution invariance to provide benefits under covariate shift.

3.2 Evaluating Hybrid-TTN
We now use the proposed Hybrid-TTN method on a variety of target datasets, covariate shifts, and
label distribution shifts. We demonstrate that Hybrid-TTN can provide a good trade-off in being able
to adapt to covariate shift without experiencing catastrophic failure due to label distribution shift.
Our results are shown in Tables 1 and 2. Here we demonstrate various degrees of covariate and label
distribution shift, and the gain or loss as compared to the source model performance. Unlike TTN, it is
able to handle the label distribution shift, in many cases avoiding catastrophic failure, and in a variety
of combinations of severe label and covariate shift improving over the source model. An ablation
study, presented in Appendix A.2, indicate that the random selection of channels does not yield good
outcomes, validating our premise that the selection of channels with the lowest Wasserstein distance
is an effective strategy.

Covariate Shift
Accuracy (% or ∆%)

Label Distribution Shift Original Corruption-1 Corruption-2 Corruption-3 Corruption-4 Corruption-5
Source 94.6 ± 0.8 87.3 ± 9.8 81.7 ± 11.9 74.5 ± 14.8 66.2 ± 17.9 53.8 ± 20.6

Original TTN -1.1 ± 0.6 +2.2 ± 5.7 +5.7 ± 7.5 +10.6 ± 9.7 +16.9 ± 13.4 +24.5 ± 17.7
(10 classes) Hybrid-TTN -1.0 ± 0.2 +1.1 ± 3.0 +3.9 ± 4.5 +7.6 ± 7.3 +12.4 ± 10.5 +17.9 ± 15.7

Source 94.5 ± 3.3 87.2 ± 10.9 80.8 ± 14.7 74.7 ± 18.7 70.0 ± 20.2 48.5 ± 32.2
1 class TTN -73.9 ± 4.3 -68.7 ± 10.1 -61.6 ± 15.0 -56.0 ± 17.9 -52.3 ± 20.0 -30.7 ± 32.9

Hybrid-TTN -7.2 ± 2.9 -7.9 ± 6.4 -6.4 ± 8.5 -3.2 ± 11.9 +0.4 ± 15.8 +5.4 ± 21.9
Source 93.4 ± 1.6 87.2 ± 11.0 80.0 ± 13.3 71.8 ± 15.6 69.0 ± 17.5 52.3 ± 23.0

3 classes TTN -28.0 ± 3.0 -26.7 ± 8.1 -21.2 ± 9.6 -16.3 ± 14.0 -14.4 ± 14.4 +0.2 ± 20.9
Hybrid-TTN -2.2 ± 0.9 -1.0 ± 3.5 +1.6 ± 5.4 +5.1 ± 9.0 +9.1 ± 12.4 +13.0 ± 15.1

Source 94.2 ± 1.1 87.4 ± 8.5 81.2 ± 10.7 75.4 ± 13.8 65.4 ± 19.5 51.9 ± 23.2
5 classes TTN -15.3 ± 1.6 -10.8 ± 5.2 -6.3 ± 6.7 -2.3 ± 10.2 +3.7 ± 15.1 +14.6 ± 21.5

Hybrid-TTN -1.7 ± 0.5 +0.3 ± 2.9 +3.2 ± 5.2 +6.8 ± 7.8 +10.6 ± 10.7 +16.4 ± 16.1

Table 1: CIFAR-10 evaluations on multiple label shifted distributions and covariate shifts (corruptions)
with different degrees of label imbalance. We show the source model accuracy and the improvement
(or degradation) as a delta accuracy. We observe that the proposed method provides benefits over
source model when there is no covariate shift, while avoiding catastrophic failures and allowing
benefits over source when there are label distribution shifts.

Covariate Shift
Accuracy (% or ∆%)

Label Distribution Shift Original Corruption-1 Corruption-2 Corruption-3 Corruption-4 Corruption-5
Source 69.5 ± 2.0 52.5 ± 7.7 42.2 ± 10.6 33.1 ± 14.2 23.0 ± 14.8 14.8 ± 12.6

Original TTN -0.3 ± 0.8 +6.6 ± 3.6 +8.4 ± 5.0 +10.3 ± 6.6 +11.5 ± 6.7 +11.0 ± 7.1
(1000 classes) Hybrid-TTN -0.2 ± 0.8 +2.6 ± 3.1 +3.2 ± 4.3 +4.1 ± 5.6 +4.3 ± 4.1 +4.2 ± 4.1

Source 71.8 ± 18.9 52.6 ± 19.6 45.1 ± 26.2 29.3 ± 21.1 18.6 ± 21.6 15.1 ± 18.9
1 class TTN -70.3 ± 19.1 -51.3 ± 19.7 -43.9 ± 26.2 -28.0 ± 21.2 -17.6 ± 21.5 -14.3 ± 19.1

Hybrid-TTN -11.6 ± 10.8 -10.7 ± 14.0 -10.2 ± 14.8 -9.3 ± 16.3 -5.9 ± 15.1 -4.5 ± 14.0
Source 67.3 ± 8.5 51.7 ± 11.6 43.3 ± 14.2 32.4 ± 15.3 23.8 ± 15.0 15.4 ± 13.5

5 classes TTN -28.0 ± 4.9 -20.2 ± 6.7 -16.2 ± 9.8 -10.9 ± 10.5 -6.1 ± 9.4 -1.4 ± 9.6
Hybrid-TTN -1.9 ± 2.0 +0.3 ± 5.2 +0.6 ± 5.8 +1.7 ± 7.9 +1.2 ± 6.8 +2.3 ± 5.5

Table 2: ImageNet-1K evaluations on multiple label shifted distributions and covariate shifts (cor-
ruptions) with different degrees of label imbalance. We observe that the proposed method provides
benefits over source model when there is covariate shift, while avoiding catastrophic failures when
there are label distribution shifts.

4 Conclusions
We have studied a popular batch-level Test-time Adaptation method in the context of label distribution
shift. We observed that in realistic scenarios where batches at deployment time have label distribution
shifts, this method can fail catastrophically. We proposed a direction for solving this problem to keep
the benefits of adaptation without risking catastrophic failure due to label shift.

Acknowledgments and Disclosure of Funding
This work was supported by grants from the Institute of Data Valorization (IVADO PRF3) to A.T.,
G.W. and E.B. A.T. acknowledges support from the Fonds de Recherche du Québec–Santé (FRQ-
S) and the Fondation de l’Association des Radiologistes du Québec (FARQ) Clinical Research
Scholarship–Senior Salary Award (FRQS-ARQ no. 298509). G.W. acknowledges support from the
Canada CIFAR AI Chair. E.B. and G.W. acknowledge funding from Fonds de recherche du Québec
— Nature et technologies - NOVA (2023-NOVA-329759 and 2023-NOVA-329125).

4



References
[1] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions

and perturbations. In International Conference on Learning Representations, 2019.

[2] Jin Kim, Jiyoung Lee, Jungin Park, Dongbo Min, and Kwanghoon Sohn. Pin the memory: Learning to
generalize semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4350–4360, June 2022.

[3] Vibashan VS, Poojan Oza, and Vishal M Patel. Towards online domain adaptive object detection. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 478–488,
2023.

[4] Michael Blaivas, Laura N Blaivas, and James W Tsung. Deep learning pitfall: Impact of novel ultrasound
equipment introduction on algorithm performance and the realities of domain adaptation. Journal of
Ultrasound in Medicine, 41(4):855–863, 2022.

[5] Yan Wang, Yangqin Feng, Lei Zhang, Zizhou Wang, Qing Lv, and Zhang Yi. Deep adversarial domain
adaptation for breast cancer screening from mammograms. Medical Image Analysis, 73:102147, 2021.

[6] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training with
self-supervision for generalization under distribution shifts. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 9229–9248. PMLR, 13–18 Jul 2020.

[7] Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distribution
shifts. arXiv preprint arXiv:2303.15361, 2023.

[8] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 295–305,
2022.

[9] Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and Jasper
Snoek. Evaluating prediction-time batch normalization for robustness under covariate shift. arXiv preprint
arXiv:2006.10963, 2020.

[10] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. arXiv preprint arXiv:2006.10726, 2020.

[11] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge.
Improving robustness against common corruptions by covariate shift adaptation. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[12] Zachary Nado, Shreyas Padhy, D. Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and Jasper
Snoek. Evaluating prediction-time batch normalization for robustness under covariate shift. CoRR,
abs/2006.10963, 2020.

[13] Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. TTN: A domain-shift aware batch normal-
ization in test-time adaptation. In The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[14] Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05 2012.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[16] Collin Burns and Jacob Steinhardt. Limitations of post-hoc feature alignment for robustness. CoRR,
abs/2103.05898, 2021.

[17] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In European
conference on computer vision, pages 818–833. Springer, 2014.

[18] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale to
imagenet. In International conference on machine learning, pages 583–593. PMLR, 2019.

[19] Edouard Oyallon. Building a regular decision boundary with deep networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5106–5114, 2017.

5



[20] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, 2009.

[21] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In Computer Vision and Pattern Recognition, 2009.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, June 2016.

[24] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. CoRR, abs/1608.03983,
2016.

[25] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.

6



A Appendix

A.1 Hybrid-TTN algorithm

Algorithm block for the proposed Hybrid Test Time Normalization.

Algorithm 1: Hybrid-TTN
Input: Trained network f with K layers; source model statistics {µs

k, σ
s
k}k=1..K ; data batch x0.

1 for k in {1, ...,K} do
2 xk = fk−1(xk−1)

3 µt
k, σ

t
k ← COMPUTE BN STATS FROM xk

4 R = k
K

5 for c in C channels do
6 SCORES[c] =W 2

2 ([µ
s
i ]c, [σ

s
i ]c, [µ

t
i]c, [σ

t
i ]c)

7 end
8 TOPR-IND← COMPUTE TOP-R INDEX(SCORES)
9 mk[TOPR-IND] = 0

10 mk[ ˜TOPR-IND] = 1

11 µhybrid
k = mk ⊙ µt

k + (1−mk)⊙ µs
k

12 σhybrid
k = mk ⊙ σt

k + (1−mk)⊙ σs
k

13 xk = B(xk, µ
hybrid
k , σhybrid

k )
14 end
15 Output:{µhybrid

k , σhybrid
k }k=1..K

A.2 Ablation

In order to validate our proposed method, we perform an ablation study aimed at investigating the
efficacy of channel selection strategy within Hybrid-TTN. Specifically, we explore an alternative
approach where the T% percentage of channels to be adapted per layer are randomly selected, as
opposed to using the sorted distances to determine a threshold (see Section 2).

The results, shown in Table A1, indicate that the random selection of channels does not yield good
outcomes, as the model is severely affected by the distribution shift. This ablation validates our
premise that the selection of channels with the lowest Wasserstein distance is an effective strategy.

Covariate Shift
Accuracy (% or ∆%)

Original Corruption-1 Corruption-2 Corruption-3 Corruption-4 Corruption-5
Source 94.5 ± 3.3 87.2 ± 10.9 80.8 ± 14.7 74.7 ± 18.7 70.0 ± 20.2 48.5 ± 32.2

Hybrid-TTN -7.2 ± 2.9 -7.9 ± 6.4 -6.4 ± 8.5 -3.2 ± 11.9 +0.4 ± 15.8 +5.4 ± 21.9
Random Channel-TTN -21.9 ± 6.9 -25.7 ± 11.6 -22.6 ± 14.3 -18.4 ± 18.3 -13.2 ± 22.6 -5.2 ± 28.1

Table A1: CIFAR-10 ablation. Using random channels instead of the sorted channels in the Hybrid-
TTN. It is notable that selecting random channels is detrimental to the performance of the adapted
models, as one would intuitively expect.
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