
Under review as a conference paper at ICLR 2021

A PROOFS OF MAIN RESULTS IN SECTION 3

In this section, we provide the detailed proofs of our main theoretical results presented in Section 3.

A.1 PROOF OF THEOREM 3.3

Before proving Theorem 3.3, we first lay out the following lemma regarding the monotonicity of
`p-norms. For a rigorous proof of this lemma, see Raıssouli & Jebril (2010).
Lemma A.1 (Monotonicity of `p). For any vector x ∈ Rn, the mapping p→ ‖x‖p is monotonically
decreasing for any p ≥ 1 (including p =∞). That said, ‖x‖p ≤ ‖x‖q holds for any p ≥ q ≥ 1.

Now, we are ready to prove Theorem 3.3. In particular, we first include a high-level proof sketch,
then present the complete proof after.

Proof Sketch of Theorem 3.3. We start with the spherical Gaussian distribution where ν = γn. More
specifically, we are going to prove that for any E ⊆ Rn and η ≥ 0,

γn
(
E(`p)
η

)
≥ Φ

(
Φ−1

(
γn(E)

)
+ η
)

holds for p ≥ 2. (A.1)

Note that for any vector x ∈ Rn, the mapping p→ ‖x‖p is monotonically decreasing for any p ≥ 1,
thus we can show that E(`q)

η ⊆ E(`p)
η holds for any p ≥ q ≥ 1. Making use of the standard Gaussian

Isoperimetric Inequality (Lemma 3.2), we then immediately obtain

γn
(
E(`p)
η

)
≥ γn

(
E(`2)
η

)
≥ Φ

(
Φ−1

(
γn(E)

)
+ η
)
, for any p ≥ 2.

Moreover, to prove the concentration bound for general case where ν is the probability measure
of N (θ,Σ), we build connections with the spherical Gaussian case by constructing a subset A =
{Σ−1/2(x− θ) : x ∈ E}. Based on the affine transformation of Gaussian measure, we then prove:

ν(E) = γn(A) and ν(E(`p)
ε ) ≥ γn(A(`p)

η ), where η = ε/‖Σ1/2‖p. (A.2)

Finally, combining (A.1) and (A.2) completes the proof of Theorem 3.3.

Complete Proof of Theorem 3.3. To begin with, we consider the special case where the underlying
distribution is standard Gaussian (ν = γn). Specifically, we are going to prove that for any E ⊆ Rn
and η ≥ 0,

γn
(
E(`p)
η

)
≥ Φ

(
Φ−1

(
γn(E)

)
+ η
)

holds for any p ≥ 2. (A.3)

Let p ≥ q ≥ 1. According to the definition of ε-expansion of a subset and Lemma A.1, we have

E(`q)
η =

{
x ∈ Rn : ∃ x′ ∈ E s.t. ‖x′ − x‖q ≤ η

}
⊆
{
x ∈ Rn : ∃ x′ ∈ E s.t. ‖x′ − x‖p ≤ η

}
= E(`p)

η (A.4)

where the inclusion is due to the fact that ‖x′ −x‖p ≤ ‖x′ −x‖q holds for any x′ and x. Therefore,
by setting q = 2 in (A.4), we further obtain that for any p ≥ 2,

γn
(
E(`p)
η

)
≥ γn

(
E(`2)
η

)
≥ Φ

(
Φ−1

(
γn(E)

)
+ ε
)
,

where the second inequality is due to the standard Gaussian Isoperimetric Inequality (Lemma 3.2).
Thus, we have proven (A.3).

Now we turn to proving the concentration bound for the general Gaussian case. Let UΛU> be the
eigenvalue decomposition of Σ, where U ∈ Rn×n is an orthonormal matrix and Λ ∈ Rn×n is a
diagonal matrix consisting of all the eigenvalues. Since Σ is positive definite, the square root of Σ
can be expressed as Σ1/2 = UΛ1/2U>. Let Σ−1/2 = UΛ−1/2U> be the inverse matrix of Σ1/2.

Construct a subset A in Rn such that A = {Σ−1/2(x− θ) : x ∈ E}. Based on the construction of
A, we can then prove the following results for any E ⊆ Rn and ε ≥ 0:

ν(E) = γn(A) and ν(E(`p)
ε ) ≥ γn(A(`p)

η ), where η = ε/‖Σ1/2‖p. (A.5)
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First, we prove the equality ν(E) = γn(A). Since ν is the probability measure of N (θ,Σ), we have

ν(E) = Pr
x∼ν

[x ∈ E ] = Pr
x∼ν

[Σ−1/2(x− θ) ∈ A] = Pr
u∼γn

[u ∈ A] = γn(A), (A.6)

where the third inequality is due to the affine transformation of Gaussian random variables.

Next, we prove the remaining inequality in (A.5). By definition, for any u′ ∈ A(`p)
η , there exists

u ∈ A such that ‖u′ − u‖p ≤ η. Let x′ = θ + Σ1/2u′ and x = θ + Σ1/2u, then we have∥∥x′ − x∥∥
p

=
∥∥Σ1/2(u′ − u)

∥∥
p
≤ ‖Σ1/2‖p · ‖u′ − u‖p ≤ η‖Σ1/2‖p ≤ ε, (A.7)

where the first inequality is due to the definition of induced matrix p-norm and the last inequality
holds because η = ε/‖Σ1/2‖p. By the construction of A and the fact that u ∈ A, we have x ∈ E .
Combining (A.7), this further implies that for any u′ ∈ A(`p)

η , θ + Σ1/2u′ ∈ E(`p)
ε . Thus, we have

ν
(
E(`p)
ε

)
≥ ν

(
θ + Σ1/2 · A(`p)

η

)
= Pr

x∈ν

[
Σ−1/2(x− θ) ∈ A(`p)

η

]
= γn

(
A(`p)
η

)
, (A.8)

where θ + Σ1/2 · A(`p)
η denotes the transformed subset {θ + Σ1/2u : u ∈ A(`p)

η }. Therefore, based
on (A.6) and (A.8), we prove the soundness of (A.5).

Finally, combining (A.3) and (A.5) completes the proof of Theorem 3.3.

A.2 PROOF OF THE OPTIMALITY RESULTS IN REMARK 3.4

Proof. First, we prove the optimality for the spherical Gaussian case, where ν = γn and p > 2.
LetH = Hw,b be a half space with axis-aligned weight vector, that said w = ej for some j ∈ [n].
Intuitively speaking, the ε-expansion ofH with respect to `p-norm will only happen along the j-th
dimension. More rigorously, we are going to prove the following results: for any ε ≥ 0,

H(`p)
ε = H(`2)

ε holds for any p ≥ 1. (A.9)
By definition,H = {x ∈ Rn : xj + b ≤ 0}. For any x /∈ H, let x̂ ∈ H be the closest point of x in
terms of `p-norm. Since the weight vector w ofH is axis-aligned, thus x̂ will only differ from x by
the j-th element. That said, x̂j′ = xj′ for any j′ 6= j and x̂j = −b. Thus for any p ≥ 1, we have
‖x− x̂‖p = ‖x− x̂‖2 = xj + b. Based on this observation, we further obtain that for any p ≥ 1,

H(`p)
ε = {x ∈ Rn : xj + b ≤ ε} = H(`2)

ε ,

which proves (A.9). According to the Gaussian Isoperimetric Inequality (Lemma 3.2), we obtain

γn
(
H(`p)
ε

)
= γn

(
H(`2)
ε

)
= Φ(Φ−1(γn(H)) + ε).

Therefore, combining this with Theorem 3.3, we prove the optimality for the spherical Gaussian case.

Now we turn to prove the non-spherical Gaussian case with p = 2. Based on Theorem 3.3, the lower
bound is Φ(Φ−1(ν(E) + ε/‖Σ1/2‖2) when p = 2. In the following, we are going to prove: if we
choose E = Hv1,b, where v1 is the eigenvector with respect to the largest eigenvalue of Σ, this lower
bound is attained. Similarly to the proof of Theorem 3.3, we constructA = {Σ−1/2(x−θ) : x ∈ E}.
Note that when E is a half space, the constructed set A is also a half space. In particular, for the
case where E = Hv1,b, for any u ∈ A, there exists an x ∈ Rn such that u = Σ−1/2(x − θ) and
v>1 x+ b ≤ 0. This implies that v>1 Σ1/2u+v>1 θ+ b ≤ 0 for any u ∈ A. Since v1 is the eigenvector
of Σ, we further have that A is a half space with weight vector Σ1/2v1 = ‖Σ1/2‖2 · v1.

Note that according to (A.2), as in the proof of Theorem 3.3, for any E ⊆ Rn, we have

ν(E) = γn(A) and ν
(
E(`2)
ε

)
≥ γn

(
A(`2)
η

)
, where η = ε/‖Σ1/2‖2.

For E = Hv1,b, based on the explicit formulation of `2-distance to a half space, we can explicitly
compute the η-expansion of A as

A(`2)
η = {u ∈ Rn : v>1 Σ1/2u+ v>1 θ + b ≤ η · ‖Σ1/2‖2}.

When we set η = ε/‖Σ1/2‖2, it further implies that

γn
(
A(`2)
η

)
= Pr

u∼γn

[
v>1 Σ1/2u+ v>1 θ + b ≤ ε

]
= Pr

x∼ν

[
v>1 x+ b ≤ ε

]
= ν

(
E(`2)
ε

)
.

Finally, according to the optimality of the standard Gaussian Isoperimetric Inequality (Lemma 3.2),
this completes the proof.
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B PROOFS OF THEORETICAL RESULTS IN SECTION 4

In this section, we present the proofs to the theoretical results presented in Section 4.

B.1 PROOF OF LEMMA 4.1

Proof of Lemma 4.1. We only consider the case when w>x+ b > 0, because dp(x,Hw,b) is zero
trivially holds ifw>x+ b ≤ 0. The problem of finding the `p-distance from a given point x to a half
spaceHw,b can be formulated as the following constrained optimization problem:

min
z∈Rn

‖z − x‖p, subject to w>z + b ≤ 0. (B.1)

Let z̃ = z − x, then optimization problem (B.1) is equivalent to

min
z̃∈Rn

‖z̃‖p, subject to w>z̃ +w>x+ b ≤ 0. (B.2)

According to Hölder’s Inequality, for any z̃ ∈ Rn we have

−‖w‖q · ‖z̃‖p ≤ w>z̃ ≤ ‖w‖q · ‖z̃‖p,
where 1/p+ 1/q = 1. Therefore, for any z̃ that satisfies the constraint of (B.2), we have

w>x+ b ≤ −w>z̃ ≤ ‖w‖q · ‖z̃‖p. (B.3)

Since ‖w‖2 = 1, we have ‖w‖q > 0, thus (B.3) further suggests ‖z̃‖p ≥ (w>x+ b)/‖w‖q.

Up till now, we have proven that the optimal value of (B.1) is lower bounded by (w>x+ b)/‖w‖q.
The remaining task is to show this lower bound can be achieved. To this end, we construct ẑ as

ẑj = xj −
w>x+ b

‖w‖q
·
(

wq
j∑

j∈[n]w
q
j

)1/p

, for any j ∈ [n],

where 1/p + 1/q = 1. We remark that for the extreme case where p = ∞, such choice of ẑ can
be simplified as ẑ = x − (w>x + b) · sgn(w)/‖w‖q, where sgn(·) denotes the sign function for
vectors. According to the construction, it can be verified that

w>ẑ + b = (w>x+ b)− w
>x+ b

‖w‖q
·
∑
j∈[n]

wj ·
(

wq
j∑

j∈[d]w
q
j

)1/p

= 0,

and ‖ẑ − x‖p = (w>x+ b)/‖w‖q .

B.2 PROOF OF THEOREM 4.2

Proof of Theorem 4.2. We writeHS asHS(n) for simplicity. Let S be a set of size m sampled from
µ and µ̂S be the corresponding empirical measure. Note that the VC-dimension ofHS(n) is n+ 1
(see Mohri et al. (2018)), thus according to the VC inequality, we have

Pr
S←µm

[
sup

E∈HS(n)

∣∣µ̂S(E)− µ(E)
∣∣ ≥ δ] ≤ 8e(n+1) log(m+1)−mδ2/32.

In addition, according to Lemma 4.1, the ε-expansion of any half space is still a half space. Therefore,
we can directly apply Theorem 3.3 in Mahloujifar et al. (2019b) to bound the generalization of
concentration with respect to half spaces: for any δ ∈ (0, 1), we have

Pr
S←µm

[
h

(`p)
µ̂S

(α− δ, ε,HS)− δ ≤ h(`p)
µ (α, ε,HS) ≤ h(`p)

µ̂S
(α+ δ, ε,HS) + δ

]
≥ 1− 32e(n+1) log(m+1)−mδ2/32.

Finally, assuming the sample size m ≥ c0 · n log n/δ2 for some constant c0 large enough, then there
exists positive constant c1 such that

h
(`p)
µ̂S

(α− δ, ε,HS)− δ ≤ h(`p)
µ (α, ε,HS) ≤ h(`p)

µ̂S
(α+ δ, ε,HS) + δ

holds with probability at least 1− c1 · e−n logn.
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Algorithm 1: Heuristic Search for Robust Half Space under `p-distance

Input : a set of samples {xi}i∈[m]; strength ε (in `p-norm); risk threshold α; #iterations S.
Q← compute the sample covariance matrix based on {xi}i∈[m];
V ← obtain the set of principal components by eigenvalue decomposition on Q;
for v ∈ V do

for s = 1, 2, . . . , S do
w ← select from {±pow(v, s)}; // pow() is defined according to (C.1)
b← α-quantile of the set {−w>xi : i ∈ [m]};
AdvRiskε(Hw,b)←

∑m
i=1 1(w>xi + b ≤ ε‖w‖q)/m;

end
end
(ŵ, b̂)← argmin(w,b) AdvRiskε(Hw,b);
Output : Hŵ,̂b

C ALGORITHM FOR ESTIMATING CONCENTRATION

To solve the empirical concentration problem (4.3), Algorithm 1 searches for a desirable half space
based on the principal components of the empirical dataset and their rotations defined by a power
parameter. More specifically, the function pow() takes a vector v ∈ Rn and a positive integer s ∈ Z+,
and returns the normalized s-th power of v (with sign preserved):

pow(v, s) = sgn(v) ◦ [abs(v)]s/‖vs‖2 =

{
vs/‖vs‖2, if s is odd;

sgn(v) ◦ vs/‖vs‖2, otherwise.
(C.1)

Note that all the functions used in (C.1) are element-wise operations for vectors, where sgn(v),
abs(v), vs represent the sign, absolute value and the s-th power of v respectively, and the operator ◦
denotes the Hardamard product of two vectors.

Connected with the theoretical optimum regarding Gaussian spaces in Remark 3.4, the top principal
component corresponds to the optimal choice ofw if the perturbation metric is `2-distance, whereas
close-to-axis would be favourable for w when p > 2. In addition, as implied by the empirical
concentration problem (4.3) and the monotonicity of `p-mapping (Lemma A.1), the value of ‖w‖q
will be more influential in affecting the ε-expansion of half space as p grows larger. For example,
the `∞-norm of w can be as large as

√
n for the worst case (n denotes the input dimension), while

‖w‖∞ = 1 if w aligns any axis. By searching through the region between each principal component
and the closest axis, the proposed algorithm aims to find the optimal balance between ‖w‖q and
the variance of the given data along w that leads to the smallest ε-expansion. Although there is no
theoretical guarantee that our algorithm will find the optimum to (4.3) for an arbitrary dataset, we
empirically show (in Section 5) its efficacy in estimating concentration across various datasets.

Moreover, our algorithm is efficient in terms of both time and space complexities. Precomputing
the principal components requires O(mn2 + n3) time and O(n2) space to store them, where m
denotes the samples size and n is the input dimension. For each iteration step, the time complexity
of computing w, b and AdvRiskε(Hw,b) is O(mn), while the space complexity for saving the
intermediate variables and the best parameters is O(m + n). With n outer iterations and S inner
iterations, the total time complexity is O(n3 +mn2S). The total space complexity is O(n2 +mn),
where the extra O(mn) denotes the initial space requirement for saving all the input data. For
our experiments, we observe AdvRiskε(Hw,b) is not sensitive to small increment of the exponent
parameter s, thus we choose to increase s in a more aggressive way, which further saves computation.

D ADDITIONAL EXPERIMENTS

This section provides experimental results in addition to those presented in Section 5. All our
experiments are conducted on a 2.4 GHz 8-Core Intel Core i9 Processor. Table 2 compares our
method and the method proposed by Mahloujifar et al. (2019b) on two additional benchmark image
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Table 2: Comparisons between our method of estimating concentration with `∞-norm distance and
the method proposed by Mahloujifar et al. (2019b) on Fashion-MNIST and SVHN. Results for the
previous method are taken directly from the original paper as a reference.

Dataset α ε
Test Risk (%) Test Adv. Risk (%)

Prev. Method Our Method Prev. Method Our Method

Fashion-MNIST 0.05
0.1 5.92± 0.85 5.33± 0.14 11.56± 0.84 6.04± 0.13
0.2 6.00± 1.02 5.34± 0.14 14.82± 0.71 6.82± 0.19
0.3 6.13± 0.93 5.24± 0.10 17.46± 0.53 8.01± 0.19

SVHN 0.05 0.01 8.83± 0.30 5.23± 0.09 10.17± 0.29 5.56± 0.08

(a) N (0, I784) (b) MNIST (c) CIFAR-10

Figure 2: The convergence curves of the best possible adversarial risk estimated using our method
under various settings as the sample size of the training dataset increases.

datasets, Fashion-MNIST and SVHN. The results again reflect the superiority of our method in
producing tighter estimates of concentration.

Figure 2 shows the convergence performance of our algorithm under different experimental settings:
α = 0.5, ε = 1 for the simulated Gaussian dataset, α = 0.01, ε = 0.4 for MNIST, and α =
0.05, ε = 16/255 for CIFAR-10. Under these additional settings, the algorithm proposed by
Mahloujifar et al. (2019b) either cannot provide meaningful estimates of concentration, or takes a
substantial amount of time to run. For instance, our algorithm takes around 2 days to generate the
convergence curve on CIFAR-10 (α = 0.05, ε = 16/255), whereas the previous method is at least 5
times slower, due to the large number of rectangles T needed. Thus, we only report the convergence
curves of our method, where the standard deviations are calculated over 3 repeated trials.
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