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1 OVERVIEW
In this supplemental file, we provide more details of our work to
supply the main paper. Specifically,
▶ Generated images are shown in Sec. 2.
▶ Additional ablation studies are presented in Sec. 3, which

includes the ablation studies on the mask ratio, the number
of prototype nodes and pseudo label threshold;

▶ Additional qualitative results are presented in Sec. 4.
▶ Potential limitations and future developments are dis-

cussed in Sec. 5.

2 GENERATED IMAGES
In our paper, we employ blip-diffusion to generate rare class HOI
images. Specifically, for a given HOI triplet <Human, Verb, Object>,
we follow the template “a photo of human verbing object" and
expand triplet into a sentence as prompt. Then the blip-diffusion
model receives prompt and the original image as input to generate
the image. As shown in Fig. 1, we visualize some generated images,
where the first row represents images from the original dataset,
and the subsequent four rows depict the images generated by blip-
diffusion.

3 ADDITIONAL ABLATIONS
In this section, We conducted some additional ablation studies on
HICO-Det to further investigate the model details.

3.1 The Mask Ratio
As shown in Table 1, we studied the impact of different mask ratios
𝜎 in the context enhancement module. We observe a gradual im-
provement in the mAP for rare classes as the mask ratio increased.
The main reason is that the reconstruction of masked patches en-
hances the model’s ability to learn import context clues. While
excessively high reconstruction rate will cause the model to fo-
cus too much on the reconstruction task, weakening the effect of
feature alignment, resulting in weakened performance. So we can
obverse that When the mask ratio reaches 0.9, the performance of
rare classes decreases by 0.29 mAP compared to the mask ratio of
0.8. To strike a balance between feature alignment and context clue
extraction, we selecte for a mask ratio of 0.8.

3.2 The Pseudo Label Threshold
In this part, we study the impact of the pseudo-label threshold on
the model’s performance. As shown in Table 2, we can find that
when the pseudo-label threshold is 1.4, the mAP for rare classes
increase 1.30 relative to the threshold of 1.0, achieving a +0.39 mAP
improved for all classes. The main reason is that a low pseudo-label
threshold causes the model to incorporate many incorrect predic-
tions as labels during supervised training, leading to suboptimal
results and impacting the model’s performance. Furthermore, when

Table 1: The effects of different mask ratios in the context
enhancement module.

Ratio Full Rare Non-rare

0 0.4 34.77 31.78 35.73
1 0.6 34.86 32.02 35.75
2 0.8 35.00 32.30 35.81
3 0.9 34.85 32.01 35.71

Table 2: The effects of different pseudo label thresholds on
HICO-Det datasets.

Pseudo-label Full Rare Non-rare

0 1.0 34.61 31.00 35.67
1 1.2 34.84 31.60 35.76
2 1.4 35.00 32.30 35.81
3 1.6 34.99 32.17 35.80

Table 3: The effects of different numbers of prototype nodes
in the instance feature alignment module.

The Number of Prototype Nodes Full Rare Non-rare

0 4 34.77 32.01 35.63
1 6 34.96 32.26 35.79
2 8 35.00 32.30 35.81
3 10 34.46 31.61 35.35

the pseudo-label threshold was set to 1.6, the model’s performance
slightly deteriorated compared to the threshold of 1.4, indicating
that excessively high thresholds filter out correct labels, and insuf-
ficient supervision signals also lead to performance degradation.

3.3 The Number of Prototype Nodes
As shown in Table 3, we studied the impact of different numbers of
prototype nodes 𝑘 in the instance feature alignment module. We
find that when utilizing 6 prototype nodes, there was a relative
improvement of 0.78% in mAP on rare classes compared to using 4
prototype nodes. While increasing the number of prototype nodes
to 10, there was a decrease in mAP compared to using 6 prototype
nodes. The primary reason is that using a small number of prototype
nodes is insufficient to effectively capture and aggregate all the
instance information in the images, consequently resulting in the
loss of human-object pairs features and a subsequent decline in
performance. Conversely, an excessive number of prototype nodes
leads to the dispersion of human-object pairs features, hindering
the proper aggregation of instance information.
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Figure 1: Visualization of images generated by Blip-diffusion. The first row represents images from the original dataset, while
the remaining four rows depict the generated images. The HOI categories used for image generation are displayed at the top of
each image.

4 ADDITIONAL QUALITATIVE RESULTS
In Fig. 2, we provide more qualitative results in addition to the
cases mentioned in the paper. “GT" represents the ground truth,
“HOICLIP" shows the predictions from the previous benchmark
model HOICLIP, and “Ours" presents the results from our proposed
method. In Fig. 2, blue bounding boxes represent person, and green
bounding boxes represent objects.

The visualization results above the dashed line demonstrate the
correct predictions made by our model. We can observe that our
model not only slightly improves the localization of rare human-
object pairs but also greatly enhances the classification of rare rela-
tionships. The results below the dashed line display the instances
where our model made incorrect predictions. We can observe that
the main reason for these prediction errors is the incorrect localiza-
tion and classification of human-object pairs. This is attributed to
keeping the instance decoder fixed during fine-tuning, which did

not significantly improve the detection capability for human-object
pairs. In future research, we can explore and investigate this aspect
further.

5 POTENTIAL LIMITATION AND FUTURE
DEVELOPMENTS

In this section, we will discuss the limitations of our model and
future directions for development. Firstly, Our method only fo-
cuses on rare classes, and we can next explore how to improve the
performance of non-rare classes. Secondly, with the advancement
of generative models, we can consider adopting more advanced
and controllable models to generate higher-quality data. Thirdly,
we expect that our method can provide new paradigm for using
generated data for practical training and HOI detection.
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Figure 2: More qualitative evaluation on the HICO-Det dataset. “GT" represents the ground truth, “HOICLIP" shows the
predictions from the previous benchmark model HOICLIP, and “Ours" presents the results from our proposed method. In the
figure, blue bounding boxes represent person, and green bounding boxes represent objects. Above the dotted line are examples
where our model performed well, and below the dotted line are examples where our model makes errors.
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