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5 APPENDIX A: NOTATIONS AND DEFINITIONS 403

The full list of notations that are used in this paper is in Table 5.

Table 5: Notation of Main Variables
Notation Description

m total number of measurements
n signal dimension
s sparsity level
L size of each bootstrap sample

L/m bootstrap sampling ratio
K number of bootstrap samples / the number of estimates
A the original sensing matrix of size m⇥ n

y the original measurements vector of size m⇥ 1

I a multi-set or set
Ij the j-th Bootstrap sample, j = 1, 2, ...,K, length of Ij = L

(·)[I] takes rows supported on I and throws away elements in I
c

A[Ij ] bootstrapped sampling matrix for bootstrap sample Ij

y[Ij ] measurement vector corresponds to bootstrap sample Ij

xj the j-th column of matrix X;
a feasible solution corresponds to (A[Ij ],y[Ij ])

bxj the optimal solution corresponds to (A[Ij ],y[Ij ])

(·)[i] the i-th row of a matrix/ vector.
x[i] the i-th row of matrix X

kXkp,q takes `q norms on rows of X; stacks those as a vector
and then computes `p norm. The precise form is in (8).

kXk1,2 row sparsity norm
kXk1,1 the `1 norm on vectorized X

404

5.1 MIXED `p,q NORM OF A MATRIX 405

The mixed `p,q norm on matrix X is defined as: 406

kXkp,q = (
nX

i=1

kx[i]T kpq)
1/p

= k(kx[1]T kq, kx[2]
T
kq, ..., kx[n]

T
kq)

T
kp,

(8)

where x[i] denotes the i�th row of matrix X . Intuitively, the mixed `p,q norm essentially takes `q 407

norms on rows of X first; then stacks those as a vector and then computes its `p norm. Note when 408

p = q, the `p,p norm of kXk is simply the `p vector norm of the vectorized X . The row sparsity 409

penalty that we employed `1,2 norm in JOBS is essentially a special case of (8) taking p = 1, q = 2. 410

5.2 MIXED `p,q NORM OVER BLOCK PARTITION OF A VECTOR 411

Similarly to the `p,q norm on matrix in (8), we introduce a more general form: the mixed `p,q 412

norm over a block partition of a vector. The definition for `p,q norm over block partition B = 413
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{B1,B2, ...,Bb} for a vector kxkp,q|B:414

kxkp,q|B =(
bX

i=1

kx[Bi]
T
k
p
q)

1/p

= k(kx[B1]
T
kq, ..., kx[Bb]

T
kq)kp.

(9)

It is not difficult to see that the `p,q norm of a matrix is a special case of `p,q norm over block of the415

vectorized version of that matrix. In fact, the mixed `1,2 norm on matrix X can also be expressed as416

a mixed `1,2|B norm on the vectorized X given B, where the block partition is row-wise.417

6 APPENDIX B: PRELIMINARIES418

We summarize the theoretical results that are needed for understanding and analyzing our algorithm419

mathematically. We offer a quick review of several concepts including block sparsity, Null Space420

Property (NSP) (Cohen et al., 2009), Restricted Isometry Property (RIP) (Candes, 2008) for classical421

sparse signal recovery as well as Block Null Space Property (BNSP) (Gao et al., 2015), Block422

Restricted Isometry Property (BRIP) (Eldar & Mishali, 2009) for block sparse signal recovery.423

6.1 BLOCK SPARSITY424

Since row sparsity is a special case of block sparsity (or more precisely, the non-overlapping group425

sparsity) (Eldar & Mishali, 2009), we therefore can employ the tools from block sparsity to analyze426

our problem. Block sparsity is a generalization of the standard `1 sparsity. To start, we recall its427

definition.428

Definition 8 (Block Sparsity, from (Eldar & Mishali, 2009)) x 2 Rn
is s�block sparse with re-429

spect to a partition B = {B1,B2, ...,Bb} of {1, 2, ..., n} if for x = (x[B1],x[B2], ...,x[Bb]), the430

block sparsity level is kxk0,2|B :=
Pb

i=1 1{kx[Bi]k2 > 0}  s and the relaxation `1,2 norm is431

kxk1,2|B :=
Pb

i=1 kx[Bi]k2.432

The block sparsity level kxk0,2|B counts the number of non-zero blocks of the given a block partition433

B. The `1,2 norm kxk1,2|B :=
Pb

i=1 kx[Bi]k2 is one of its convex relaxations. For the same sparse434

vector x, the block sparsity level is in general smaller than the sparsity level given a non-overlapping435

block partition.436

The `1,2 minimization is a special case of block sparse minimization, with each element in the block437

partition containing all indices of a row. The results of block sparsity such as BNSP, BRIP can be438

useful tools to analyze our algorithm.439

6.2 NULL SPACE PROPERTY (NSP) AND BLOCK-NSP (BNSP)440

The NSP for standard sparse recovery and block sparse signal recovery are summarized below. BNSP441

is obtained from a more general result of BNSP of `p,2 block norm stated in (9) from (Gao et al.,442

2015) taking p = 1.443

Theorem 9 (NSP, from (Cohen et al., 2009)) Every s�sparse signal x 2 Rn
is a unique solution

to P1 : min kxk1 s.t. y = Ax if and only if A satisfies NSP of order s: for any set S ⇢

{1, 2, .., n}, card(S)  s,

kv[S] k1 < kv[Sc] k1,

for all v 2 Null(A)\{0}, where v[S] denotes the vector equals to v on a index set S and zero444

elsewhere.445

Definition 10 (BNSP, from (Gao et al., 2015)) Every s�block sparse signal x with respect to block

assignment B, is a unique solution to min kxk1,2|B s.t. y = Ax if and only if matrix A satisfies

block null space property over B of order s: for any set S ⇢ {1, 2, ..., n} with card(S)  s,

kv[S] k1,2|B < kv[Sc] k1,2|B,
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for all v 2 Null(A)\{0}, where v[S] denotes the vector equal to v on a block index set S and zero 446

elsewhere. 447

6.3 RESTRICTED ISOMETRY PROPERTY (RIP) AND BLOCK-RIP (BRIP) 448

Although NSP directly characterizes the ability of success for sparse recovery, verifying the BNSP 449

condition is computationally intractable and it is also not suitable for quantifying performance in 450

noisy cases since it is a binary (True or False) metric instead of a continuous one. Restricted Isometry 451

Properties: RIP (Candes, 2008) and BRIP (Eldar & Mishali, 2009) are introduced for those purposes. 452

Definition 11 (RIP, from (Candes, 2008)) A matrix A with `2-normalized columns satisfies RIP of 453

order s if there exists a constant �s(A) 2 [0, 1) such that for every s�sparse v 2 Rn
, 454

(1� �s(A))kvk22  kAvk
2
2  (1 + �s(A))kvk22. (10)

Definition 12 (BRIP, from (Eldar & Mishali, 2009)) A matrix A with `2-normalized columns sat- 455

isfies Block RIP with respect to block partition B of order s if there exists a constant �s|B(A) 2 [0, 1) 456

such that for every s�block sparse v 2 Rn
over B, 457

(1� �s|B(A))kvk22  kAvk
2
2  (1 + �s|B(A))kvk22. (11)

If we take the location of each entry as one block, the block sparsity RIP reduces to the standard RIP 458

condition. Therefore, BRIP is a generalization of RIP. 459

6.4 NOISY RECOVERY BOUNDS BASED ON RIP CONSTANTS 460

It is well-known that certain RIP conditions imply NSP conditions for both classical sparse recovery 461

and block sparse recovery. More specifically, if the RIP constant in the order 2s is strictly less than 462
p
2� 1, then it implies that NSP is satisfied in the order of s. This applies to sparse recovery (Candes, 463

2008) and block sparse recovery (Eldar & Mishali, 2009). 464

Stated below are the error bound for conventional sparse recovery based on `1 minimization and the 465

RIP constant as well as for block sparse recovery based on BRIP constant. 466

Theorem 13 (Sparse recovery error bound, from (Candes, 2008)) Let y = Ax
? + z, kzk2  ✏;

x0 is s�sparse and minimizes kx� x
?
k2 over all s� sparse signals, and the vector e represents the

s-sparse approximation error vector e = x
?
� x0. If �2s(A)  � <

p
2� 1 and x

`1 is the solution

of `1 minimization, then

kx
`1 � x

?
k2  C0(�)s

�1/2
kek1 + C1(�)✏,

where C0(·), C1(·) are certain constants, depending on the RIP constant �2s(A). These two constants 467

are in the form of non-decreasing functions of �: C0(�) =
2(1�(1�

p
2)�)

1�(1+
p
2)�

and C1(�) =
4
p
1+�

1�(1+
p
2)�

. 468

Theorem 14 (Block sparse recovery error bound, from (Eldar & Mishali, 2009)) Let

y = Ax
? + z, kzk2  ✏; x0|B is s�block sparse and minimizes kx � x

?
k2 over all

s�block sparse signals, and the vector eB represents the s-sparse approximation error vector

eB = x
?
� x0|B. If �2s|B(A)  � <

p
2� 1, x

`1,2|B is the solution of block sparse minimization,

then

kx
`1,2|B � x

?
k2  C0(�)s

�1/2
keBk1,2|B + C1(�)✏,

where C0(·), C1(·) are the same non-decreasing functions of � as in Theorem 13. 469

6.5 SAMPLE COMPLEXITY FOR I.I.D. GAUSSIAN OR BERNOULLI RANDOM MATRICES 470

With A being a random matrix in which entries are identically and independently distributed (i.i.d.), 471

previous work in (Baraniuk et al., 2008) builds a relationship between the sample complexity for 472

random matrices to a desired RIP constant as a direct implication from Johnson-Lindenstrauss lemma 473

as stated below. 474

13



Under review as a conference paper at ICLR 2021

Theorem 15 (Sample Complexity, from (Baraniuk et al., 2008)) Let entries of A 2 Rm⇥n
from475

Gaussian N (0, 1/m) or Bernoulli 1/
p
m Bern(0.5). Let ⇠, � 2 (0, 1) and assume m �476

���2(s ln(n/s) + ln(⇠�1)) for a universal constant � > 0, then P(�s(A)  �) � 1� ⇠.477

By rearranging the terms in this theorem, the sample complexity can be derived: when m is sufficiently478

large, which is in the order of O(2s ln(n/2s)), there is a high probability that the RIP constant of479

order 2s is sufficiently small.480

7 APPENDIX C: JOBS-NOISELESS, A TWO STEP RELAXATION OF `1481

MINIMIZATION482

JOBS recovers the true sparse solution because it is essentially a relaxation of the original `1483

minimization problem in a multiple vectors fashion. Therefore, it is not so surprising that JOBS484

relaxation can recover the true solution: exactly in the noiseless case and within some neighbourhood485

of the ground truth in noisy case.486

We demonstrate that JOBS is a two-step relaxation procedure of `1 minimization. For a `1 mini-487

mization with a unique solution x
?, the multiple measurement vectors (MMV) equivalence is: for488

j = 1, 2, ..,K489

P1(K) : min kXk1,1 s.t. y = Axj , (12)
where kXk1,1 =

P
i kx[i]

T
k1 as mentioned in Table 5. We show that this MMV form (12)490

is equivalent to the original `1 minimization problem. If the original problem P1 has a unique491

solution x
?, then the solution to the MMV problem P1(K) in (12) yields a row sparse solution492

X
? = (x?,x?, ...,x?). This result can be derived via contradiction. The reverse direction is also493

true: if the MMV problem P1(K) has a unique solution, it implies that the P1 must also have a494

unique solution. Details are stated in Lemma 18 in Appendix 10.1.495

Since the `1,1 norm of X essentially takes `1 norm of its vectorized version, it only enforces the496

sparsity for all elements in X without any structure such as the support consistency across its columns.497

To obtain the JOBS form, We first relax the `1,1 norm in (12) to the `1,2 norm. For all j = 1, 2, ..,K498

P12(K) : min kXk1,2 s.t. y = Axj . (13)
From here, to obtain Noiseless JOBS version, we further drop all constraints that are not in Ij from499

(13) for estimator xj , j = 1, 2, ...,K. Then we obtain the noiseless version of JOBS:500

J12 : min kXk1,2 s.t. y[Ij ] = A[Ij ]xj , (14)
This two-step relaxation process is illustrated in Figure 5.501

P1(K)

P1

P12(K) J12

Relax
objective

k · k1,1 !

k · k1,2

Relax
constraints

Drop Ic
j

Figure 5: JOBS framework is a two-step relaxation of `1 minimization

The noisy version can be obtained similarly. We formulate the MMV version of the original `1502

problem; relax the regularizer from `1,1 norm to `1,2 norm, and then further relax the objective503

function by dropping the constraints that are not on the selected subset Ij for the j�th estimate xj to504

obtain the proposed form J�
12.505

Because JOBS procedure is a two-step relaxation of the `1 minimization, it gives some insight of why506

JOBS algorithm can correctly recover sparse solution, which is important for analyzing the algorithm.507

In Section 2, we will establish the correctness of JOBS algorithm rigorously.508

8 APPENDIX D: PROOFS OF JOBS THEOREMS509

8.1 PROOF OF THEOREM 2: CORRECTNESS OF JOBS510

The first part of Theorem 2 can be directly shown from the BNSP for block sparse minimization511

problems as in (Eldar & Mishali, 2009). We only need to show the procedure to prove the latter512
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part. If BNSP of order s is satisfied for {A[I1],A[I2], ...,A[IK ]}, then each bootstrap matrix A[Ij ] 513

satisfies the Null Space Property (NSP) of order s, which is proven in Appendix 10.2. Consequently, 514

for all j = 1, 2, ...,K, x? also turns out to be the optimal solution to all sub-problems: x
? = 515

argminxj
kxjk1 s.t. y[Ij ] = A[Ij ]xj . 516

For X to be a feasible solution, consider its `1,2 norm, we have:

kXk1,2 =
nX

i=1

(
KX

j=1

(x2
ij))

1/2 =
p

K
nX

i=1

(
1

K

KX

j=1

(x2
ij))

1/2.

By concavity of the square root, we have

kXk1,2

�

p

K
nX

i=1

1

K

KX

j=1

q
x2
ij =

p

K
1

K

KX

j=1

nX

i=1

|xij |

�

p

K
1

K

KX

j=1

min
xj :x1j ,...,xnj

A[Ij ]xj=y[Ij ]

nX

i=1

|xij |

=
p

K
1

K

KX

j=1

min
xj :A[Ij ]xj=y[Ij ]

kxjk1

=
p

Kkx?
k1.

Since X
? = (x?,x?, ...,x?) is a feasible solution and kX?

k1,2 = k(x?,x?, ...,x?)k1,2 = 517
p
Kkx?

k1, it achieves the lower bound. By the uniqueness part of the theorem, we can concluded 518

that X? is the unique solution. Since the JOBS solution takes the average over columns of multiple 519

estimates, we can easily deduce that JOBS returns the correct answer. 520

8.2 PROOF OF THEOREM 4: JOBS PERFORMANCE BOUND OF FOR EXACTLY s�SPARSE 521

SIGNALS 522

If the true solution is exactly s�sparse, the sparse approximation error is zero. Then the noise level 523

of performance only relates to measurements noise. For `1 minimization, z is the noise vector and we 524

use matrix Z = (z[I1], z[I2], ..., z[IK ]) to denote the noise matrix in JOBS. We bound the distance of 525

kZk2,2 to its expected value using Hoeffding’s inequalities stated in Hoeffding (1963). 526

Theorem 16 (Hoeffding’s Inequalities) Let X1, ..., Xn be independent bounded random variables 527

such that Xi falls in the interval [ai, bi] with probability one. Denote their sum by Sn =
Pn

i=1 Xi. 528

Then for any ⇣ > 0, we have: 529

P
n
Sn � ESn � ⇣

o
 exp

�2⇣2Pn
i=1(bi � ai)2

and (15)

530

P
n
Sn � ESn  �⇣

o
 exp

�2⇣2Pn
i=1(bi � ai)2

. (16)

Here, the entire noise vector is z = Ax�y = (z[1], z[2], ..., z[m])T , kzk1 = maxi=1,2,...,m |z[i]| < 531

1. We consider the matrix Z �Z = (⇠ji), where � is the entry-wise product. The quantity that we 532

are interested in kZk2,2 is the sum of all entries in Z � Z. Each element in this matrix Z � Z is 533

drawn i.i.d from the squares of entries in z: {z[1], z[2], ..., z[m]} with equal probability. Let ⌅ be the 534

underlining random variable and ⌅ obeys a discrete uniform distribution: 535

P(⌅ = z2[i]) =
1

m
, i = 1, 2, ...,m. (17)

The lower and upper bound of ⌅ is then 536

0  min
i

z2[i]  ⌅  kzk2
1
. (18)

15
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We use zero as lower bound for ⌅ instead of the minimum value to simplify the terms. The expected537

power of Z is538

EkZk22,2 =
KL

m
kzk

2
2. (19)

Applying Hoeffding’s inequality for any ⌧ > 0 leads to539

P{kZk22,2 � EkZk22,2 � ⌧  0} � 1� exp
�2⌧2

KLkzk4
1

. (20)

Next, let cX be the solution of J�
12. Theorem 14 yields540

P{kcX �X
?
k
2
2,2 � C

2
1(�)kZk

2
2,2  0} = 1. (21)

Let � denote the difference between the solution to the truth solution scaled by the C1 constant.541

Hence, � = 1
C1(�)
kcX �X

?
k2,2 and (21) becomes542

P{�� kZk2,2  0} = 1. (22)

Since Z depends on the choice of I1, I2, ..., IK , we derive the typical performance by studying the
distance of the solution to the expected noise level of JOBS.

P{�2
� EkZk22,2 � ⌧2  0}

= P{�2
� kZk

2
2,2 + kZk

2
2,2 � EkZk22,2 � ⌧2  0}

� P{�2
� kZk

2
2,2  0, kZk22,2 � EkZk22,2 � ⌧2  0}

(The first and the second parts are independent)

= P{�2
� kZk

2
2,2  0}P{kZk22,2 � EkZk22,2 � ⌧2  0}

(using (22) and (20))

� 1� exp
�2⌧4

KLkzk4
1

.

In summary, this procedure results in543

P{�2
 EkZk22,2 + ⌧2} � 1� exp

�2⌧4

KLkzk4
1

. (23)

We can bound the squared error as follows:544

P{�  (EkZk22,2)1/2 + ⌧}

= P{�2
 EkZk22,2 + ⌧2 + 2⌧(EkZk22,2)1/2}

� P{�2
 EkZk22,2 + ⌧2}.

(24)

Combining (23) and (24), we arrive at545

P{�  (EkZk22,2)1/2 + ⌧} � 1� exp
�2⌧4

KLkzk4
1

. (25)

Since f(x) = kx� x
?
k
2
2 is convex, we can apply Jensens’ inequality to establish:546

k
1

K

KX

j=1

bxj � x
?
k
2
2 

1

K

KX

j=1

kbxj � x
?
k
2
2. (26)

The JOBS estimate is averaged column-wise over all estimates: x
J = 1

K

PK
j=1 bxj . Therefore,547

equation (26) is essentially548

P{kxJ
� x

?
k
2
2 �

1

K
kcX �X

?
k
2
2,2  0} = 1. (27)
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Now, we consider the typical performance of the JOBS solution and recall that � denotes the 549

difference between the solution to the truth solution scaled by the C1 constant: � = 1
C1(�)
kcX � 550

X
?
k2,2. We can then bound the probability of error. 551

P{kxJ
� x

?
k2 �

C1(�)
p
K

((EkZk22,2)1/2 + ⌧)  0}

=P{kxJ
� x

?
k2 �

1
p
K
kcX �X

?
k2

+
1
p
K
kcX �X

?
k2 �

C1(�)
p
K

((EkZk22,2)1/2 + ⌧)  0}

�P{kxJ
� x

?
k2 �

1
p
K
kcX �X

?
k2  0,

�  (EkZk22,2)1/2 + ⌧}

=P{kxJ
� x

?
k2 �

1
p
K
kcX �X

?
k2  0}

P{�  (EkZk22,2)1/2 + ⌧} (by (27) and (25))

�1� exp
�2⌧4

KLkzk4
1

.

(28)

Substituting the expected noise level derived in (19) yields

P{kxJ
� x

?
k2  C1(�)(

r
L

m
kzk2 +

⌧
p
K

)}

� 1� exp
�2⌧4

KLkzk4
1

.

By replacing ⌧/
p
K with ⌧ , the quantity on the right hand side of the equation then becomes 552

1� exp �2K⌧4

Lkzk4
1

and we have proved the theorem. 553

8.3 PROOF OF JOBS PERFORMANCE BOUND FOR GENERAL SPARSE SIGNALS 554

Similarly to prove the JOBS performance in the exact s� sparse scenario, we here establish the 555

proofs for the general sparse signals recovery for JOBS algorithm. 556

First, according to the general block sparse recovery Theorem 14, we consider the distance from the 557

recovered solution cX to the truth solution X
?. 558

P{kcX �X
?
k2,2 � C0(�)s

�1/2
p

K|ek1 � C1(�)keZk2,2  0} = 1. (29)

To simplify our notation, we use ✏(e) and ✏(Z) for noise associated with s� sparse approximation 559

error and measurement error. 560

✏(e) = C0(�)s
�1/2
p

K|ek1

✏(Z) = C1(�)keZk2,2.
(30)

We start the analysis: 561

P{kcX �X
?
k
2
2 � (✏2(e) + E✏2(Z) + ⌧2 + 2✏(e)E✏(Z) + 2⌧✏(e))  0}

=P{kcX �X
?
k
2
2 � (✏2(e) + E✏2(Z) + ⌧2 + 2✏(e)E✏(Z) + 2⌧✏(e))

� ✏2(Z) + ✏2(Z)� 2✏(e)✏(Z) + 2✏(e)✏(Z)  0}

�P{kcX �X
?
k
2
2 � (✏2(e) + ✏2(Z) + 2✏(e)✏(Z))  0}

P{✏2(Z)� E✏2(Z)� ⌧2  0,

2✏(e)(✏(Z)� E✏(Z)� ⌧))  0}

(31)
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Next, we establish that if the first condition is true, it implies the second condition: cond1 == True:562

✏2(Z)� E✏2(Z)� ⌧2  0 =) cond2 == True: ✏(Z)� E✏(Z)� ⌧  0.563

✏2(Z)� E✏2(Z)� ⌧2  0

() ✏2(Z)� E✏2(Z)� ⌧2  0

=)✏2(Z)� E✏2(Z)� ⌧2 � 2⌧E✏2(Z)  0

() ✏2(Z)� (E✏2(Z) + ⌧)2  0

() ✏(Z)� E✏(Z)� ⌧  0

(32)

Therefore, the probability of cond2 conditional on cond1 is one. By Bayes Rule, we conclude the564

joint probably of cond1 and cond2 are both True equals to the probability of cond1 being True.565

P{✏2(Z)� E✏2(Z)� ⌧2  0, 2✏(e)(✏(Z)� E✏(Z)� ⌧))  0}

=P{✏2(Z)� E✏2(Z)� ⌧2  0}

P{(✏(Z)� E✏(Z)� ⌧))  0|✏2(Z)� E✏2(Z)� ⌧2  0}

=P{✏2(Z)� E✏2(Z)� ⌧2  0}

(33)

We continue from (31),566

P{kcX �X
?
k
2
2 � (✏2(e) + E✏2(Z) + ⌧2 + 2✏(e)E✏(Z) + 2⌧✏(e))  0}

�P{kcX �X
?
k
2
2 � (✏(e) + ✏2(Z))2  0}

P{✏2(Z)� E✏2(Z)� ⌧2  0}

=P{✏2(Z)� E✏2(Z)� ⌧2  0} (by (20))

� 1� exp
�2⌧4

KLkzk4
1
C1(�)4

.

(34)

Next, we studied the error bound and relax the error bound by dropping one non-negative cross term567

2⌧E✏(Z):568

P{kcX �X
?
k
2
2 � (✏(e) + E✏(Z) + ⌧)2  0}

=P{kcX �X
?
k
2
2 � (✏2(e) + E✏2(Z) + ⌧2 + 2✏(e)E✏(Z) + 2⌧✏(e) + 2⌧E✏(Z))  0}

�P{kcX �X
?
k
2
2 � (✏2(e) + E✏2(Z) + ⌧2 + 2✏(e)E✏(Z) + 2⌧✏(e))  0}

(35)

Here, we started to link the JOBS solution error bound to total the error of all the joint sparsity569

program using the result in in equation (27) derived from Jensen’s inequality of convex function:570

P{kxJ
� x

?
k2 �

1
p
K

(✏(e) + E✏(Z) + ⌧)  0}

=P{KkxJ
� x

?
k
2
2 � (✏(e) + E✏(Z) + ⌧)2  0}

=P{KkxJ
� x

?
k
2
2 � (✏(e) + E✏(Z) + ⌧)2

+ kcX �X
?
k
2
2 � k

cX �X
?
k
2
2}  0}

�P{kcX �X
?
k
2
2 � (✏(e) + E✏(Z) + ⌧)2  0}

P{KkxJ
� x

?
k
2
2 � k

cX �X
?
k
2
2}  0}

=P{kcX �X
?
k
2
2 � (✏(e) + E✏(Z) + ⌧)2  0} (by (27))

� 1� exp
�2⌧4

KLkzk4
1
C1(�)4

.

(36)

From here, we plug in results from previous equations (19),(30):571

P{kxJ
� x

?
k2 � (C0(�)s

�1/2
kek1 + C1(�)

r
L

m
✏+

⌧
p
K

)  0} � 1� exp
�2⌧4

KLkzk4
1
C1(�)4

.

(37)
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By replacing ⌧/
p
K with ⌧/C1(�), the quantity on the right hand side of the equation then becomes 572

1� exp �2K⌧4

Lkzk4
1

and we have proved the theorem. 573

P{kxJ
� x

?
k2  (C0(�)s

�1/2
kek1 + C1(�)(

r
L

m
kzk2 + ⌧))} � 1� exp

�2K⌧4

Lkzk4
1

. (38)

9 APPENDIX E: PROOFS OF BAGGING THEOREMS 574

9.1 PROOF OF BAGGING PERFORMANCE BOUND FOR EXACTLY s-SPARSE SIGNALS 575

Let xB
1 ,xB

2 , ...,xB
K be the solutions of individually solved problems and the solution of the bagging

scheme xB is obtained from their average: xB = 1
K

PK
j=1 x

B
j . We consider the distance to the true

solution x
? from each estimate separately. Here, the desired upper bound is the square root of the

expected power of each noise vector: (Ekz[I]k22)
1/2 =

q
L
mkzk2, where I is a multi-set of size L

with each element randomly sampled from {1, 2, ...,m}. For any ⌧ > 0, we have:

P{kxB
� x

?
k2 � C1(�)((Ekz[I]k

2
2)

1/2 + ⌧)  0}

=P{kxB
� x

?
k2 � C1(�)(((Ekz[I]k

2
2)

1/2 + ⌧)2)1/2  0}

�P{kxB
� x

?
k2 � C1(�)(Ekz[I]k

2
2 + ⌧2)1/2  0}

=P{kxB
� x

?
k
2
2 � C1

2(�)(Ekz[I]k
2
2 + ⌧2)  0}.

Consider using the average of errors for each estimate 1
K

PK
j=1 kx

B
j � x

?
k
2
2, we can establish

P{kxB
� x

?
k2 � C1(�)((Ekz[I]k

2
2)

1/2 + ⌧)  0}

= P{kxB
� x

?
k
2
2 �

1

K

KX

j=1

kx
B
j � x

?
k
2
2

+
1

K

KX

j=1

kx
B
j � x

?
k
2
2 � C1

2(�)(Ekz[I]k
2
2 + ⌧2)  0}

� P{kxB
� x

?
k
2
2 �

1

K

KX

j=1

kx
B
j � x

?
k
2
2  0,

1

K

KX

j=1

kx
B
j � x

?
k
2
2 � C1

2(�)(Ekz[I]k
2
2 + ⌧2)  0}

(from the independence of two terms)

= P{kxB
� x

?
k
2
2 �

1

K

KX

j=1

kx
B
j � x

?
k
2
2  0}

⇥ P{
KX

j=1

kx
B
j � x

?
k
2
2 �KC1

2(�)(Ekz[I]k
2
2 + ⌧2)  0}.

By Jensen’s inequality, the bagging error is smaller than the averaged error of each individual 576

estimator as in (26) and the first term holds with probability 1. Therefore, we have: 577

P{kxB
� x

?
k2 � C1(�)((Ekz[I]k

2
2)

1/2 + ⌧)  0}

�P{
KX

j=1

kx
B
j � x

?
k
2
2 �KC1

2(�)(Ekz[I]k
2
2 + ⌧2)  0}

=1� P{
KX

j=1

kx
B
j � x

?
k
2
2 � KC1

2(�)(Ekz[I]k
2
2 + ⌧2)}.

(39)
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From this procedure, we can reduce the error bound for the bagging algorithm to bound the sum of578

individual errors.579

Let the random variable of error for each bagged estimator be x(I): kx(I)� x
?
k
2
2 , where I denotes580

a bootstrap sample of size L and x(I) is the bagged solution from `1 minimization on the bootstrap581

sample I: x(I) = argmin kxk1 s.t. ky[I] �A[I]k22  ✏(I). The power of all errors for each bagged582

estimators kxB
j � x

?
k
2
2 are realizations generated i.i.d. from the distribution of kx(I)� x

?
k
2
2. We583

proceed with the proof using the following lemma that establishes the tail bound of the sum of i.i.d.584

bounded random variables. It is a generalization of Hoeffding’s inequality and the details of its proof585

can be found in Appendix 10.4.586

Lemma 17 (Tail bound of the sum of i.i.d. bounded Random variables) Let Y1, Y2, ..., Yn be587

i.i.d. observations of bounded random variable Y : a  Y  b and the expectation EY exists.588

Then, for any ⇣ > 0,589

P{
nX

i=1

Yi � n⇣}  exp{�
2n(⇣ � EY )2

(b� a)2
}. (40)

In this case, we consider the lower bound a and the upper bound b of the error kx(I)�x
?
k
2
2. Clearly590

this term is non-negative, hence, we can set a = 0. The upper bound is obtained from the error bound591

of `1-minimization in Theorem 13. For all I:592

P{kx(I)� x
?
k
2
2 � C1

2(�)kz[I]k
2
2  0} = 1. (41)

According to the norm equivalence inequality, we have593

kz[I]k
2
2  (

p

Lkz[I]k1)2  (
p

Lkzk1)2 = Lkzk2
1
. (42)

From this, we can set b = C1
2(�)Lkzk2

1
.594

We can now apply the sum of i.i.d. bounded random variable in Theorem 17 to analyze our problem.595

By (39), the parameter ⇣ in (40) turns out to be: ⇣ = C1
2(�)(Ekz[I]k22 + ⌧2). Hence,596

P{
KX

j=1

kxj � x
?
k
2
2 �K⇣ � 0} 

exp{�
2K(⇣ � Ekx(I)� x

?
k)2

C1
4(�)L2kzk4

1

}.

(43)

To simplify the right hand side, let us consider the expected bagged error: Ekx(I) � x
?
k
2
2 =

1
|mL|

P
I
kx(I)� x

?
k
2
2. Our bound in (41) implies that

P{ 1

|mL|

X

I

kx(I)� x
?
k
2
2 

1

|mL|

X

I

C1
2(�)kzIk

2
2} = 1,

which is equivalent to597

Ekx(I)� x
?
k
2
2 

1

|mL|

X

I

C1
2(�)kz[I]k

2
2

= E C1
2(�)kzIk

2
2 = C1

2(�)EkzIk
2
2.

(44)

From here, it is easy to see that598

⇣ � Ekx(I)� x
?
k
2
2

=C1
2(�)(Ekz[I]k

2
2 + ⌧2)� Ekx(I)� x

?
k
2
2

�C1
2(�)(Ekz[I]k

2
2 + ⌧2)� C1

2(�)EkzIk
2
2 = C1

2(�)⌧2.

(45)

The right hand side of (43) is upper bounded by exp{� 2K⌧4

L2kzk4
1
}. Substituting this result into (39),599

we can obtain the result in our main bagging theorem.600
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9.2 PROOF OF BAGGING PERFORMANCE BOUND OF BAGGING FOR APPROXIMATELY SPARSE 601

SIGNALS 602

In this section, we are working with the case when the true solution x
? is only approximately sparse.

In other words, its sparsity level may exceed s and the s�sparse approximation error is no longer
necessarily zero. Let ✏s denote the sparse approximation error ✏s = C0(�)s�1/2

kek1. The square

root of the expected power of each noise vector is (Ekz[I]k22)
1/2 =

q
L
mkzk2. We consider the

following bound:
P{kxB

� x
?
k2 � (✏s + C1(�)((Ekz[I]k

2
2)

1/2 + ⌧))  0}

=P{kxB
� x

?
k
2
2 � (✏s + C1(�)((Ekz[I]k

2
2)

1/2 + ⌧))2  0}

�P{kxB
� x

?
k
2
2�

((✏s + C1(�)(Ekz[I]k
2
2)

1/2)2 + C1
2(�)⌧2)  0}.

Set ⇣ 0 = (✏s + C1(�)(Ekz[I]k22)
1/2)2 + C1

2(�)⌧2 and consider using the averages of the errors
1
K

PK
j=1 kx

B
j � x

?
k
2
2 as an intermediate term. Repeating the same proving technique as in (39)

yields

P{kxB
� x

?
k
2
2 � ⇣ 0} � P{

KX

j=1

kx
B
j � x

?
k
2
2 �K⇣ 0  0}

= 1� P{
KX

j=1

kx
B
j � x

?
k
2
2 � K⇣ 0}.

According to Lemma 17 , we have: 603

P{
KX

j=1

kx
B
j � x

?
k
2
2 � K⇣ 0} 

exp{�
2K(⇣ 0 � Ekx(I)� x

?
k
2
2)

2

(b0 � a0)2
}.

(46)

Here, a0 = 0 and b0 = (✏s + C1(�)
p
Lkzk1)2. The lower bound a0 is set to zero since the error 604

for any bagged estimator kxB
j � x

?
k
2
2 is non-negative. The upper bound b0 can be obtained using 605

Theorem 13 and substituting in the upper bound of the noise power as derived in (42). 606

Next, consider the term ⇣ 0�Ekx(I)�x
?
k
2
2 = (C0(�)s�1/2

kek1 + C1(�)
q

L
mkzk2)

2 + C1
2(�)⌧2� 607

Ekx(I)� x
?
k
2
2. We can upper bound the expected value of the error of bagged estimator with same 608

approach in (44). From Theorem 13, for all I: 609

P{kx(I)� x
?
k
2
2  (✏s + C1(�)kz[I]k2)

2
} = 1. (47)

Since I takes value of all mL choices with equal probability, the following result is implied from 610

(47): 611

P{Ekx(I)� x
?
k
2
2  E(✏s + C1(�)kz[I]k2)

2
} = 1. (48)

Since f(x) = x2 is a convex function, applying Jensen’s inequality results in
(Ekz[I]k2)

2
 Ekz[I]k

2
2.

Since the square root x1/2 is a increasing function of x, taking square root preserves the sign of the 612

inequality: 613

Ekz[I]k2  (Ekz[I]k
2
2)

1/2. (49)
Then, from (48), we have:

Ekx(I)� x
?
k
2
2  E(✏s + C1(�)kz[I]k2)

2

= ✏2s + C1
2(�)Ekz[I]k

2
2 + 2✏sC1(�)Ekz[I]k2

(by (49))

 ✏2s + C1
2(�)Ekz[I]k

2
2 + 2✏sC1(�)(EkzIk

2
2)

1/2

= (✏s + C1(�)(Ekz[I]k
2
2)

1/2)2.
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Finally, we can bound the term ⇣ 0 � Ekx(I)� x
?
k
2
2:

⇣ 0 � Ekx(I)� x
?
k
2
2

=(✏s + C1(�)(Ekz[I]k
2
2)

1/2)2 + C1
2(�)⌧2 � Ekx(I)� x

?
k
2
2

�((✏s + C1(�)(Ekz[I]k
2
2)

1/2)2 + C1
2(�)⌧2

� (✏s + C1(�)(Ekz[I]k
2
2)

1/2)2 = C1
2(�)⌧2.

One can observe that the upper bound of this difference is C12(�)⌧2, which is the same as in the case
of the exact s�sparse signal in (45). The bound for (46) can be upper bounded by

P{
KX

j=1

kx
B
j � x

?
k
2
2 �K⇣ 0 � 0}  exp{�

2KC1
4(�)⌧4

(b0)2
},

where b0 = (C0(�)s�1/2
kek1 + C1(�)

p
Lkzk1)2.614

10 APPENDIX F: THEORY FOR NSP AND RIP615

10.1 PROOF OF THE REVERSE DIRECTION FOR NOISELESS RECOVERY616

Lemma 18 If the MMV problem P1(K) , K > 1, in (12) has a unique solution, it will be of form617

X
? = (x?,x?, ...,x?). Then, there is a unique solution to P1: x

?
.618

Let us prove the other direction. If P1(K) has a unique solution, the solution must be in the form of619

X
? = (x?,x?, ...,x?), and it implies that P1 has a unique solution x

?.620

If P1(K) has a unique solution, then it is equivalent to say that A satisfied BNSP of order s. For621

all V = (v1,v2, ...,vK) 6= O,vj 2 Null(A), we have 8 S, |S|  s, kV [S]k1,2 < kV [Sc]k1,2.622

This implies that 8 V = (v,0,0, ...,0),v 2 Null(A)\{0}, BNSP is satisfied. Since in this case,623

except the first column, all others are zero and therefore do not contribute any to the group norm.624

Mathematically, for all S, kV [S]k1,2 = kv[S]k1. We, therefore, will have the BNSP of order s,625

implying the NSP for A of order s.626

10.2 JOBS MATRIX SATISFIES BNSP IMPLIES THAT EACH BLOCK MATRIX SATISFIES NSP627

Using a similar analysis as in previous subsection 10.1, we conclude that a block diagonal matrix628

satisfies BNSP of order s implies that each submatrix satisfies NSP of order s. The block diagonal629

JOBS matrix A
J = block_diag(A[I1],A[I2], ...,A[IK ]) satisfies BNSP of order s. Then, for all630

V = (v1,v2, ...,vK) 6= O,vj 2 Null(A[Ij ]), j = 1, 2, ..,K, we have 8 S, |S|  s, kV [S]k1,2 <631

kV [Sc]k1,2. This implies that 8 V = (0, ...,vj , ...,0),vj 2 Null(A[Ij ])\{0}, BNSP is satisfied,632

which essentially states that NSP is statisfied for A[Ij ].633

10.3 PROOF OF PROPOSITION 3634

To prove this proposition, we give an alternative form of RIP and BRIP which are stated in the635

following two propositions. Alternative form of RIP as a function of matrix induced norm is given as636

follows.637

Proposition 19 (Alternative form of RIP) Matrix A has `2-normalized columns, and A 2 Rm⇥n
,638

S ⇢ {1, 2, ..., n} with size smaller or equal to s and AS takes columns of A with indices in S . The639

RIP constant of order s of A, �s(A) is:640

�s(A) = max
S✓{1,2,...,n},|S|s

kA
T
S
AS � Ik2!2, (50)

where I is an identity matrix of size s ⇥ s and k · k2!2 is the induced 2�norm defined as for any641

matrix A, kAk2!2 = supx 6=0
kAxk2

kxk2
.642

This proposition can be directly derived from the definition of RIP constant. Similarly, we can derive643

the alternative form of BRIP constant as a function of matrix induced norm.644
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Proposition 20 (Alternative form of BRIP) Let matrix A have `2-normalized columns and let 645

B = {B1,B2, ...,Bn} be the group sparsity pattern that defines the row sparsity pattern, with Bi 646

contains all indices corresponding to all elements of the i�th row. For S ✓ {1, 2, ..., n}, denote 647

B(S) = {Bi, i 2 S} as the subsets that takes several groups with group indices in S . For A 2 Rm⇥n 648

with Block-RIP constant of order s, �s|B(A) is 649

�s|B = max
S✓{1,2,...,n},|S|s

kA
T
B(S)AB(S) � Ik2!2. (51)

Without loss of generality, let us assume that all columns of A in the original `1 minimization have 650

unit `2 norms. Therefore, A does not have any zero column. Before we calculate the RIP constant of 651

the bootstrapped sensing matrices, we need to perform two operations: remove the duplicate rows 652

from bootstrapped sensing matrices and then normalize the columns. 653

First, we remove the duplicated rows using the weighted scheme. In the noisy recovery problem, 654

for a multi-set I that may contain duplicate, the set U denotes the set of all unique elements. In 655

the constraint optimization, we can express the sum using occurrence times in I for each element 656

using ci. kA[I]x � y[I]k22 =
P

i2I
ka[i]x � y[i]k22 =

P
i2U
k
p
cia[i]x � y[i]k22. Therefore, 657

the original program is equivalent to reducing the duplicated rows in the bootstrap sample using 658
p
ci as weights. Because sampling with replacement is uniform, therefore the expected values of 659

occurrence times for each sample are the same. To denote this operation, we have R 2 Ru2L, 660

R = diag(
p
c1,
p
c2, ...,

p
cu)I[U ], each row of I[U ] correponds to the unique vector of a row and 661

this operation deletes the duplicated rows. 662

Second, we normalize the columns of these matrices using the following normalization procedure. 663

For M 2 Ru⇥n, since the original matrix A does not have any zero column, Q(M) 2 Rn⇥n 664

is a normalization matrix of M such that MQ(M) has `2-normalized columns. Clearly, the 665

normalization matrix Q of M is obtained by: 666

Q(M) = diag(km1k
�1
2 , km2k

�1
2 , ..., kmnk

�1
2 ), (52)

where mj denotes j�th column of M . 667

Similary, we can construct Qjs using (52) to normalize the columns. Let the original JOBS matrix 668

be A
J = block_diag(A[I1],A[I2], ...,A[IK ]). We first normalize each block and then obtain the 669

normalized bootstrapped sensing matrix as: Â[Ij ] = RjA[Ij ]Qj . The original JOBS matrix can be 670

transferred into the normalized version f
A

J = block_diag(Â[I1], Â[I2], ..., Â[IK ]). 671

Now, we consider the BRIP constant for AJ . In this derivation, column selection of a matrix is
written as a right multiplication of the matrix IS(·).

�s|B(A
J ) = �s|B(gAJ )

= max
S✓{1,2,..,n},|S|s

k(gAJ
IB(S))

Tg
A

J
IB(S) � Ik2!2

= max
S✓{1,2,..,n},

|S|s

max
j
k(Â[Ij ]IS)

T
Â[Ij ]IS � Ik2!2

= max
S✓{1,2,..,n},

|S|s

kblock_diag((Â[I1]IS)
T
Â[I1]IS � I,

..., (Â[IK ]IS)
T
Â[IK ]IS � I)k2!2.

The induced 2�norm of a matrix equals to the max singular value of kDk2!2 = �max(D) and if D
is a block diagonal matrix D = diag(D1,D2, ...,DK), then �max(D) = maxj=1,2,...,K �max(Dj).
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Applying this property leads to

�s|B(A
J )

= max
S✓{1,2,..,n},

|S|s

max
j
k(Â[Ij ]IS)

T
Â[Ij ]IS � Ik2!2

=max
j

max
S✓{1,2,..,n},

|S|s

k(Â[Ij ]IS)
T
Â[Ij ]IS � Ik2!2

=max
j

�s(A[Ij ]).

10.4 PROOF OF LEMMA 17672

To prove of this lemma, We would need the Markov’s inequality for non-negative random variables673

here. Let X be a non-negative random variable and suppose that EX exists. For any t > 0, we have:674

P{X > t} 
EX
t

. (53)

We also need the upper bound of the moment generating function (MGF) of the random variable Y .675

Suppose that a  Y  b, then for all t 2 R,676

E exp{tY }  exp{tEY +
t2(b� a)2

8
}. (54)

Back to Lemma 17, for t > 0,

P{
nX

i=1

Yi � n⇣} = P{exp{
nX

i=1

Yi} � exp{n⇣}}

= P{exp{t
nX

i=1

Yi} � exp{tn⇣}}

using the Markov inequality in (53)

 exp{�tn⇣}E{exp{t
nX

i=1

Yi}}

= exp{�tn⇣}E{⇧n
i=1 exp{tYi}}

= exp{�tn⇣}⇧n
i=1E{exp{tYi}}

by upper bound for MGF in (54)

 exp{�tn⇣}(exp{tEY +
t2(b� a)2

8
})n

= exp{�tn⇣ + tnEY +
t2(b� a)2n

8
}.

The right hand side is a convex function with respect to t. Taking the derivative with respect to t and
set it zero, we obtain the optimal t, t? = 4⇣�4EY

(b�a)2 . The right hand side is minimized at value:

exp{�t?n⇣ + t?nEY +
t?2(b� a)2n

8
} = exp{

�2n(⇣ � EY )2

(b� a)2
}.

11 APPENDIX G: PSEUDO-CODE OF JOBS IMPLEMENTATION VIA ADMM677

We present the pseudo-code for solving JOBS optimization problem via ADMM updates. The key678

difference to Bagging and the baseline `1 minimization here is that we employ the soft-thresholding679

operation on each row in JOBS (described in line 6 of Algorithm 1), rather than the common680

entry-wise thresholding operation on each individual sparse-code element in Bagging.681
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Algorithm 1 ADMM for solving JOBS
Require: Sensing matrix and measurements vector (A,y), bootstrap ratio and number of estimates

(L/m,K), sparse balancing ratio �, learning rate ⇢, maximum number of iterations MaxIter.
Initialization: cX0,W 0,U0  O (zero matrix of size n⇥K)

1: generate K bootstrap samples of length L:
{I1, I2, ..., IK}, and its corresponding {A[Ij ],y[Ij ]}

2: for t = 1 : MaxIter do
3: cX update: bxj  

(A[Ij ]
⇤
A[Ij ] + ⇢I)�1(A[Ij ]

⇤
y[Ij ] + ⇢(w � u))

4: cX  ↵cX + (1� ↵)W
5: W update: applying shrinkage operations on each row. For i = 1, 2, .., n,
6: w[i] Shrinkage�/⇢(bx[i]� u[i]),

Shrinkage(x) = max(1� /kxk2, 0)x
7: U update: U = U +X �W

8: end for
9: JOBS solution is the average columns of solution matrix cX: xJ = 1/K

P
bxj

12 APPENDIX H: DISTRIBUTION OF THE UNIQUE NUMBER OF ELEMENTS FOR 682

BOOTSTRAPPING 683

H The bootstrap is essentially sampling with replacement, which is likely to create duplicate in- 684

formation. The performance of sampling with replacement and sampling without replacement 685

(sub-sampling) can be linked by studying the quantity of the number of unique elements. In this 686

section, we give the analytic form of the number of unique samples when there are finite number of 687

measurements m and bootstrap sample L, as well as the form for asymptotic case as m!1. The 688

finite case is studied in a well-known statistics problem – the Birthday Problem (bir). We also show 689

empirically that the finite m case is close in the asymptotic sense. 690

12.0.1 UNIQUE NUMBER OF BOOTSTRAP SAMPLES WITH FINITE SAMPLE m 691

We generate L samples from m samples uniformly at random with replacement (L  m). Let U 692

denote the number of distinct samples among L samples. Clearly we have the number of distinct 693

samples is between [1, L] and the probability mass function is given by (bir), same as the famous 694

Birthday problem in statistics: 695

P(U = u) =

✓
m

u

◆ uX

j=0

(�1)j
✓
u

j

◆
(
u� j

m
)L,

u = 1, 2, ..., L.

(55)

In our problem, we are interested in finding the lower bound of U with certainty 1� ↵ 696

P(U � d) =
LX

U=d

✓
m

u

◆ uX

j=0

(�1)j
✓
u

j

◆
(
u� j

m
)L � 1� ↵. (56)

Therefore for 697

1 � ↵ �
d�1X

u=0

✓
m

u

◆ uX

j=0

(�1)j
✓
u

j

◆
(
u� j

m
)L, (57)

equation (56) is satisfied. 698

12.0.2 ASYMPTOTIC UNIQUE RATIOS OF BOOTSTRAP SAMPLES 699

The theoretically unique percentage for asymptotic case when the number of total number of mea- 700

surements goes to infinity m!1 has been studied in the literature (Weiss, 1958; Mendelson et al., 701
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(a) The mean of unique element ratios under vari-
ous sampling with replacement/ bootstrapping ra-
tios with various number of measurements: m =
50, 75, 100, 150 and theoretical value when m =
1.

(b) The area between of empirical mean plus and
minus one empirical standard deviation. The blue
area and the red area corresponds to the number
of total measurements m = 50 and 150 respec-
tively. The black line is the asymptotic mean and
the asymptotic variance converges to zero

Figure 6: Unique element ratios with various bootstrapping ratios.

2016). In the limit case, the limiting distribution of the number of unique elements U is normal.702

The asymptotic mean for the unique number of elements over total number of measurements m is703

E U
m = 1� exp{�r}, where r is the bootstrap sampling rate. The asymptotic variance of the unique704

ratio is then Var Um = 1
m (exp{�r}� (1 + r) exp{�2r}), which converges to zero when m is large.705
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12.0.3 FINITE NUMBER OF MEASUREMENTS m CASES ARE EMPRICIALLY CLOSE TO THE 706

ASYMPTOTIC CASE 707

We generate 10000 trials of random sampling with replacement and then calculate the empirical 708

unique percentage by counting the ratio of the number of unique elements over the total number of 709

measurements m. The theoretical mean is consistently lower than the mean for a finite m. From the 710

plot, the average unique elements in finite m cases m = 50, 75, 100, 150 are not so different from 711

the theoretical value of the infinite sample size. 712

The empirical mean and the asymptotic value are plotted in Figure 6a, indicating that the numeric 713

unique percentage is not that far from the asymptotic value even when the number of estimates is 714

finite and small. Figure 6b illustrates the region between the mean plus and minus one standard of 715

deviation. As the asymptotic case, the theoretical standard deviation converges to zero. We plotted 716

the cases m = 150 and m = 50 compared to the asymptotic case. For both, the variance is tight and 717

gets smaller when m becomes larger. For the same m, the variance of the unique number of elements 718

become larger when the bootstrap ratio L/m is large. 719

12.1 THE SUB-SAMPLING VARIATION: SUB-JOBS 720

Bootstrapping (random sampling with replacement) creates duplicates within a bootstrap sample. 721

Although it simplifies the analysis, in practice, duplicate information does not add value. One natural 722

extension of the proposed framework is to use sub-sampling: sampling without replacement. The 723

sub-sampling variation of Bagging is known as Subagging estimator in the literature (Bühlmann & 724

Yu, 2000; Bühlmann, 2003). We adopt a similar name for the sub-sampling variation of the proposed 725

method: Sub-JOBS. The only difference to the original scheme is that for each bootstrap sample Ij , 726

L distinct samples are generated by random sampling without replacement from m measurements. 727

In this paper, all the theoretical results are for the bootstrapping version for simplicity of presentation. 728
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