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Figure. 1. The skull fractures annotated by the radiologist. The blue boxes are the ground truth annotated by the radiologists,
which contain the fractures.
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Figure. 2. The distribution of the width and length of the object boxes.
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Skull R-CNN
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Figure. 3. The architecture of the Skull R-CNN




Skeleton-based region proposal
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Figure. 4. Left: Region proposal network(RPN)[1]; Right: Skeleton-based region proposal

‘The candidate boxes are much less than RPN, while keeping enough boxes containing fractures.
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“Compared to RPN, there is no need to be trained and it just costs small amount of computation.

1. Shaoqging Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real- time object detection with region proposal networks. In

Advances in neural information processing systems, pages 91-99, 2015.



Full resolution feature network
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Figure. 5. The structure of the full resolution feature network.
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The output feature maps have higher resolutions than the
FPN[2], and have more accurate local information;
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Compared to FPN[2], element-wise addition is replaced by

the concatenation to softly merge the feature maps.

2.LinTY, Dollar, Piotr, Girshick R, et al. Feature Pyramid Networks for Object Detection[J]. 2016.




Experiment results




Objective indices

Table. 1. The performance of the models.

M AP(X0.01) Detection time(s\slice)

val test val(<16*16) test(<16*16) val test
Faster R-CNN + FPN 55.7 54.2 59.4 49.3 0.088 0.087
Skull R-CNN + FPN 62.6 57.9 64.7 58.6 0.058 0.058
Skull R-CNN 65.1 60.0 67.3 63.3 0.035 0.036
N . AP=0.600

Figure. 6. The PR curves on the test set. Left: Faster R-CNN+FPN; Right: Skull R-CNN




Subjective results

Figure. 7. The detection results of the Skull R-CNN. The images in the second row are the partial magnifications of images in the fist row. In which, the
green boxes are TP predictions, the red boxes are FP predictions, and the blue boxes are the FN predictions
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