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5 APPENDIX A: NOTATIONS AND DEFINITIONS

The full list of notations that are used in this paper is in Table

Table 5: Notation of Main Variables

Notation | Description

m total number of measurements
n signal dimension
s sparsity level
L size of each bootstrap sample
L/m bootstrap sampling ratio
K number of bootstrap samples / the number of estimates
A the original sensing matrix of size m x n
Yy the original measurements vector of size m x 1
z a multi-set or set
Z; the j-th Bootstrap sample, j = 1,2,..., K, lengthof Z; = L
(1)[Z] | takes rows supported on Z and throws away elements in Z°©
A[Z;] bootstrapped sampling matrix for bootstrap sample Z;
Y[Z;] measurement vector corresponds to bootstrap sample Z;
T; the j-th column of matrix X;
a feasible solution corresponds to (A[Z;], y[z,])
x; the optimal solution corresponds to (A[Z;], y(z;])
()[4 the i-th row of a matrix/ vector.
x[i] the ¢-th row of matrix X

| X||p,q | takes £, norms on rows of X; stacks those as a vector

and then computes £, norm. The precise form is in (1§|)
1X]
1|

1,2 | row sparsity norm

1,1 | the ¢; norm on vectorized X

5.1 MIXED {,, ; NORM OF A MATRIX

The mixed ¢, ;, norm on matrix X is defined as:

1X llpq = Q Nl TIIE) ™
=1

= () g, 12217 [|gs s Nleln) T llg) T [l

®)

where x[i] denotes the i—th row of matrix X. Intuitively, the mixed ¢, ; norm essentially takes ¢,
norms on rows of X first; then stacks those as a vector and then computes its £, norm. Note when
p = ¢, the £, , norm of | X|| is simply the £, vector norm of the vectorized X. The row sparsity

penalty that we employed ¢; » norm in JOBS is essentially a special case of (§)) taking p = 1,q = 2.

5.2 MIXED ¢, , NORM OVER BLOCK PARTITION OF A VECTOR

Similarly to the £, , norm on matrix in (8), we introduce a more general form: the mixed £, ,
norm over a block partition of a vector. The definition for £, , norm over block partition B =
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{Bi,Ba, ..., By} for a vector |||, 45

b

lp,q5 :(Z Hw[Bi]THg)l/p

i=1

= [[(12[B1)T gy --os 12 Bo]T )l

€))

It is not difficult to see that the ¢, ; norm of a matrix is a special case of £, , norm over block of the
vectorized version of that matrix. In fact, the mixed ¢; > norm on matrix X can also be expressed as
a mixed £} 53 norm on the vectorized X given B3, where the block partition is row-wise.

6 APPENDIX B: PRELIMINARIES

We summarize the theoretical results that are needed for understanding and analyzing our algorithm
mathematically. We offer a quick review of several concepts including block sparsity, Null Space
Property (NSP) (Cohen et al., 2009), Restricted Isometry Property (RIP) (Candes, [2008) for classical
sparse signal recovery as well as Block Null Space Property (BNSP) (Gao et al., 2015), Block
Restricted Isometry Property (BRIP) (Eldar & Mishali| [2009) for block sparse signal recovery.

6.1 BLOCK SPARSITY

Since row sparsity is a special case of block sparsity (or more precisely, the non-overlapping group
sparsity) (Eldar & Mishali, 2009), we therefore can employ the tools from block sparsity to analyze
our problem. Block sparsity is a generalization of the standard ¢; sparsity. To start, we recall its
definition.

Definition 8 (Block Sparsity, from (Eldar & Mishali,2009)) x € R" is s—block sparse with re-
spect to a partition B = {By,Ba,...,By} of {1,2,....,n} if for x = (x[Bi], T[Bs), ..., T[Bs]), the
block sparsity level is |x|[g 25 := Z?Zl ||zl > 0} < s and the relaxation (12 norm is

b
]l 218 := 225y [&B:]l2-

The block sparsity level ||z||o,2)3 counts the number of non-zero blocks of the given a block partition

B. The {1 5 norm ||z||1 o5 := Zle ||z (B.]]|2 is one of its convex relaxations. For the same sparse
vector x, the block sparsity level is in general smaller than the sparsity level given a non-overlapping
block partition.

The ¢; » minimization is a special case of block sparse minimization, with each element in the block
partition containing all indices of a row. The results of block sparsity such as BNSP, BRIP can be
useful tools to analyze our algorithm.

6.2 NULL SPACE PROPERTY (NSP) AND BLOCK-NSP (BNSP)

The NSP for standard sparse recovery and block sparse signal recovery are summarized below. BNSP
is obtained from a more general result of BNSP of £, » block norm stated in (9) from (Gao et al.|
20135) taking p = 1.

Theorem 9 (NSP, from (Cohen et al., 2009)) Every s—sparse signal x € R™ is a unique solution
to Py : min||x||1 sty = Ax if and only if A satisfies NSP of order s: for any set S C
{1,2,..,n},card(S) < s,

[v[S] lr < lvS] 1,
for all v € Null(A)\{0}, where v[S] denotes the vector equals to v on a index set S and zero
elsewhere.

Definition 10 (BNSP, from (Gao et al.,[2015)) Every s—block sparse signal x with respect to block
assignment B, is a unique solution to min ||x |, o3 s.t. y = Ax if and only if matrix A satisfies
block null space property over BB of order s: for any set S C {1,2,...,n} with card(S) < s,

[v[S] 1,215 < [[v[S°] ||1,2/5

12
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forall v € Null(A)\{0}, where v[S] denotes the vector equal to v on a block index set S and zero
elsewhere.

6.3 RESTRICTED ISOMETRY PROPERTY (RIP) AND BLOCK-RIP (BRIP)

Although NSP directly characterizes the ability of success for sparse recovery, verifying the BNSP
condition is computationally intractable and it is also not suitable for quantifying performance in
noisy cases since it is a binary (True or False) metric instead of a continuous one. Restricted Isometry
Properties: RIP (Candes| [2008) and BRIP (Eldar & Mishali, 2009) are introduced for those purposes.

Definition 11 (RIP, from (Candes,[2008)) A matrix A with {3-normalized columns satisfies RIP of
order s if there exists a constant 65(A) € [0, 1) such that for every s—sparse v € R™,

(1= 05(A)[v]3 < [|Av]3 < (1+65(A))[|v]3. (10)

Definition 12 (BRIP, from (Eldar & Mishali, 2009)) A matrix A with £o9-normalized columns sat-
isfies Block RIP with respect to block partition B of order s if there exists a constant 6, 3(A) € [0,1)
such that for every s—block sparse v € R™ over B,

(1= dys(A) o3 < [Av[3 < (1 + d55(A)) |03 (11)

If we take the location of each entry as one block, the block sparsity RIP reduces to the standard RIP
condition. Therefore, BRIP is a generalization of RIP.

6.4 NOISY RECOVERY BOUNDS BASED ON RIP CONSTANTS

It is well-known that certain RIP conditions imply NSP conditions for both classical sparse recovery
and block sparse recovery. More specifically, if the RIP constant in the order 2s is strictly less than
v/2 — 1, then it implies that NSP is satisfied in the order of s. This applies to sparse recovery (Candes,
2008)) and block sparse recovery (Eldar & Mishalil [2009).

Stated below are the error bound for conventional sparse recovery based on #; minimization and the
RIP constant as well as for block sparse recovery based on BRIP constant.

Theorem 13 (Sparse recovery error bound, from (Candes|,2008)) Lery = Ax* + z, ||z||2 < €
X is s—sparse and minimizes ||x — x* || over all s— sparse signals, and the vector e represents the
s-sparse approximation error vector € = x* — . If d25(A) < § < /2 — 1 and % is the solution
of {1 minimization, then

e — a*]l> < Co(3)s ™2y + Ca(d)e,

where Co(-), C1(-) are certain constants, depending on the RIP constant d35(A). These two constants

20=0v20) g0, (5) = —AVAE5_

are in the form of non-decreasing functions of 0: Co(9) = (1v3)s ()5

Theorem 14 (Block sparse recovery error bound, from (Eldar & Mishali, 2009)) Let

y = Ax* + 2z, [|z]2 < € xgp is s—block sparse and minimizes |[x — x*|2 over all
s—block sparse signals, and the vector eg represents the s-sparse approximation error vector
e =x* — zop. If 0258(A) <0 < V2 — 1, 21218 s the solution of block sparse minimization,
then

2212 — a*[|2 < Co(8)s™ /2 (lenll1 215 + Cr()e,
where Co(-),C1(+) are the same non-decreasing functions of 6 as in Theorem|[I3]
6.5 SAMPLE COMPLEXITY FOR L.I.D. GAUSSIAN OR BERNOULLI RANDOM MATRICES
With A being a random matrix in which entries are identically and independently distributed (i.i.d.),
previous work in (Baraniuk et al.,2008) builds a relationship between the sample complexity for

random matrices to a desired RIP constant as a direct implication from Johnson-Lindenstrauss lemma
as stated below.
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Theorem 15 (Sample Complexity, from (Baraniuk et al.,2008)) Let entries of A € R™*™ from
Gaussian N (0,1/m) or Bernoulli 1/y/m Bern(0.5). Let £,6 € (0,1) and assume m >
B8 2(sln(n/s) + In(¢71)) for a universal constant 3 > 0, then P(65(A) < §) > 1 — &

By rearranging the terms in this theorem, the sample complexity can be derived: when m is sufficiently
large, which is in the order of O(2s1n(n/2s)), there is a high probability that the RIP constant of
order 2s is sufficiently small.

7 APPENDIX C: JOBS-NOISELESS, A TWO STEP RELAXATION OF ¢,
MINIMIZATION

JOBS recovers the true sparse solution because it is essentially a relaxation of the original ¢;
minimization problem in a multiple vectors fashion. Therefore, it is not so surprising that JOBS
relaxation can recover the true solution: exactly in the noiseless case and within some neighbourhood
of the ground truth in noisy case.

We demonstrate that JOBS is a two-step relaxation procedure of ¢; minimization. For a ¢; mini-
mization with a unique solution x*, the multiple measurement vectors (MMV) equivalence is: for
i=12,.,K

P1(K) :min || X|11 st y= Az, (12)
where | X |11 = 3, |=[i]T||1 as mentioned in Table |§ We show that this MMV form (12)
is equivalent to the original ¢; minimization problem. If the original problem P; has a unique
solution x*, then the solution to the MMV problem P (K) in @) yields a row sparse solution
X* = (x*,x*,...,x*). This result can be derived via contradiction. The reverse direction is also
true: if the MMV problem P; (K) has a unique solution, it implies that the Py must also have a
unique solution. Details are stated in Lemma [I8]in Appendix [10.1]

Since the ¢; ; norm of X essentially takes ¢; norm of its vectorized version, it only enforces the
sparsity for all elements in X without any structure such as the support consistency across its columns.
To obtain the JOBS form, We first relax the ¢; ; norm in (12) to the ¢; o norm. Forall j =1,2,.., K

Pi2(K): min||X|12 sty = Ax;. (13)

From here, to obtain Noiseless JOBS version, we further drop all constraints that are not in Z; from
(13) for estimator «;, j = 1,2, ..., K. Then we obtain the noiseless version of JOBS:

J12 : min ||X||172 s.t. y(z;] = A[Ij]acj, (14)

This two-step relaxation process is illustrated in Figure 5]

Relax Relax
objective constraints

-l —

Drop Z7

[ Fee

Figure 5: JOBS framework is a two-step relaxation of ¢; minimization

The noisy version can be obtained similarly. We formulate the MMV version of the original ¢,
problem; relax the regularizer from ¢; ; norm to ¢; » norm, and then further relax the objective
function by dropping the constraints that are not on the selected subset Z; for the j—th estimate x; to

obtain the proposed form J3,.

Because JOBS procedure is a two-step relaxation of the /; minimization, it gives some insight of why
JOBS algorithm can correctly recover sparse solution, which is important for analyzing the algorithm.
In Section 2} we will establish the correctness of JOBS algorithm rigorously.

8 APPENDIX D: PROOFS OF JOBS THEOREMS

8.1 PROOF OF THEOREM[2} CORRECTNESS OF JOBS

The first part of Theorem [2 can be directly shown from the BNSP for block sparse minimization
problems as in (Eldar & Mishali, 2009). We only need to show the procedure to prove the latter

14
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part. If BNSP of order s is satisfied for { A[Z,], A[Z,], ..., A[Zk]}, then each bootstrap matrix A[Z;]

satisfies the Null Space Property (NSP) of order s, which is proven in Appendix|10.2. Consequently,
for all j = 1,2,..., K, * also turns out to be the optimal solution to all sub-problems: x

argmin, |[z;[l1 st yiz;] = A[Lj]z;.

For X to be a feasible solution, consider its ¢; 5 norm, we have:

n K

XN =D (D (@)= fZ

i=1 j=1
By concavity of the square root, we have

[ X |12

>fz Z[’f}

1/2
R

K n

DD il

j=11i=1

>\/7 Zw 11], > Tnj Z|l’,]|

J 1A[I loj= y[I’]

1
— VK~ i /
\/7[( jglmj:A[IIjl]l;’?:y[Ij] ||$j|
= VK|z*|:.

1

Since X* = (xz*,x*,...,x*) is a feasible solution and || X*[|12 = |[(x*,x*,...,x*)
VK ||z*||1, it achieves the lower bound. By the uniqueness part of the theorem, we can concluded
that X * is the unique solution. Since the JOBS solution takes the average over columns of multiple
estimates, we can easily deduce that JOBS returns the correct answer.

*

8.2 PROOF OF THEOREM [4} JOBS PERFORMANCE BOUND OF FOR EXACTLY S—SPARSE

SIGNALS

If the true solution is exactly s—sparse, the sparse approximation error is zero. Then the noise level
of performance only relates to measurements noise. For £; minimization, z is the noise vector and we

use matrix Z = (z(Z.], 2[Z:], ..., Z[Zx]) to denote the noise matrix in JOBS. We bound the distance of

| Z||2,2 to its expected value using Hoeffding’s inequalities stated in|Hoeffding|(1963).

Theorem 16 (Hoeffding’s Inequalities) Ler X1, ..., X,, be independent bounded random variables

such that X; falls in the interval [a;, b;) with probability one. Denote their sum by S, = > | X;.

Then for any ¢ > 0, we have:

]P’{Sn —ES, > g} < exp

P{Sn _ES, < fg} < exp

Here, the entire noise vectoris z = Az —y = (2[1], 2[2], ..., 2[m]) 7, || 2| 0 = max;—1 2

Z?:1(bi -

92
26 ) and (15)
,242
ST (b —ar)? (1o
..... m |2[i]] <

0o. We consider the matrix Z o Z = (&;;), where o is the entry-wise product. The quantity that we
are interested in || Z||2 2 is the sum of all entries in Z o Z. Each element in this matrix Z o Z is

drawn i.i.d from the squares of entries in z: {z[1], z[2], ..., 2[m]

underlining random variable and = obeys a discrete uniform distribution:

P(E= [z])f—1712
The lower and upper bound of = is then

0 <minz’[i] <E < ||z
T

15

} with equal probability. Let = be the
a7
S (18)
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We use zero as lower bound for = instead of the minimum value to simplify the terms. The expected

power of Z is

KL
—|zl3. (19)
m

EHZ ||§2 =
Applying Hoeffding’s inequality for any 7 > 0 leads to

—272

P{|Z|3,—E|Z|3,—7<0}>1—exp———r. 20
{ll ||2,2 l ||2,2 T <0} > exp KL|z||% (20)

Next, let X be the solution of J 2. Theoremyields
P{|X — X*|3, - C1(9)] Z]l3, < 0} =1. 1

Let A denote the difference between the solution to the truth solution scaled by the C; constant.
Hence, A = 45 [|X — X *||2,2 and (21) becomes
P{A — | Z]]22 <0} =1. (22)

Since Z depends on the choice of Z;,Z,, ..., Tx, we derive the typical performance by studying the
distance of the solution to the expected noise level of JOBS.

P{A? —E[Z]3, —7° < 0}

=P{A* — | Z|3, + 12|13, — El Z]j3, — 7° < 0}

>P{A? — | Z]3, < 0,]Z]3, — El|l 2|3, — 7 < 0}
(The first and the second parts are independent)

=P{A* — || Z|3, < O}P{[ Z]3 2 — E| Z|3, — 7* < 0}

(using and (20))
-1 —274
>1—exp——ir.

KL||z|%

In summary, this procedure results in

—274
P{A? < E|Z|? 1>1—exp . 23
{ —= || ||2,2 +7 }— exp KL”zHgO ( )

We can bound the squared error as follows:
P{A < (B||Z[32)"* + 7}
=P{A? <E||Z|3, +7° +27(E| Z|I35)"/*} 24
> P{A? <E|Z|3, + 72}
Combining and (24), we arrive at

—274
P{A < (E||Z]2,)"/? >1-— L E— 25
{A<(E||Z]22)/" + 7} >1—exp KL|z]L (25)

Since f(x) = ||z — «*||3 is convex, we can apply Jensens’ inequality to establish:
1« 1 &
I D285 — I < = D 118 — =¥l 26)
j=1 j=1

The JOBS estimate is averaged column-wise over all estimates: 7 = + Zfil Z;. Therefore,
equation (26) is essentially

1~
P{|lz’ — 2*|3 - z X - X*3, <0} =1. (27)

16
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Now, we consider the typical performance of the JOBS solution and recall that A denotes the

difference between the solution to the truth solution scaled by the C; constant: A =
X*||2,2. We can then bound the probability of error.

P{l|lz” — a*||2 —

=P{|lx” — a*|2 -

P’ — a*|; -

an

C1(9)
VK

L
X2 =

A< (B|Z|32)"% + 7}

1
=P{||z’ —a*[ls - =X -

VK

P{A < (E||Z32)"* + 7}

—274

>1 —ex

P77
KL|z[I5%

(] Z]3)"? +7) < 0}

IIX\—X*HQ

Ci(9)
N4

1
— || X
N

(] Z]132)"/? +7) <0}

_X*HQ <0,

X*[]2 <0}

(by @7 and @)

Substituting the expected noise level derived in (I9) yields

P{[|z” — 2*|ls <C1(6 ISV ||z|\2+7
—27’

>1—exp

KL|z|%

-

(28)

By replacing 7/+/K with 7, the quantity on the right hand side of the equation then becomes

4
1 —exp % and we have proved the theorem.

8.3 PROOF OF JOBS PERFORMANCE BOUND FOR GENERAL SPARSE SIGNALS

Similarly to prove the JOBS performance in the exact s— sparse scenario, we here establish the
proofs for the general sparse signals recovery for JOBS algorithm.

First, according to the general block sparse recovery Theorem [I4] we consider the distance from the

recovered solution X to the truth solution X*.

P{||X — X*[|2.2 — Co(6)s

“2VKlely - C1(6)[Z]22 < 0} = 1.

(29)

To simplify our notation, we use €(e) and ¢(Z) for noise associated with s— sparse approximation
error and measurement error.

We start the analysis:

P{|IX — X*|3 -
=P{|X — X*[3 (¢

e(e) = Co(9)

sT12VK|e|,

€(2) = C1(9)] Z|2.2-

(2(e) + Be*(Z) + 7% + 2¢(e)Ee(Z) + 27¢(e)) < 0}
(€) + E3(Z) + 7% + 2¢(e)Ee(Z) 4 27¢(e))

(Z) + 2(Z) — 2¢(e)e(Z) + 2¢(e)e(Z) < 0}
(€) +€*(Z) +2¢(e)e(Z)) <0}

>P{J|X — X*[|3 — (¢

P{e*(Z)
2¢(e)(e(2)

—Ee(Z)

—E*(Z) -1 <0,

—7)) <0}

17
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Next, we establish that if the first condition is true, it implies the second condition: cond1 == True:
€2(Z) —Ee*(Z) — 7 < 0 = cond2 == True: €(Z) — Ee(Z) — 7 < 0.

(Z)-Ee*(Z) -1 <0
— (Z)-E(Z)-72<0
=€*(Z) —Ee*(Z) —1° — 27E*(Z) < 0 (32)
> *(Z)— (B*(Z)+7)> <0
< ¢e(Z)—Ee(Z)—7<0
Therefore, the probability of cond2 conditional on condl is one. By Bayes Rule, we conclude the
joint probably of condl and cond?2 are both True equals to the probability of condl being True.
P{e*(Z) —Ee*(Z) — > < 0,2¢(e)(e(Z) —Ee(Z) — 7)) < 0}
=P{*(Z) —Ee*(Z) — > < 0}

2 2 2 (33)
P{(e(Z) —Ee(Z) — 7)) <0|e*(Z) — Ee*(Z) — 7" <0}
=P{e*(Z) —E*(Z) — > <0}
We continue from (31J),

P{||X — X*||2 — ((e) + E€2(Z) + 7% + 2¢(e)Ee(Z) + 27¢(e)) < 0}
>P{||X — X*Hz (e(e) +€(2))* < 0}

P{e*(Z) —Ee*(Z) — 2 < 0} (34)
=P{*(Z) — Ee*(Z) — 7% < 0} (by (20))

S 16 —o7r4
—exXxp ————.
= PRL=[LC ()

Next, we studied the error bound and relax the error bound by dropping one non-negative cross term
27Ee(Z):
P{IX — X*[3 ~ (e(e) + Ee(2) +7)* < 0}
:P{Hjﬁ'\ — X*||2 - (%(e) + E*(Z) + 7% + 2¢(e)Ee(Z) + 27e(e) + 27Ee(Z)) < 0} (35)
EP{H_/X\ — X*||2 - (%(e) + E3(Z) + 7% + 2¢(e)Ee(Z) + 27¢(e)) < 0}

Here, we started to link the JOBS solution error bound to total the error of all the joint sparsity
program using the result in in equation (27) derived from Jensen’s inequality of convex function:

P{llz? — a*|}> \/%&(e) +Ee(Z) +7) < 0}

=P{K|z” — z*|3 - (e(e) + Ee(Z) + )* < 0}
=P{K |z’ — z*|} - (e(e) + Ee(Z) +7)?
+X - X*|3 - | X — X*[3} < 0}
>P{||X — X*|3 — (e(e) + Ee(Z) + )* < 0}
P{K |lz7 — 2*(3 — | X — X*|3} < 0}
=P{||X — X*|} — (c(e) + Ee(Z) + )2 <0} (by @)

S 1o —or4
—exXxp —————.
R A R AGE

(36)

From here, we plug in results from previous equations (I9),(30):

—ort

L
P{lla” — a*||2 — (Co(9)s 1/2||e||1+cl<6>ﬁe+\/%> <0}2 1 —exp s oo
(37)

18
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By replacing 7/v/K with 7/Cy(4), the quantity on the right hand side of the equation then becomes 572

1 —exp ﬁﬁff and we have proved the theorem. 573
B L —OK T4
P{[la” — x*|]s < (Co(6)s " ?|lell +C1(5)(\/ =lzl2 + 7))} > 1 —exp ——.  (38)
m Ll|z|%
9 APPENDIX E: PROOFS OF BAGGING THEOREMS 574
9.1 PROOF OF BAGGING PERFORMANCE BOUND FOR EXACTLY S-SPARSE SIGNALS 575

Let 2B 28 ..., 22 be the solutions of individually solved problems and the solution of the bagging
scheme x® is obtained from their average: ¢ = & Z;il . We consider the distance to the true
solution x* from each estimate separately. Here, the desired upper bound is the square root of the

expected power of each noise vector: (| z(z]||3)!/? = 1/ # Iz|l2, where Z is a multi-set of size L
with each element randomly sampled from {1, 2, ...,m}. For any 7 > 0, we have:

P{[la? — 2* ||z — CLO)((E|lzz|I3)"* +7) < 0}
=P{||z® — a*||2 — C1(5)((E||=m|[3)"* +7)*)'/* < 0}
>P{|x® — a*[|2 — C1(8) (E|zz)]3 +7°)"/? < 0}
=P{||lz® — z*|3 - C*(0)(Ezm|3 + 7°) < 0}.
Consider using the average of errors for each estimate + Z;il 2P — x*||3, we can establish

P{[|x® — *|2 — C1(8)((E|z(zl[|3)"/* + ) < 0}
1 X
=P{llz® —x*|5 - e Sl — 23
j=1
1 X
t % =P — a3 - () (Bllzm3 + 7°) < 0}
j=1
1 X
> P{||la® — z*||5 - e > e - 23 <o,
=1
1 B *|2 2 2 2
o > llzP - 2|3 - ¢’ (0)El|lzm|3 + ) < 0}
j=1
(from the independence of two terms)

K
1
=P{|l® — =*|3 - Ve > laP —a*|3 <0}
j=1

K
xP{Y 2P —@* |3 — KC:*(8)(El|lzm|f3 + 7°) < 0}
j=1
By Jensen’s inequality, the bagging error is smaller than the averaged error of each individual s7e
estimator as in and the first term holds with probability 1. Therefore, we have: 577

P{|z® — a*||2 — C1(8)((Ellz@3)"/? +7) < 0}

K
>P{Yy_||lzf — a*||5 — KC*(0)(El|zm|3 + 7°) < 0} 9)
j=1

K
=1-P{}_llzf —a* |} > KC:*(0) (Bl 2ml3 +72)}.

j=1
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From this procedure, we can reduce the error bound for the bagging algorithm to bound the sum of
individual errors.

Let the random variable of error for each bagged estimator be @ (7): ||z (z) — *||2 , where T denotes
a bootstrap sample of size L and x(z) is the bagged solution from ¢; minimization on the bootstrap
sample Z: x(z) = argmin ||z||; s.t. |yiz] — A[Z]||3 < e(@). The power of all errors for each bagged
estimators ||a:;B — x*||2 are realizations generated i.i.d. from the distribution of ||x(z) — z*||3. We
proceed with the proof using the following lemma that establishes the tail bound of the sum of i.i.d.
bounded random variables. It is a generalization of Hoeffding’s inequality and the details of its proof

can be found in Appendix[10.4]

Lemma 17 (Tail bound of the sum of i.i.d. bounded Random variables) Ler Y7,Y5,....Y, be
i.i.d. observations of bounded random variable Y: a <Y < b and the expectation EY exists.
Then, for any ¢ > 0,

IP’{ZY > nC} < exp{— 2n(C — BY)* b (40)

= (b—a)?

In this case, we consider the lower bound a and the upper bound b of the error ||z(z) — x*||3. Clearly
this term is non-negative, hence, we can set @ = 0. The upper bound is obtained from the error bound
of £1-minimization in Theorem[13} For all Z:

P{llz(@) — 2*||3 — C:*(9) =zl < 0} = 1. (41
According to the norm equivalence inequality, we have
lziml3 < (VI|zimll)? < (VL|2llw)® = Lll2l|2. 42)

From this, we can set b = C;%()L||z|%..

We can now apply the sum of i.i.d. bounded random variable in Theorem.to analyze our problem.
By (39), the parameter ¢ in turns out to be: ¢ = C,%(8)(E| z(z]||2 + 7). Hence,

K
PO ey — 2|3 — K¢ >0} <
i=1 (43)
K(¢ —E|lz@ — :c*||>2}
C1*(6)L2| 2|4 '

exp{—

To simplify the right hand side, let us consider the expected bagged error: E|z(z) — z*||3 =
ﬁ Y7 llz@) — «*||3. Our bound in implies that

1
{WZH“’(I) *”2_‘ L|ch zzl3} =1,
z

which is equivalent to
Ellem) — a*]3 < C*(0)zm3
[mE| L| Z (44)
=EC*( )HZI”2 = C1*(O)E| 223
From here, it is easy to see that
¢ —Ellz@ —z*|3
=C1*(0)(Elz@3 + 7°) — E|z@) — =*|3 (45)
>C1*(0)(Elzm|3 + %) — C:*(9)El|2zl5 = C:*(8)

The right hand side of (43) is upper bounded by exp{— L2 ”4 }. Substituting this result into (1:)

we can obtain the result in our main bagging theorem.

Hz
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9.2 PROOF OF BAGGING PERFORMANCE BOUND OF BAGGING FOR APPROXIMATELY SPARSE
SIGNALS

In this section, we are working with the case when the true solution x* is only approximately sparse.

In other words, its sparsity level may exceed s and the s—sparse approximation error is no longer
necessarily zero. Let ¢, denote the sparse approximation error e, = Co(8)s~'/?||e||;. The square

root of the expected power of each noise vector is (E||z(z]||3)'/? = \/%HzHQ We consider the
following bound:

P{l|&® — 2*||2 — (es + C1(8)((Ellzm3)"/? + 7)) < 0}

=P{||lz® —a*||3 — (es + C1(6)((E|zz]3)"/* +7))* < 0}

>P{[|l=® — 2*||3~

((es + C1(O)(Ellzim]3)'/*)* + C:12(8)7%) < 0}

Set ¢’ = (es + C1(8)(E||zm||3)*/?)? + C1%(6)72 and consider using the averages of the errors
= Zszl Ha:f’ — x*||2 as an intermediate term. Repeating the same proving technique as in (39)
yields

K
P{la® —2*|5 - ('} 2 P{)_ l&f —2*|5 - K¢ <0}
j=1

K
=1-P{)_[af —a*[5 > K('}.

j=1

According to Lemma|l7|, we have:

K
PO laf — 2|3 > K¢} <
j=1 (46)
2K (¢’ — Ellz@) — =*|)3)*
exp{— W —a)? }.

Here, @’ = 0 and b’ = (e, + C1(0)V'L||z]ls)?. The lower bound a’ is set to zero since the error
for any bagged estimator ||:cj3 — x*||3 is non-negative. The upper bound b’ can be obtained using
Theorem [[3]and substituting in the upper bound of the noise power as derived in (42)).

Next, consider the term ¢’ — E||z(z) — 2* |3 = (Co(6)s™/2||e]l1 +C1(6)/ £ 2]2)? + C1*(8)72 —

E||z(z) — z*||3. We can upper bound the expected value of the error of bagged estimator with same
approach in (44). From Theorem T3] for all Z:

P{llz@ — 2*[3 < (es + Cr(9)[|z1z1]]2)"} = 1. (47)
Since T takes value of all m” choices with equal probability, the following result is implied from

@7):
P{E||lz) — @*|3 < E(es + C1(9)l|zi71]|2)*} = 1. (48)
Since f(z) = x? is a convex function, applying Jensen’s inequality results in
(Ellzmll2)* < Ellzm3.
Since the square root /2 is a increasing function of z, taking square root preserves the sign of the
inequality:
E|ziz]> < (E|zm]3)"2. (49)
Then, from (48)), we have:
Ellz@ — 2*[|3 < E(es + C1(0)]|2(71]|2)*
= € + C1*(8)El| 2|3 + 2¢5C1 (9)El| 2|2
(by @)
< €& +C* ()| zm]l3 + 26,C1(6) (El|=z13) /2
= (es + C1(8) (Bl|zim[13)"/%)%.

21

601
602

603

604
605
606

608
609

610
611

612
613



614

615

616

617
618

619
620

621
622
623
624
625
626

627

628
629
630
631
632
633

634

635
636
637

638
639
640

641

642

643
644

Under review as a conference paper at ICLR 2021

Finally, we can bound the term ¢’ — E||z(z) — x*||3:

(' —Ellz@ — =3
=(es + C1(0)(E||z1m3)"/?)* + C:*(6)7° — E| (@) — |3
>((es + CL(0)(Ellzm||3)"/?)? + €% (5)r

— (s + C1(8)(El|z1zl]|3)/?)? = €1 (6)7>.

One can observe that the upper bound of this difference is C;%(5)72, which is the same as in the case
of the exact s—sparse signal in (5). The bound for (#6) can be upper bounded by

K C 4 ) 4
P Jaf - o[ - K¢ > 0) < epf - KOO,

j=1

where b’ = (Co(8)s~/?|le||1 + C1()VL||z]|s0)>.

10 APPENDIX F: THEORY FOR NSP AND RIP

10.1 PROOF OF THE REVERSE DIRECTION FOR NOISELESS RECOVERY

Lemma 18 If the MMV problem P1(K) , K > 1, in (12) has a unique solution, it will be of form
X* = (x*,x*,...,x*). Then, there is a unique solution to P1: x*.

Let us prove the other direction. If P (K) has a unique solution, the solution must be in the form of
X* = (x*,x*,...,x*), and it implies that P has a unique solution *.

If P4 (K) has a unique solution, then it is equivalent to say that A satisfied BNSP of order s. For
all V. = (vy,v2,...,vk) # O,v; € Null(A), we have V S,|S| < s,||VI[S]|l12 < [V[S|1.2-
This implies that V V' = (v,0,0,...,0),v € Null(A)\{0}, BNSP is satisfied. Since in this case,
except the first column, all others are zero and therefore do not contribute any to the group norm.
Mathematically, for all S, |[V[S]|l1,2 = ||[v[S]||1. We, therefore, will have the BNSP of order s,
implying the NSP for A of order s.

10.2 JOBS MATRIX SATISFIES BNSP IMPLIES THAT EACH BLOCK MATRIX SATISFIES NSP

Using a similar analysis as in previous subsection[I0.T| we conclude that a block diagonal matrix
satisfies BNSP of order s implies that each submatrix satisfies NSP of order s. The block diagonal
JOBS matrix A7 = block_diag(A[Z,], A[Zs], ..., A[Zx]) satisfies BNSP of order s. Then, for all
V = (v1,v2,...,vk) # O,v; € Null(A[Z;]),j = 1,2,.., K, wehave V S, |S| < s, ||[V[S]]|12 <
[[V[S]||1,2. This implies thatV V' = (0, ...,v;,...,0),v; € Null(A[Z;])\{0}, BNSP is satisfied,
which essentially states that NSP is statisfied for A[Z;].

10.3 PROOF OF PROPOSITION[3]

To prove this proposition, we give an alternative form of RIP and BRIP which are stated in the
following two propositions. Alternative form of RIP as a function of matrix induced norm is given as
follows.

Proposition 19 (Alternative form of RIP) Matrix A has {5-normalized columns, and A € R™*",
S C {1,2,...,n} with size smaller or equal to s and As takes columns of A with indices in S. The
RIP constant of order s of A, §5(A) is:

5s(A) = max ATAs — 1 50

(A = 0 1, 145 As = Tllaoe, 0

where I is an identity matrix of size s X s and || - ||2—2 is the induced 2—norm defined as for any
mix A. A _ lAz|2
matrix A, [[All2—2 = Supzo "o,

This proposition can be directly derived from the definition of RIP constant. Similarly, we can derive
the alternative form of BRIP constant as a function of matrix induced norm.
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Proposition 20 (Alternative form of BRIP) Let matrix A have {5-normalized columns and let
B = {By,Ba, ..., By} be the group sparsity pattern that defines the row sparsity pattern, with B;
contains all indices corresponding to all elements of the i—th row. For S C {1,2,...,n}, denote
B(S) = {B;,i € S} as the subsets that takes several groups with group indices in S. For A € R™*"
with Block-RIP constant of order s, 053(A) is

55\8 =

T J—
= s e |Azs)As(s) — T2 (5D

Without loss of generality, let us assume that all columns of A in the original ¢; minimization have
unit 5 norms. Therefore, A does not have any zero column. Before we calculate the RIP constant of
the bootstrapped sensing matrices, we need to perform two operations: remove the duplicate rows
from bootstrapped sensing matrices and then normalize the columns.

First, we remove the duplicated rows using the weighted scheme. In the noisy recovery problem,
for a multi-set Z that may contain duplicate, the set ¢/ denotes the set of all unique elements. In
the constraint optimization, we can express the sum using occurrence times in Z for each element
using ;. [AlZlz — y(I)[} = 3,z lalilz — ylill3 = >ey |y/@alile — ylil[3. Therefore,
the original program is equivalent to reducing the duplicated rows in the bootstrap sample using
\/¢i as weights. Because sampling with replacement is uniform, therefore the expected values of
occurrence times for each sample are the same. To denote this operation, we have R € Ru€L,
R = diag(\/c1, /2, .-, v/¢u) I[U], each row of I[U] correponds to the unique vector of a row and
this operation deletes the duplicated rows.

Second, we normalize the columns of these matrices using the following normalization procedure.
For M € R"*™, since the original matrix A does not have any zero column, Q(M) € R™*"
is a normalization matrix of M such that M Q(M) has ¢y-normalized columns. Clearly, the
normalization matrix @ of M is obtained by:

Q(M) = diag(mually ", [mallz ", ., [mallz ), (52)

where m; denotes j—th column of M.

Similary, we can construct Q ;s using @) to normalize the columns. Let the original JOBS matrix
be A7 = block_diag(A[Z,], A[Z], ..., A[Zx]). We first normalize each block and then obtain the

—_

normalized bootstrapped sensing matrix as: A[Z;] = R;A[Z;]Q,. The original JOBS matrix can be

—~—

transferred into the normalized version A” = block_diag(A[Z,], A[Zs], ..., A[Zk]).

Now, we consider the BRIP constant for A’ In this derivation, column selection of a matrix is
written as a right multiplication of the matrix Is(-).

S5(A7) = 5s|B(A7)
T SC1 2 IsI<s H(ZEIB(S))TFIB@S) —1Il2-2
Tscilzeny, |(AIZEs)T AL s — T2
|S<s
= e Iblock_diag((A[Z,)Is)T AT Is — I,
|S1<s

—_~

o (A[ZK I )T AR )T s — I) |20

The induced 2—norm of a matrix equals to the max singular value of || D||2—,2 = omax (D) and if D
is a block diagonal matrix D = diag(D1, D3, ..., Dk ), then oax (D) = max;—=1 2,k Omax(D;).

325,
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Applying this property leads to

5s|l§a’(’4J)

= AZNI)T A[Z)Is — T
Sg{q}g’ﬁ}’meI\( [Z]1s)” AlZ;][1s — 1|22
S| <s
- AT AT Is — T
max Sg{rg;§77b}7|\( [Zi]1s)" AlZ;j][1s — 1|22
|S|<s

=max ds(A[Z;)).

10.4 PROOF OF LEMMA [I7]

To prove of this lemma, We would need the Markov’s inequality for non-negative random variables
here. Let X be a non-negative random variable and suppose that EX exists. For any ¢ > 0, we have:

PX > 1) < o (53)

We also need the upper bound of the moment generating function (MGF) of the random variable Y.
Suppose thata <Y < b, then forallt € R,

t2(b — a)?

Eexp{tY} < exp{tEY + 1. (54)

Back to Lemma[17] for ¢ > 0,

P{Zyi >n(} = IP’{eXp{Z Y;} > exp{n(}}

= ]P’{exp{tz Yi} > exp{tn(}}

i=1

using the Markov inequality in (53)

< exp{—tn(}E{exp{t Z Yi}}

i=1
= exp{—tn(}E{ILL, exp{tY;}}
= exp{—tn¢ I E{exp{tY;}}
by upper bound for MGF in (54)

< exp{—tn(}(exp{tEY + M

"
t2(b — a)?n
3 b

The right hand side is a convex function with respect to ¢. Taking the derivative with respect to ¢ and

set it zero, we obtain the optimal ¢, t* = 4(Cb:4a]§;/ . The right hand side is minimized at value:

= exp{—tn¢ + tnEY +

*2(p  \2 B _ 0
exp{—t'n¢ + tnEy + T g W 5

11 APPENDIX G: PSEUDO-CODE OF JOBS IMPLEMENTATION VIA ADMM

We present the pseudo-code for solving JOBS optimization problem via ADMM updates. The key
difference to Bagging and the baseline ¢; minimization here is that we employ the soft-thresholding
operation on each row in JOBS (described in line 6 of Algorithm E), rather than the common
entry-wise thresholding operation on each individual sparse-code element in Bagging.
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Algorithm 1 ADMM for solving JOBS

Require: Sensing matrix and measurements vector (A, y), bootstrap ratio and number of estimates
(L/m, K), sparse balancing ratio A, learning rate p, maximum number of iterations MaxIter.

Initialization: X o, W, U < O (zero matrix of size n x K)
1: generate K bootstrap samples of length L:
{Z1,Z,, ..., Ik}, and its corresponding { A[Z;], yIz,]}
2: for t = 1 : Maxlter do
3: X update: T, +
(AILIAIL] + oD) AL iz + plw — w)
4 X+aX+(1-a)W
5: W update: applying shrinkage operations on each row. Fori = 1,2, .., n,
6:  wl(i] <—Shrinkage, /,(Z[i] — w[i]),
Shrinkage,, () = max(1 — &/||z||2,0)x
7. Uuwupdate: U =U+ X - W
8: end for .
9: JOBS solution is the average columns of solution matrix X: 7 = 1/K Y ;

12 APPENDIX H: DISTRIBUTION OF THE UNIQUE NUMBER OF ELEMENTS FOR
BOOTSTRAPPING

H The bootstrap is essentially sampling with replacement, which is likely to create duplicate in-
formation. The performance of sampling with replacement and sampling without replacement
(sub-sampling) can be linked by studying the quantity of the number of unique elements. In this
section, we give the analytic form of the number of unique samples when there are finite number of
measurements m and bootstrap sample L, as well as the form for asymptotic case as m — co. The
finite case is studied in a well-known statistics problem — the Birthday Problem (bir). We also show
empirically that the finite m case is close in the asymptotic sense.

12.0.1 UNIQUE NUMBER OF BOOTSTRAP SAMPLES WITH FINITE SAMPLE m

We generate L samples from m samples uniformly at random with replacement (L < m). Let U
denote the number of distinct samples among L samples. Clearly we have the number of distinct
samples is between [1, L] and the probability mass function is given by (bir), same as the famous
Birthday problem in statistics:

- - (7) S () s

u=1,2, .., L.

In our problem, we are interested in finding the lower bound of U with certainty 1 — «

P(U > d) = ZLj (Z’f) Xuj(—l)j (;‘)(“;Ljﬁ >1-a. (56)

U=d
Therefore for

d—1 u .
m fu\ u—7j. g
1>a> E E -1y . , 57

- _u—O(u>j_0( : <j)( m ) e
equation (56) is satisfied.

12.0.2 ASYMPTOTIC UNIQUE RATIOS OF BOOTSTRAP SAMPLES

The theoretically unique percentage for asymptotic case when the number of total number of mea-
surements goes to infinity m — oo has been studied in the literature (Weiss, |1958;|[Mendelson et al.}
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ous sampling with replacement/ bootstrapping ra-
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minus one empirical standard deviation. The blue
area and the red area corresponds to the number
of total measurements m = 50 and 150 respec-
tively. The black line is the asymptotic mean and
the asymptotic variance converges to zero

Figure 6: Unique element ratios with various bootstrapping ratios.

702 [2016). In the limit case, the limiting distribution of the number of unique elements U is normal.
703 The asymptotic mean for the unique number of elements over total number of measurements m is
704 IE% =1 — exp{—r}, where r is the bootstrap sampling rate. The asymptotic variance of the unique

705 ratio is then VarZ = L (exp{—r} — (1 + r) exp{—2r}), which converges to zero when m is large.
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12.0.3 FINITE NUMBER OF MEASUREMENTS m CASES ARE EMPRICIALLY CLOSE TO THE
ASYMPTOTIC CASE

We generate 10000 trials of random sampling with replacement and then calculate the empirical
unique percentage by counting the ratio of the number of unique elements over the total number of
measurements m. The theoretical mean is consistently lower than the mean for a finite m. From the
plot, the average unique elements in finite m cases m = 50, 75, 100, 150 are not so different from
the theoretical value of the infinite sample size.

The empirical mean and the asymptotic value are plotted in Figure [6a] indicating that the numeric
unique percentage is not that far from the asymptotic value even when the number of estimates is
finite and small. Figure [6b/illustrates the region between the mean plus and minus one standard of
deviation. As the asymptotic case, the theoretical standard deviation converges to zero. We plotted
the cases m = 150 and m = 50 compared to the asymptotic case. For both, the variance is tight and
gets smaller when m becomes larger. For the same m, the variance of the unique number of elements
become larger when the bootstrap ratio L/m is large.

12.1 THE SUB-SAMPLING VARIATION: SUB-JOBS

Bootstrapping (random sampling with replacement) creates duplicates within a bootstrap sample.
Although it simplifies the analysis, in practice, duplicate information does not add value. One natural
extension of the proposed framework is to use sub-sampling: sampling without replacement. The
sub-sampling variation of Bagging is known as Subagging estimator in the literature (Bithlmann &
'Yu| [2000; Bithlmann} 2003). We adopt a similar name for the sub-sampling variation of the proposed
method: Sub-JOBS. The only difference to the original scheme is that for each bootstrap sample Z;,
L distinct samples are generated by random sampling without replacement from m measurements.

In this paper, all the theoretical results are for the bootstrapping version for simplicity of presentation.
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